/* * Copyright (C) 2011 Google, Inc * Copyright (c) 2011-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include DEFINE_MUTEX(secure_buffer_mutex); struct cp2_mem_chunks { u32 chunk_list; u32 chunk_list_size; u32 chunk_size; } __attribute__ ((__packed__)); struct cp2_lock_req { struct cp2_mem_chunks chunks; u32 mem_usage; u32 lock; } __attribute__ ((__packed__)); struct mem_prot_info { phys_addr_t addr; u64 size; }; #define MEM_PROT_ASSIGN_ID 0x16 #define MEM_PROTECT_LOCK_ID2 0x0A #define MEM_PROTECT_LOCK_ID2_FLAT 0x11 #define V2_CHUNK_SIZE SZ_1M #define FEATURE_ID_CP 12 struct dest_vm_and_perm_info { u32 vm; u32 perm; u64 ctx; u32 ctx_size; }; static void *qcom_secure_mem; #define QCOM_SECURE_MEM_SIZE (512*1024) static int secure_buffer_change_chunk(u32 chunks, u32 nchunks, u32 chunk_size, int lock) { struct cp2_lock_req request; u32 resp; int ret; struct scm_desc desc = {0}; desc.args[0] = request.chunks.chunk_list = chunks; desc.args[1] = request.chunks.chunk_list_size = nchunks; desc.args[2] = request.chunks.chunk_size = chunk_size; /* Usage is now always 0 */ desc.args[3] = request.mem_usage = 0; desc.args[4] = request.lock = lock; desc.args[5] = 0; desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL); kmap_flush_unused(); kmap_atomic_flush_unused(); if (!is_scm_armv8()) { ret = scm_call(SCM_SVC_MP, MEM_PROTECT_LOCK_ID2, &request, sizeof(request), &resp, sizeof(resp)); } else { ret = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, MEM_PROTECT_LOCK_ID2_FLAT), &desc); resp = desc.ret[0]; } return ret; } static int secure_buffer_change_table(struct sg_table *table, int lock) { int i, j; int ret = -EINVAL; u32 *chunk_list; struct scatterlist *sg; for_each_sg(table->sgl, sg, table->nents, i) { int nchunks; int size = sg->length; int chunk_list_len; phys_addr_t chunk_list_phys; /* * This should theoretically be a phys_addr_t but the protocol * indicates this should be a u32. */ u32 base; u64 tmp = sg_dma_address(sg); WARN((tmp >> 32) & 0xffffffff, "%s: there are ones in the upper 32 bits of the sg at %p! They will be truncated! Address: 0x%llx\n", __func__, sg, tmp); if (unlikely(!size || (size % V2_CHUNK_SIZE))) { WARN(1, "%s: chunk %d has invalid size: 0x%x. Must be a multiple of 0x%x\n", __func__, i, size, V2_CHUNK_SIZE); return -EINVAL; } base = (u32)tmp; nchunks = size / V2_CHUNK_SIZE; chunk_list_len = sizeof(u32)*nchunks; chunk_list = kzalloc(chunk_list_len, GFP_KERNEL); if (!chunk_list) return -ENOMEM; chunk_list_phys = virt_to_phys(chunk_list); for (j = 0; j < nchunks; j++) chunk_list[j] = base + j * V2_CHUNK_SIZE; /* * Flush the chunk list before sending the memory to the * secure environment to ensure the data is actually present * in RAM */ dmac_flush_range(chunk_list, chunk_list + chunk_list_len); ret = secure_buffer_change_chunk(virt_to_phys(chunk_list), nchunks, V2_CHUNK_SIZE, lock); if (!ret) { /* * Set or clear the private page flag to communicate the * status of the chunk to other entities */ if (lock) SetPagePrivate(sg_page(sg)); else ClearPagePrivate(sg_page(sg)); } kfree(chunk_list); } return ret; } int msm_secure_table(struct sg_table *table) { int ret; mutex_lock(&secure_buffer_mutex); ret = secure_buffer_change_table(table, 1); mutex_unlock(&secure_buffer_mutex); return ret; } int msm_unsecure_table(struct sg_table *table) { int ret; mutex_lock(&secure_buffer_mutex); ret = secure_buffer_change_table(table, 0); mutex_unlock(&secure_buffer_mutex); return ret; } static struct dest_vm_and_perm_info * populate_dest_info(int *dest_vmids, int nelements, int *dest_perms, size_t *size_in_bytes) { struct dest_vm_and_perm_info *dest_info; int i; size_t size; /* Ensure allocated size is less than PAGE_ALLOC_COSTLY_ORDER */ size = nelements * sizeof(*dest_info); if (size > PAGE_SIZE) return NULL; dest_info = kzalloc(size, GFP_KERNEL); if (!dest_info) return NULL; for (i = 0; i < nelements; i++) { dest_info[i].vm = dest_vmids[i]; dest_info[i].perm = dest_perms[i]; dest_info[i].ctx = 0x0; dest_info[i].ctx_size = 0; } *size_in_bytes = size; return dest_info; } /* Must hold secure_buffer_mutex while allocated buffer is in use */ static struct mem_prot_info *get_info_list_from_table(struct sg_table *table, size_t *size_in_bytes) { int i; struct scatterlist *sg; struct mem_prot_info *info; size_t size; size = table->nents * sizeof(*info); if (size >= QCOM_SECURE_MEM_SIZE) { pr_err("%s: Not enough memory allocated. Required size %zd\n", __func__, size); return NULL; } if (!qcom_secure_mem) { pr_err("%s is not functional as qcom_secure_mem is not allocated.\n", __func__); return NULL; } /* "Allocate" it */ info = qcom_secure_mem; for_each_sg(table->sgl, sg, table->nents, i) { info[i].addr = page_to_phys(sg_page(sg)); info[i].size = sg->length; } *size_in_bytes = size; return info; } #define BATCH_MAX_SIZE SZ_2M #define BATCH_MAX_SECTIONS 32 int hyp_assign_table(struct sg_table *table, u32 *source_vm_list, int source_nelems, int *dest_vmids, int *dest_perms, int dest_nelems) { int ret = 0; struct scm_desc desc = {0}; u32 *source_vm_copy; size_t source_vm_copy_size; struct dest_vm_and_perm_info *dest_vm_copy; size_t dest_vm_copy_size; struct mem_prot_info *sg_table_copy; size_t sg_table_copy_size; int batch_start, batch_end; u64 batch_size; /* * We can only pass cache-aligned sizes to hypervisor, so we need * to kmalloc and memcpy the source_vm_list here. */ source_vm_copy_size = sizeof(*source_vm_copy) * source_nelems; source_vm_copy = kzalloc(source_vm_copy_size, GFP_KERNEL); if (!source_vm_copy) return -ENOMEM; memcpy(source_vm_copy, source_vm_list, source_vm_copy_size); dest_vm_copy = populate_dest_info(dest_vmids, dest_nelems, dest_perms, &dest_vm_copy_size); if (!dest_vm_copy) { ret = -ENOMEM; goto out_free; } mutex_lock(&secure_buffer_mutex); sg_table_copy = get_info_list_from_table(table, &sg_table_copy_size); if (!sg_table_copy) { ret = -ENOMEM; goto out_unlock; } desc.args[0] = virt_to_phys(sg_table_copy); desc.args[1] = sg_table_copy_size; desc.args[2] = virt_to_phys(source_vm_copy); desc.args[3] = source_vm_copy_size; desc.args[4] = virt_to_phys(dest_vm_copy); desc.args[5] = dest_vm_copy_size; desc.args[6] = 0; desc.arginfo = SCM_ARGS(7, SCM_RO, SCM_VAL, SCM_RO, SCM_VAL, SCM_RO, SCM_VAL, SCM_VAL); dmac_flush_range(source_vm_copy, (void *)source_vm_copy + source_vm_copy_size); dmac_flush_range(sg_table_copy, (void *)sg_table_copy + sg_table_copy_size); dmac_flush_range(dest_vm_copy, (void *)dest_vm_copy + dest_vm_copy_size); batch_start = 0; while (batch_start < table->nents) { /* Ensure no size zero batches */ batch_size = sg_table_copy[batch_start].size; batch_end = batch_start + 1; while (1) { u64 size; if (batch_end >= table->nents) break; if (batch_end - batch_start >= BATCH_MAX_SECTIONS) break; size = sg_table_copy[batch_end].size; if (size + batch_size >= BATCH_MAX_SIZE) break; batch_size += size; batch_end++; } desc.args[0] = virt_to_phys(&sg_table_copy[batch_start]); desc.args[1] = (batch_end - batch_start) * sizeof(sg_table_copy[0]); ret = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, MEM_PROT_ASSIGN_ID), &desc); if (ret) { pr_info("%s: Failed to assign memory protection, ret = %d\n", __func__, ret); break; } batch_start = batch_end; } out_unlock: mutex_unlock(&secure_buffer_mutex); kfree(dest_vm_copy); out_free: kfree(source_vm_copy); return ret; } int hyp_assign_phys(phys_addr_t addr, u64 size, u32 *source_vm_list, int source_nelems, int *dest_vmids, int *dest_perms, int dest_nelems) { struct sg_table table; int ret; ret = sg_alloc_table(&table, 1, GFP_KERNEL); if (ret) return ret; sg_set_page(table.sgl, phys_to_page(addr), size, 0); ret = hyp_assign_table(&table, source_vm_list, source_nelems, dest_vmids, dest_perms, dest_nelems); sg_free_table(&table); return ret; } EXPORT_SYMBOL(hyp_assign_phys); const char *msm_secure_vmid_to_string(int secure_vmid) { switch (secure_vmid) { case VMID_HLOS: return "VMID_HLOS"; case VMID_CP_TOUCH: return "VMID_CP_TOUCH"; case VMID_CP_BITSTREAM: return "VMID_CP_BITSTREAM"; case VMID_CP_PIXEL: return "VMID_CP_PIXEL"; case VMID_CP_NON_PIXEL: return "VMID_CP_NON_PIXEL"; case VMID_CP_CAMERA: return "VMID_CP_CAMERA"; case VMID_HLOS_FREE: return "VMID_HLOS_FREE"; case VMID_MSS_MSA: return "VMID_MSS_MSA"; case VMID_MSS_NONMSA: return "VMID_MSS_NONMSA"; case VMID_CP_SEC_DISPLAY: return "VMID_CP_SEC_DISPLAY"; case VMID_CP_APP: return "VMID_CP_APP"; case VMID_WLAN: return "VMID_WLAN"; case VMID_WLAN_CE: return "VMID_WLAN_CE"; case VMID_CP_CAMERA_PREVIEW: return "VMID_CP_CAMERA_PREVIEW"; case VMID_CP_SPSS_SP_SHARED: return "VMID_CP_SPSS_SP_SHARED"; case VMID_INVAL: return "VMID_INVAL"; default: return "Unknown VMID"; } } #define MAKE_CP_VERSION(major, minor, patch) \ (((major & 0x3FF) << 22) | ((minor & 0x3FF) << 12) | (patch & 0xFFF)) bool msm_secure_v2_is_supported(void) { u64 version; int ret = scm_get_feat_version(FEATURE_ID_CP, &version); /* * if the version is < 1.1.0 then dynamic buffer allocation is * not supported */ return (ret == 0) && (version >= MAKE_CP_VERSION(1, 1, 0)); } static int __init alloc_secure_shared_memory(void) { int ret = 0; dma_addr_t dma_handle; qcom_secure_mem = kzalloc(QCOM_SECURE_MEM_SIZE, GFP_KERNEL); if (!qcom_secure_mem) { /* Fallback to CMA-DMA memory */ qcom_secure_mem = dma_alloc_coherent(NULL, QCOM_SECURE_MEM_SIZE, &dma_handle, GFP_KERNEL); if (!qcom_secure_mem) { pr_err("Couldn't allocate memory for secure use-cases. hyp_assign_table will not work\n"); return -ENOMEM; } } return ret; } pure_initcall(alloc_secure_shared_memory);