/* Copyright (c) 2016-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "OLEDB: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define QPNP_OLEDB_REGULATOR_DRIVER_NAME "qcom,qpnp-oledb-regulator" #define OLEDB_VOUT_STEP_MV 100 #define OLEDB_VOUT_MIN_MV 5000 #define OLEDB_VOUT_MAX_MV 8100 #define OLEDB_VOUT_HW_DEFAULT 6400 #define OLEDB_MODULE_RDY 0x45 #define OLEDB_MODULE_RDY_BIT BIT(7) #define OLEDB_MODULE_ENABLE 0x46 #define OLEDB_MODULE_ENABLE_BIT BIT(7) #define OLEDB_EXT_PIN_CTL 0x47 #define OLEDB_EXT_PIN_CTL_BIT BIT(7) #define OLEDB_SWIRE_CONTROL 0x48 #define OLEDB_EN_SWIRE_VOUT_UPD_BIT BIT(6) #define OLEDB_EN_SWIRE_PD_UPD_BIT BIT(7) #define OLEDB_VOUT_PGM 0x49 #define OLEDB_VOUT_PGM_MASK GENMASK(4, 0) #define OLEDB_VOUT_DEFAULT 0x4A #define OLEDB_VOUT_DEFAULT_MASK GENMASK(4, 0) #define OLEDB_PD_CTL 0x4B #define OLEDB_ILIM_NFET 0x4E #define OLEDB_ILIMIT_NFET_MASK GENMASK(2, 0) #define OLEDB_BIAS_GEN_WARMUP_DELAY 0x52 #define OLEDB_BIAS_GEN_WARMUP_DELAY_MASK GENMASK(1, 0) #define OLEDB_SHORT_PROTECT 0x59 #define OLEDB_ENABLE_SC_DETECTION_BIT BIT(7) #define OLEDB_DBNC_SHORT_DETECTION_MASK GENMASK(1, 0) #define OLEDB_FAST_PRECHARGE 0x5A #define OLEDB_FAST_PRECHG_PPULSE_EN_BIT BIT(7) #define OLEDB_DBNC_PRECHARGE_MASK GENMASK(5, 4) #define OLEDB_DBNC_PRECHARGE_SHIFT 4 #define OLEDB_PRECHARGE_PULSE_PERIOD_MASK GENMASK(3, 2) #define OLEDB_PRECHARGE_PULSE_PERIOD_SHIFT 2 #define OLEDB_PRECHARGE_PULSE_TON_MASK GENMASK(1, 0) #define OLEDB_EN_PSM 0x5B #define OLEDB_PSM_ENABLE_BIT BIT(7) #define OLEDB_PSM_CTL 0x5C #define OLEDB_PSM_HYSTERYSIS_CTL_BIT BIT(3) #define OLEDB_PSM_HYSTERYSIS_CTL_BIT_SHIFT 3 #define OLEDB_VREF_PSM_MASK GENMASK(2, 0) #define OLEDB_PFM_CTL 0x5D #define OLEDB_PFM_ENABLE_BIT BIT(7) #define OLEDB_PFM_HYSTERYSIS_CTRL_BIT_MASK BIT(4) #define OLEDB_PFM_HYSTERYSIS_CTL_BIT_SHIFT 4 #define OLEDB_PFM_CURR_LIMIT_MASK GENMASK(3, 2) #define OLEDB_PFM_CURR_LIMIT_SHIFT 2 #define OLEDB_PFM_OFF_TIME_NS_MASK GENMASK(1, 0) #define OLEDB_NLIMIT 0x64 #define OLEDB_ENABLE_NLIMIT_BIT BIT(7) #define OLEDB_ENABLE_NLIMIT_BIT_SHIFT 7 #define OLEDB_NLIMIT_PGM_MASK GENMASK(1, 0) #define OLEDB_SPARE_CTL 0xE9 #define OLEDB_FORCE_PD_CTL_SPARE_BIT BIT(7) #define OLEDB_PD_PBS_TRIGGER_BIT BIT(0) #define OLEDB_SEC_UNLOCK_CODE 0xA5 #define OLEDB_PSM_HYS_CTRL_MIN 13 #define OLEDB_PSM_HYS_CTRL_MAX 26 #define OLEDB_PFM_HYS_CTRL_MIN 13 #define OLEDB_PFM_HYS_CTRL_MAX 26 #define OLEDB_PFM_OFF_TIME_MIN 110 #define OLEDB_PFM_OFF_TIME_MAX 480 #define OLEDB_PRECHG_TIME_MIN 1 #define OLEDB_PRECHG_TIME_MAX 8 #define OLEDB_PRECHG_PULSE_PERIOD_MIN 3 #define OLEDB_PRECHG_PULSE_PERIOD_MAX 12 #define OLEDB_MIN_SC_DBNC_TIME_FSW 2 #define OLEDB_MAX_SC_DBNC_TIME_FSW 16 #define OLEDB_PRECHG_PULSE_ON_TIME_MIN 1200 #define OLEDB_PRECHG_PULSE_ON_TIME_MAX 3000 #define PSM_HYSTERYSIS_MV_TO_VAL(val_mv) ((val_mv/13) - 1) #define PFM_HYSTERYSIS_MV_TO_VAL(val_mv) ((val_mv/13) - 1) #define PFM_OFF_TIME_NS_TO_VAL(val_ns) ((val_ns/110) - 1) #define PRECHG_DEBOUNCE_TIME_MS_TO_VAL(val_ms) ((val_ms/2) - \ (val_ms/8)) #define PRECHG_PULSE_PERIOD_US_TO_VAL(val_us) ((val_us/3) - 1) #define PRECHG_PULSE_ON_TIME_NS_TO_VAL(val_ns) (val_ns/600 - 2) #define SHORT_CIRCUIT_DEBOUNCE_TIME_TO_VAL(val) ((val/4) - (val/16)) struct qpnp_oledb_psm_ctl { int psm_enable; int psm_hys_ctl; int psm_vref; }; struct qpnp_oledb_pfm_ctl { int pfm_enable; int pfm_hys_ctl; int pfm_curr_limit; int pfm_off_time; }; struct qpnp_oledb_fast_precharge_ctl { int fast_prechg_ppulse_en; int prechg_debounce_time; int prechg_pulse_period; int prechg_pulse_on_time; }; struct qpnp_oledb { struct platform_device *pdev; struct device *dev; struct regmap *regmap; struct regulator_desc rdesc; struct regulator_dev *rdev; struct qpnp_oledb_psm_ctl psm_ctl; struct qpnp_oledb_pfm_ctl pfm_ctl; struct qpnp_oledb_fast_precharge_ctl fast_prechg_ctl; struct notifier_block oledb_nb; struct mutex bus_lock; struct device_node *pbs_dev_node; struct pmic_revid_data *pmic_rev_id; u32 base; u8 mod_enable; u8 ext_pinctl_state; int current_voltage; int default_voltage; int vout_mv; int warmup_delay; int peak_curr_limit; int pd_ctl; int negative_curr_limit; int nlimit_enable; int sc_en; int sc_dbnc_time; bool swire_control; bool ext_pin_control; bool dynamic_ext_pinctl_config; bool pbs_control; bool force_pd_control; bool handle_lab_sc_notification; bool lab_sc_detected; }; static const u16 oledb_warmup_dly_ns[] = {6700, 13300, 26700, 53400}; static const u16 oledb_peak_curr_limit_ma[] = {115, 265, 415, 570, 720, 870, 1020, 1170}; static const u16 oledb_psm_vref_mv[] = {440, 510, 580, 650, 715, 780, 850, 920}; static const u16 oledb_pfm_curr_limit_ma[] = {130, 200, 270, 340}; static const u16 oledb_nlimit_ma[] = {170, 300, 420, 550}; static int qpnp_oledb_read(struct qpnp_oledb *oledb, u32 address, u8 *val, int count) { int rc = 0; struct platform_device *pdev = oledb->pdev; mutex_lock(&oledb->bus_lock); rc = regmap_bulk_read(oledb->regmap, address, val, count); if (rc) pr_err("Failed to read address=0x%02x sid=0x%02x rc=%d\n", address, to_spmi_device(pdev->dev.parent)->usid, rc); mutex_unlock(&oledb->bus_lock); return rc; } static int qpnp_oledb_masked_write(struct qpnp_oledb *oledb, u32 address, u8 mask, u8 val) { int rc; mutex_lock(&oledb->bus_lock); rc = regmap_update_bits(oledb->regmap, address, mask, val); if (rc < 0) pr_err("Failed to write address 0x%04X, rc = %d\n", address, rc); else pr_debug("Wrote 0x%02X to addr 0x%04X\n", val, address); mutex_unlock(&oledb->bus_lock); return rc; } #define OLEDB_SEC_ACCESS 0xD0 static int qpnp_oledb_sec_masked_write(struct qpnp_oledb *oledb, u16 address, u8 mask, u8 val) { int rc = 0; u8 sec_val = OLEDB_SEC_UNLOCK_CODE; u16 sec_reg_addr = (address & 0xFF00) | OLEDB_SEC_ACCESS; mutex_lock(&oledb->bus_lock); rc = regmap_write(oledb->regmap, sec_reg_addr, sec_val); if (rc < 0) { pr_err("register %x failed rc = %d\n", sec_reg_addr, rc); goto error; } rc = regmap_update_bits(oledb->regmap, address, mask, val); if (rc < 0) pr_err("spmi write failed: addr=%03X, rc=%d\n", address, rc); error: mutex_unlock(&oledb->bus_lock); return rc; } static int qpnp_oledb_write(struct qpnp_oledb *oledb, u16 address, u8 *val, int count) { int rc = 0; struct platform_device *pdev = oledb->pdev; mutex_lock(&oledb->bus_lock); rc = regmap_bulk_write(oledb->regmap, address, val, count); if (rc) pr_err("Failed to write address=0x%02x sid=0x%02x rc=%d\n", address, to_spmi_device(pdev->dev.parent)->usid, rc); else pr_debug("Wrote 0x%02X to addr 0x%04X\n", *val, address); mutex_unlock(&oledb->bus_lock); return rc; } static int qpnp_oledb_regulator_enable(struct regulator_dev *rdev) { int rc = 0; u8 val = 0; struct qpnp_oledb *oledb = rdev_get_drvdata(rdev); if (oledb->lab_sc_detected == true) { pr_info("Short circuit detected: Disabled OLEDB rail\n"); return 0; } if (oledb->ext_pin_control) { rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_EXT_PIN_CTL, &val, 1); if (rc < 0) { pr_err("Failed to read EXT_PIN_CTL rc=%d\n", rc); return rc; } /* * Enable ext-pin-ctl after display-supply is turned on. * This is to avoid glitches on the external pin. */ if (!(val & OLEDB_EXT_PIN_CTL_BIT) && oledb->dynamic_ext_pinctl_config) { val = OLEDB_EXT_PIN_CTL_BIT; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_EXT_PIN_CTL, &val, 1); if (rc < 0) { pr_err("Failed to write EXT_PIN_CTL rc=%d\n", rc); return rc; } } pr_debug("ext-pin-ctrl mode enabled\n"); } else { val = OLEDB_MODULE_ENABLE_BIT; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_ENABLE, &val, 1); if (rc < 0) { pr_err("Failed to write MODULE_ENABLE rc=%d\n", rc); return rc; } ndelay(oledb->warmup_delay); pr_debug("register-control mode, module enabled\n"); } oledb->mod_enable = true; if (oledb->pbs_control) { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT | OLEDB_EN_SWIRE_VOUT_UPD_BIT, 0); if (rc < 0) pr_err("Failed to write SWIRE_CTL for pbs mode rc=%d\n", rc); } return rc; } static int qpnp_oledb_regulator_disable(struct regulator_dev *rdev) { int rc = 0; u8 trigger_bitmap = OLEDB_PD_PBS_TRIGGER_BIT; u8 val; struct qpnp_oledb *oledb = rdev_get_drvdata(rdev); /* * Disable ext-pin-ctl after display-supply is turned off. This is to * avoid glitches on the external pin. */ if (oledb->ext_pin_control) { if (oledb->dynamic_ext_pinctl_config) { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_EXT_PIN_CTL, OLEDB_EXT_PIN_CTL_BIT, 0); if (rc < 0) { pr_err("Failed to write EXT_PIN_CTL rc=%d\n", rc); return rc; } } pr_debug("ext-pin-ctrl mode disabled\n"); } else { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_MODULE_ENABLE, OLEDB_MODULE_ENABLE_BIT, 0); if (rc < 0) { pr_err("Failed to write MODULE_ENABLE rc=%d\n", rc); return rc; } pr_debug("Register-control mode, module disabled\n"); } if (oledb->force_pd_control) { rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_SPARE_CTL, &val, 1); if (rc < 0) { pr_err("Failed to read OLEDB_SPARE_CTL rc=%d\n", rc); return rc; } if (val & OLEDB_FORCE_PD_CTL_SPARE_BIT) { rc = qpnp_oledb_sec_masked_write(oledb, oledb->base + OLEDB_SPARE_CTL, OLEDB_FORCE_PD_CTL_SPARE_BIT, 0); if (rc < 0) { pr_err("Failed to write SPARE_CTL rc=%d\n", rc); return rc; } rc = qpnp_pbs_trigger_event(oledb->pbs_dev_node, trigger_bitmap); if (rc < 0) pr_err("Failed to trigger the PBS sequence\n"); pr_debug("PBS event triggered\n"); } else { pr_debug("OLEDB_SPARE_CTL register bit not set\n"); } } oledb->mod_enable = false; return rc; } static int qpnp_oledb_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_oledb *oledb = rdev_get_drvdata(rdev); return oledb->mod_enable; } static int qpnp_oledb_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { u8 val; int rc = 0; struct qpnp_oledb *oledb = rdev_get_drvdata(rdev); if (oledb->swire_control) return 0; val = DIV_ROUND_UP(min_uV - OLEDB_VOUT_MIN_MV, OLEDB_VOUT_STEP_MV); rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_VOUT_PGM, &val, 1); if (rc < 0) { pr_err("Failed to write VOUT_PGM rc=%d\n", rc); return rc; } oledb->current_voltage = min_uV; pr_debug("register-control mode, current voltage %d\n", oledb->current_voltage); return 0; } static int qpnp_oledb_regulator_get_voltage(struct regulator_dev *rdev) { struct qpnp_oledb *oledb = rdev_get_drvdata(rdev); if (oledb->swire_control) return 0; return oledb->current_voltage; } static struct regulator_ops qpnp_oledb_ops = { .enable = qpnp_oledb_regulator_enable, .disable = qpnp_oledb_regulator_disable, .is_enabled = qpnp_oledb_regulator_is_enabled, .set_voltage = qpnp_oledb_regulator_set_voltage, .get_voltage = qpnp_oledb_regulator_get_voltage, }; static int qpnp_oledb_register_regulator(struct qpnp_oledb *oledb) { int rc = 0; struct platform_device *pdev = oledb->pdev; struct regulator_init_data *init_data; struct regulator_desc *rdesc = &oledb->rdesc; struct regulator_config cfg = {}; init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node, rdesc); if (!init_data) { pr_err("Unable to get OLEDB regulator init data\n"); return -ENOMEM; } if (init_data->constraints.name) { rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; rdesc->ops = &qpnp_oledb_ops; rdesc->name = init_data->constraints.name; cfg.dev = &pdev->dev; cfg.init_data = init_data; cfg.driver_data = oledb; cfg.of_node = pdev->dev.of_node; if (of_get_property(pdev->dev.of_node, "parent-supply", NULL)) init_data->supply_regulator = "parent"; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS; oledb->rdev = devm_regulator_register(oledb->dev, rdesc, &cfg); if (IS_ERR(oledb->rdev)) { rc = PTR_ERR(oledb->rdev); oledb->rdev = NULL; pr_err("Unable to register OLEDB regulator, rc = %d\n", rc); return rc; } } else { pr_err("OLEDB regulator name missing\n"); return -EINVAL; } return 0; } static int qpnp_oledb_get_curr_voltage(struct qpnp_oledb *oledb, u16 *current_voltage) { int rc = 0; u8 val; if (!(oledb->mod_enable || oledb->ext_pinctl_state)) { rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_VOUT_DEFAULT, &val, 1); if (rc < 0) { pr_err("Failed to read VOUT_DEFAULT rc=%d\n", rc); return rc; } } else { rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_VOUT_PGM, &val, 1); if (rc < 0) { pr_err("Failed to read VOUT_PGM rc=%d\n", rc); return rc; } } *current_voltage = (val * OLEDB_VOUT_STEP_MV) + OLEDB_VOUT_MIN_MV; return rc; } static int qpnp_oledb_init_nlimit(struct qpnp_oledb *oledb) { int rc = 0, i = 0; u32 val, mask = 0; if (oledb->nlimit_enable != -EINVAL) { val = oledb->nlimit_enable << OLEDB_ENABLE_NLIMIT_BIT_SHIFT; mask = OLEDB_ENABLE_NLIMIT_BIT; if (oledb->negative_curr_limit != -EINVAL) { for (i = 0; i < ARRAY_SIZE(oledb_nlimit_ma); i++) { if (oledb->negative_curr_limit == oledb_nlimit_ma[i]) break; } val |= i; mask |= OLEDB_NLIMIT_PGM_MASK; } rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_NLIMIT, mask, val); if (rc < 0) pr_err("Failed to write NLIMT rc=%d\n", rc); } return rc; } static int qpnp_oledb_init_psm(struct qpnp_oledb *oledb) { int rc = 0, i = 0; u32 val = 0, mask = 0, temp = 0; struct qpnp_oledb_psm_ctl *psm_ctl = &oledb->psm_ctl; if (psm_ctl->psm_enable == -EINVAL) return rc; if (psm_ctl->psm_enable) { val = OLEDB_PSM_ENABLE_BIT; rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_EN_PSM, OLEDB_PSM_ENABLE_BIT, val); if (rc < 0) { pr_err("Failed to write PSM_EN rc=%d\n", rc); return rc; } val = 0; if (psm_ctl->psm_vref != -EINVAL) { for (i = 0; i < ARRAY_SIZE(oledb_psm_vref_mv); i++) { if (psm_ctl->psm_vref == oledb_psm_vref_mv[i]) break; } val = i; mask = OLEDB_VREF_PSM_MASK; } if (psm_ctl->psm_hys_ctl != -EINVAL) { temp = PSM_HYSTERYSIS_MV_TO_VAL(psm_ctl->psm_hys_ctl); val |= (temp << OLEDB_PSM_HYSTERYSIS_CTL_BIT_SHIFT); mask |= OLEDB_PSM_HYSTERYSIS_CTL_BIT; } if (val) { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_PSM_CTL, mask, val); if (rc < 0) pr_err("Failed to write PSM_CTL rc=%d\n", rc); } } else { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_EN_PSM, OLEDB_PSM_ENABLE_BIT, 0); if (rc < 0) pr_err("Failed to write PSM_CTL rc=%d\n", rc); } return rc; } static int qpnp_oledb_init_pfm(struct qpnp_oledb *oledb) { int rc = 0, i = 0; u32 val = 0, temp = 0, mask = 0; struct qpnp_oledb_pfm_ctl *pfm_ctl = &oledb->pfm_ctl; if (pfm_ctl->pfm_enable == -EINVAL) return rc; if (pfm_ctl->pfm_enable) { mask = val = OLEDB_PFM_ENABLE_BIT; if (pfm_ctl->pfm_hys_ctl != -EINVAL) { temp = PFM_HYSTERYSIS_MV_TO_VAL(pfm_ctl->pfm_hys_ctl); val |= temp << OLEDB_PFM_HYSTERYSIS_CTL_BIT_SHIFT; mask |= OLEDB_PFM_HYSTERYSIS_CTRL_BIT_MASK; } if (pfm_ctl->pfm_curr_limit != -EINVAL) { for (i = 0; i < ARRAY_SIZE(oledb_pfm_curr_limit_ma); i++) { if (pfm_ctl->pfm_curr_limit == oledb_pfm_curr_limit_ma[i]) break; } val |= (i << OLEDB_PFM_CURR_LIMIT_SHIFT); mask |= OLEDB_PFM_CURR_LIMIT_MASK; } if (pfm_ctl->pfm_off_time != -EINVAL) { val |= PFM_OFF_TIME_NS_TO_VAL(pfm_ctl->pfm_off_time); mask |= OLEDB_PFM_OFF_TIME_NS_MASK; } rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_PFM_CTL, mask, val); if (rc < 0) pr_err("Failed to write PFM_CTL rc=%d\n", rc); } else { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_PFM_CTL, OLEDB_PFM_ENABLE_BIT, 0); if (rc < 0) pr_err("Failed to write PFM_CTL rc=%d\n", rc); } return rc; } static int qpnp_oledb_init_fast_precharge(struct qpnp_oledb *oledb) { int rc = 0; u32 val = 0, temp = 0, mask = 0; struct qpnp_oledb_fast_precharge_ctl *prechg_ctl = &oledb->fast_prechg_ctl; if (prechg_ctl->fast_prechg_ppulse_en == -EINVAL) return rc; if (prechg_ctl->fast_prechg_ppulse_en) { mask = val = OLEDB_FAST_PRECHG_PPULSE_EN_BIT; if (prechg_ctl->prechg_debounce_time != -EINVAL) { temp = PRECHG_DEBOUNCE_TIME_MS_TO_VAL( prechg_ctl->prechg_debounce_time); val |= temp << OLEDB_DBNC_PRECHARGE_SHIFT; mask |= OLEDB_DBNC_PRECHARGE_MASK; } if (prechg_ctl->prechg_pulse_period != -EINVAL) { temp = PRECHG_PULSE_PERIOD_US_TO_VAL( prechg_ctl->prechg_pulse_period); val |= temp << OLEDB_PRECHARGE_PULSE_PERIOD_SHIFT; mask |= OLEDB_PRECHARGE_PULSE_PERIOD_MASK; } if (prechg_ctl->prechg_pulse_on_time != -EINVAL) { val |= PRECHG_PULSE_ON_TIME_NS_TO_VAL( prechg_ctl->prechg_pulse_on_time); mask |= OLEDB_PRECHARGE_PULSE_TON_MASK; } rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_FAST_PRECHARGE, mask, val); if (rc < 0) pr_err("Failed to write FAST_PRECHARGE rc=%d\n", rc); } else { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_FAST_PRECHARGE, OLEDB_FAST_PRECHG_PPULSE_EN_BIT, 0); if (rc < 0) pr_err("Failed to write FAST_PRECHARGE rc=%d\n", rc); } return rc; } static int qpnp_oledb_hw_init(struct qpnp_oledb *oledb) { int rc, i = 0; u8 val = 0, mask = 0; u16 current_voltage; if (oledb->default_voltage != -EINVAL) { val = (oledb->default_voltage - OLEDB_VOUT_MIN_MV) / OLEDB_VOUT_STEP_MV; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_VOUT_DEFAULT, &val, 1); if (rc < 0) { pr_err("Failed to write VOUT_DEFAULT rc=%d\n", rc); return rc; } } rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_MODULE_ENABLE, &oledb->mod_enable, 1); if (rc < 0) { pr_err("Failed to read MODULE_ENABLE rc=%d\n", rc); return rc; } rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_EXT_PIN_CTL, &oledb->ext_pinctl_state, 1); if (rc < 0) { pr_err("Failed to read EXT_PIN_CTL rc=%d\n", rc); return rc; } rc = qpnp_oledb_get_curr_voltage(oledb, ¤t_voltage); if (rc < 0) return rc; /* * Go through if the module is not enabled either through * external pin control or SPMI interface. */ if (!((oledb->ext_pinctl_state & OLEDB_EXT_PIN_CTL_BIT) || oledb->mod_enable)) { if (oledb->warmup_delay != -EINVAL) { for (i = 0; i < ARRAY_SIZE(oledb_warmup_dly_ns); i++) { if (oledb->warmup_delay == oledb_warmup_dly_ns[i]) break; } val = i; rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_BIAS_GEN_WARMUP_DELAY, OLEDB_BIAS_GEN_WARMUP_DELAY_MASK, val); if (rc < 0) { pr_err("Failed to write WARMUP_DELAY rc=%d\n", rc); return rc; } } else { rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_BIAS_GEN_WARMUP_DELAY, &val, 1); if (rc < 0) { pr_err("Failed to read WARMUP_DELAY rc=%d\n", rc); return rc; } oledb->warmup_delay = oledb_warmup_dly_ns[val]; } if (oledb->peak_curr_limit != -EINVAL) { for (i = 0; i < ARRAY_SIZE(oledb_peak_curr_limit_ma); i++) { if (oledb->peak_curr_limit == oledb_peak_curr_limit_ma[i]) break; } val = i; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_ILIM_NFET, &val, 1); if (rc < 0) { pr_err("Failed to write ILIM_NEFT rc=%d\n", rc); return rc; } } if (oledb->pd_ctl != -EINVAL) { val = oledb->pd_ctl; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_PD_CTL, &val, 1); if (rc < 0) { pr_err("Failed to write PD_CTL rc=%d\n", rc); return rc; } } if (oledb->sc_en != -EINVAL) { val = oledb->sc_en ? OLEDB_ENABLE_SC_DETECTION_BIT : 0; mask = OLEDB_ENABLE_SC_DETECTION_BIT; if (oledb->sc_dbnc_time != -EINVAL) { val |= SHORT_CIRCUIT_DEBOUNCE_TIME_TO_VAL( oledb->sc_dbnc_time); mask |= OLEDB_DBNC_PRECHARGE_MASK; } rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_SHORT_PROTECT, &val, 1); if (rc < 0) { pr_err("Failed to write SHORT_PROTECT rc=%d\n", rc); return rc; } } rc = qpnp_oledb_init_nlimit(oledb); if (rc < 0) return rc; rc = qpnp_oledb_init_psm(oledb); if (rc < 0) return rc; rc = qpnp_oledb_init_pfm(oledb); if (rc < 0) return rc; rc = qpnp_oledb_init_fast_precharge(oledb); if (rc < 0) return rc; if (oledb->swire_control) { val = OLEDB_EN_SWIRE_PD_UPD_BIT | OLEDB_EN_SWIRE_VOUT_UPD_BIT; rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT | OLEDB_EN_SWIRE_VOUT_UPD_BIT, val); if (rc < 0) return rc; } rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_MODULE_RDY, &val, 1); if (rc < 0) { pr_err("Failed to read MODULE_RDY rc=%d\n", rc); return rc; } if (!(val & OLEDB_MODULE_RDY_BIT)) { val = OLEDB_MODULE_RDY_BIT; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_RDY, &val, 1); if (rc < 0) { pr_err("Failed to write MODULE_RDY rc=%d\n", rc); return rc; } } if (!oledb->dynamic_ext_pinctl_config) { if (oledb->ext_pin_control) { val = OLEDB_EXT_PIN_CTL_BIT; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_EXT_PIN_CTL, &val, 1); if (rc < 0) { pr_err("Failed to write EXT_PIN_CTL rc=%d\n", rc); return rc; } } else { val = OLEDB_MODULE_ENABLE_BIT; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_ENABLE, &val, 1); if (rc < 0) { pr_err("Failed to write MODULE_ENABLE rc=%d\n", rc); return rc; } ndelay(oledb->warmup_delay); } oledb->mod_enable = true; if (oledb->pbs_control) { rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT | OLEDB_EN_SWIRE_VOUT_UPD_BIT, 0); if (rc < 0) { pr_err("Failed to write SWIRE_CTL rc=%d\n", rc); return rc; } } } oledb->current_voltage = current_voltage; } else { /* module is enabled */ if (oledb->current_voltage == -EINVAL) { oledb->current_voltage = current_voltage; } else if (!oledb->swire_control) { if (oledb->current_voltage < OLEDB_VOUT_MIN_MV) { pr_err("current_voltage %d is less than min_volt %d\n", oledb->current_voltage, OLEDB_VOUT_MIN_MV); return -EINVAL; } val = DIV_ROUND_UP(oledb->current_voltage - OLEDB_VOUT_MIN_MV, OLEDB_VOUT_STEP_MV); rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_VOUT_PGM, &val, 1); if (rc < 0) { pr_err("Failed to write VOUT_PGM rc=%d\n", rc); return rc; } } oledb->mod_enable = true; } return rc; } static int qpnp_oledb_parse_nlimit(struct qpnp_oledb *oledb) { int rc = 0; struct device_node *of_node = oledb->dev->of_node; oledb->nlimit_enable = -EINVAL; rc = of_property_read_u32(of_node, "qcom,negative-curr-limit-enable", &oledb->nlimit_enable); if (!rc) { oledb->negative_curr_limit = -EINVAL; rc = of_property_read_u32(of_node, "qcom,negative-curr-limit-ma", &oledb->negative_curr_limit); if (!rc) { u16 min_curr_limit = oledb_nlimit_ma[0]; u16 max_curr_limit = oledb_nlimit_ma[ARRAY_SIZE( oledb_nlimit_ma) - 1]; if (oledb->negative_curr_limit < min_curr_limit || oledb->negative_curr_limit > max_curr_limit) { pr_err("Invalid value in qcom,negative-curr-limit-ma\n"); return -EINVAL; } } } return 0; } static int qpnp_oledb_parse_psm(struct qpnp_oledb *oledb) { int rc = 0; struct qpnp_oledb_psm_ctl *psm_ctl = &oledb->psm_ctl; struct device_node *of_node = oledb->dev->of_node; psm_ctl->psm_enable = -EINVAL; rc = of_property_read_u32(of_node, "qcom,psm-enable", &psm_ctl->psm_enable); if (!rc) { psm_ctl->psm_hys_ctl = -EINVAL; rc = of_property_read_u32(of_node, "qcom,psm-hys-mv", &psm_ctl->psm_hys_ctl); if (!rc) { if (psm_ctl->psm_hys_ctl < OLEDB_PSM_HYS_CTRL_MIN || psm_ctl->psm_hys_ctl > OLEDB_PSM_HYS_CTRL_MAX) { pr_err("Invalid value in qcom,psm-hys-mv\n"); return -EINVAL; } } psm_ctl->psm_vref = -EINVAL; rc = of_property_read_u32(of_node, "qcom,psm-vref-mv", &psm_ctl->psm_vref); if (!rc) { u16 min_vref = oledb_psm_vref_mv[0]; u16 max_vref = oledb_psm_vref_mv[ARRAY_SIZE( oledb_psm_vref_mv) - 1]; if (psm_ctl->psm_vref < min_vref || psm_ctl->psm_vref > max_vref) { pr_err("Invalid value in qcom,psm-vref-mv\n"); return -EINVAL; } } } return 0; } static int qpnp_oledb_parse_pfm(struct qpnp_oledb *oledb) { int rc = 0; struct qpnp_oledb_pfm_ctl *pfm_ctl = &oledb->pfm_ctl; struct device_node *of_node = oledb->dev->of_node; pfm_ctl->pfm_enable = -EINVAL; rc = of_property_read_u32(of_node, "qcom,pfm-enable", &pfm_ctl->pfm_enable); if (!rc) { pfm_ctl->pfm_hys_ctl = -EINVAL; rc = of_property_read_u32(of_node, "qcom,pfm-hys-mv", &pfm_ctl->pfm_hys_ctl); if (!rc) { if (pfm_ctl->pfm_hys_ctl < OLEDB_PFM_HYS_CTRL_MIN || pfm_ctl->pfm_hys_ctl > OLEDB_PFM_HYS_CTRL_MAX) { pr_err("Invalid value in qcom,pfm-hys-mv\n"); return -EINVAL; } } pfm_ctl->pfm_curr_limit = -EINVAL; rc = of_property_read_u32(of_node, "qcom,pfm-curr-limit-ma", &pfm_ctl->pfm_curr_limit); if (!rc) { u16 min_limit = oledb_pfm_curr_limit_ma[0]; u16 max_limit = oledb_pfm_curr_limit_ma[ARRAY_SIZE( oledb_pfm_curr_limit_ma) - 1]; if (pfm_ctl->pfm_curr_limit < min_limit || pfm_ctl->pfm_curr_limit > max_limit) { pr_err("Invalid value in qcom,pfm-curr-limit-ma\n"); return -EINVAL; } } pfm_ctl->pfm_off_time = -EINVAL; rc = of_property_read_u32(of_node, "qcom,pfm-off-time-ns", &pfm_ctl->pfm_off_time); if (!rc) { if (pfm_ctl->pfm_off_time < OLEDB_PFM_OFF_TIME_MIN || pfm_ctl->pfm_off_time > OLEDB_PFM_OFF_TIME_MAX) { pr_err("Invalid value in qcom,pfm-off-time-ns\n"); return -EINVAL; } } } return 0; } static int qpnp_oledb_parse_fast_precharge(struct qpnp_oledb *oledb) { int rc = 0; struct device_node *of_node = oledb->dev->of_node; struct qpnp_oledb_fast_precharge_ctl *fast_prechg = &oledb->fast_prechg_ctl; fast_prechg->fast_prechg_ppulse_en = -EINVAL; rc = of_property_read_u32(of_node, "qcom,fast-precharge-ppulse-enable", &fast_prechg->fast_prechg_ppulse_en); if (!rc) { fast_prechg->prechg_debounce_time = -EINVAL; rc = of_property_read_u32(of_node, "qcom,precharge-debounce-time-ms", &fast_prechg->prechg_debounce_time); if (!rc) { int dbnc_time = fast_prechg->prechg_debounce_time; if (dbnc_time < OLEDB_PRECHG_TIME_MIN || dbnc_time > OLEDB_PRECHG_TIME_MAX) { pr_err("Invalid value in qcom,precharge-debounce-time-ms\n"); return -EINVAL; } } fast_prechg->prechg_pulse_period = -EINVAL; rc = of_property_read_u32(of_node, "qcom,precharge-pulse-period-us", &fast_prechg->prechg_pulse_period); if (!rc) { int pulse_period = fast_prechg->prechg_pulse_period; if (pulse_period < OLEDB_PRECHG_PULSE_PERIOD_MIN || pulse_period > OLEDB_PRECHG_PULSE_PERIOD_MAX) { pr_err("Invalid value in qcom,precharge-pulse-period-us\n"); return -EINVAL; } } fast_prechg->prechg_pulse_on_time = -EINVAL; rc = of_property_read_u32(of_node, "qcom,precharge-pulse-on-time-ns", &fast_prechg->prechg_pulse_on_time); if (!rc) { int pulse_on_time = fast_prechg->prechg_pulse_on_time; if (pulse_on_time < OLEDB_PRECHG_PULSE_ON_TIME_MIN || pulse_on_time > OLEDB_PRECHG_PULSE_ON_TIME_MAX) { pr_err("Invalid value in qcom,precharge-pulse-on-time-ns\n"); return -EINVAL; } } } return 0; } static int qpnp_oledb_parse_dt(struct qpnp_oledb *oledb) { int rc = 0; struct device_node *revid_dev_node; struct device_node *of_node = oledb->dev->of_node; revid_dev_node = of_parse_phandle(oledb->dev->of_node, "qcom,pmic-revid", 0); if (!revid_dev_node) { pr_err("Missing qcom,pmic-revid property - driver failed\n"); return -EINVAL; } oledb->pmic_rev_id = get_revid_data(revid_dev_node); if (IS_ERR(oledb->pmic_rev_id)) { pr_debug("Unable to get revid data\n"); return -EPROBE_DEFER; } oledb->swire_control = of_property_read_bool(of_node, "qcom,swire-control"); oledb->ext_pin_control = of_property_read_bool(of_node, "qcom,ext-pin-control"); if (oledb->ext_pin_control) oledb->dynamic_ext_pinctl_config = of_property_read_bool(of_node, "qcom,dynamic-ext-pinctl-config"); oledb->pbs_control = of_property_read_bool(of_node, "qcom,pbs-control"); /* Use the force_pd_control only for PM660A versions <= v2.0 */ if (oledb->pmic_rev_id->pmic_subtype == PM660L_SUBTYPE && oledb->pmic_rev_id->rev4 <= PM660L_V2P0_REV4) { if (!(oledb->pmic_rev_id->rev4 == PM660L_V2P0_REV4 && oledb->pmic_rev_id->rev2 > PM660L_V2P0_REV2)) { oledb->force_pd_control = true; } } if (oledb->force_pd_control) { oledb->pbs_dev_node = of_parse_phandle(of_node, "qcom,pbs-client", 0); if (!oledb->pbs_dev_node) { pr_err("Missing qcom,pbs-client property\n"); return -EINVAL; } } oledb->current_voltage = -EINVAL; rc = of_property_read_u32(of_node, "qcom,oledb-init-voltage-mv", &oledb->current_voltage); if (!rc && (oledb->current_voltage < OLEDB_VOUT_MIN_MV || oledb->current_voltage > OLEDB_VOUT_MAX_MV)) { pr_err("Invalid value in qcom,oledb-init-voltage-mv\n"); return -EINVAL; } oledb->default_voltage = -EINVAL; rc = of_property_read_u32(of_node, "qcom,oledb-default-voltage-mv", &oledb->default_voltage); if (!rc && (oledb->default_voltage < OLEDB_VOUT_MIN_MV || oledb->default_voltage > OLEDB_VOUT_MAX_MV)) { pr_err("Invalid value in qcom,oledb-default-voltage-mv\n"); return -EINVAL; } oledb->warmup_delay = -EINVAL; rc = of_property_read_u32(of_node, "qcom,bias-gen-warmup-delay-ns", &oledb->warmup_delay); if (!rc) { u16 min_delay = oledb_warmup_dly_ns[0]; u16 max_delay = oledb_warmup_dly_ns[ARRAY_SIZE( oledb_warmup_dly_ns) - 1]; if (oledb->warmup_delay < min_delay || oledb->warmup_delay > max_delay) { pr_err("Invalid value in qcom,bias-gen-warmup-delay-ns\n"); return -EINVAL; } } oledb->peak_curr_limit = -EINVAL; rc = of_property_read_u32(of_node, "qcom,peak-curr-limit-ma", &oledb->peak_curr_limit); if (!rc) { u16 min_limit = oledb_peak_curr_limit_ma[0]; u16 max_limit = oledb_peak_curr_limit_ma[ARRAY_SIZE( oledb_peak_curr_limit_ma) - 1]; if (oledb->peak_curr_limit < min_limit || oledb->peak_curr_limit > max_limit) { pr_err("Invalid value in qcom,peak-curr-limit-ma\n"); return -EINVAL; } } oledb->pd_ctl = -EINVAL; of_property_read_u32(of_node, "qcom,pull-down-enable", &oledb->pd_ctl); oledb->sc_en = -EINVAL; rc = of_property_read_u32(of_node, "qcom,enable-short-circuit", &oledb->sc_en); if (!rc) { oledb->sc_dbnc_time = -EINVAL; rc = of_property_read_u32(of_node, "qcom,short-circuit-dbnc-time", &oledb->sc_dbnc_time); if (!rc) { if (oledb->sc_dbnc_time < OLEDB_MIN_SC_DBNC_TIME_FSW || oledb->sc_dbnc_time > OLEDB_MAX_SC_DBNC_TIME_FSW) { pr_err("Invalid value in qcom,short-circuit-dbnc-time\n"); return -EINVAL; } } } rc = qpnp_oledb_parse_nlimit(oledb); if (rc < 0) return rc; rc = qpnp_oledb_parse_psm(oledb); if (rc < 0) return rc; rc = qpnp_oledb_parse_pfm(oledb); if (rc < 0) return rc; rc = qpnp_oledb_parse_fast_precharge(oledb); return rc; } static int qpnp_oledb_force_pulldown_config(struct qpnp_oledb *oledb) { int rc = 0; u8 val; val = 1; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_PD_CTL, &val, 1); if (rc < 0) { pr_err("Failed to write PD_CTL rc=%d\n", rc); return rc; } rc = qpnp_oledb_masked_write(oledb, oledb->base + OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT, 0); if (rc < 0) pr_err("Failed to write SWIRE_CTL for pbs mode rc=%d\n", rc); return rc; } static int qpnp_labibb_notifier_cb(struct notifier_block *nb, unsigned long action, void *data) { int rc = 0; u8 val; struct qpnp_oledb *oledb = container_of(nb, struct qpnp_oledb, oledb_nb); if (action == LAB_VREG_NOT_OK) { /* short circuit detected. Disable OLEDB module */ val = 0; rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_RDY, &val, 1); if (rc < 0) { pr_err("Failed to write MODULE_RDY rc=%d\n", rc); return NOTIFY_STOP; } oledb->lab_sc_detected = true; oledb->mod_enable = false; pr_crit("LAB SC detected, disabling OLEDB forever!\n"); } if (action == LAB_VREG_OK) { /* Disable SWIRE pull down control and enable via spmi mode */ rc = qpnp_oledb_force_pulldown_config(oledb); if (rc < 0) { pr_err("Failed to config force pull down\n"); return NOTIFY_STOP; } } return NOTIFY_OK; } static int qpnp_oledb_regulator_probe(struct platform_device *pdev) { int rc = 0; u32 val; struct qpnp_oledb *oledb; struct device_node *of_node = pdev->dev.of_node; oledb = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_oledb), GFP_KERNEL); if (!oledb) return -ENOMEM; oledb->pdev = pdev; oledb->dev = &pdev->dev; oledb->regmap = dev_get_regmap(pdev->dev.parent, NULL); dev_set_drvdata(&pdev->dev, oledb); if (!oledb->regmap) { pr_err("Couldn't get parent's regmap\n"); return -EINVAL; } rc = of_property_read_u32(of_node, "reg", &val); if (rc < 0) { pr_err("Couldn't find reg in node, rc = %d\n", rc); return rc; } mutex_init(&(oledb->bus_lock)); oledb->base = val; rc = qpnp_oledb_parse_dt(oledb); if (rc < 0) { pr_err("Failed to parse common OLEDB device tree\n"); return rc; } rc = qpnp_oledb_hw_init(oledb); if (rc < 0) { pr_err("Failed to initialize OLEDB, rc=%d\n", rc); return rc; } /* Enable LAB short circuit notification support */ if (oledb->pmic_rev_id->pmic_subtype == PM660L_SUBTYPE) oledb->handle_lab_sc_notification = true; if (oledb->force_pd_control || oledb->handle_lab_sc_notification) { oledb->oledb_nb.notifier_call = qpnp_labibb_notifier_cb; rc = qpnp_labibb_notifier_register(&oledb->oledb_nb); if (rc < 0) { pr_err("Failed to register qpnp_labibb_notifier_cb\n"); return rc; } } rc = qpnp_oledb_register_regulator(oledb); if (rc < 0) { pr_err("Failed to register regulator rc=%d\n", rc); goto out; } pr_info("OLEDB registered successfully, ext_pin_en=%d mod_en=%d current_voltage=%d mV\n", oledb->ext_pin_control, oledb->mod_enable, oledb->current_voltage); return 0; out: if (oledb->force_pd_control) { rc = qpnp_labibb_notifier_unregister(&oledb->oledb_nb); if (rc < 0) pr_err("Failed to unregister lab_vreg_ok notifier\n"); } return rc; } static int qpnp_oledb_regulator_remove(struct platform_device *pdev) { int rc = 0; struct qpnp_oledb *oledb = platform_get_drvdata(pdev); if (oledb->force_pd_control) { rc = qpnp_labibb_notifier_unregister(&oledb->oledb_nb); if (rc < 0) pr_err("Failed to unregister lab_vreg_ok notifier\n"); } return rc; } const struct of_device_id qpnp_oledb_regulator_match_table[] = { { .compatible = QPNP_OLEDB_REGULATOR_DRIVER_NAME,}, { }, }; static struct platform_driver qpnp_oledb_regulator_driver = { .driver = { .name = QPNP_OLEDB_REGULATOR_DRIVER_NAME, .of_match_table = qpnp_oledb_regulator_match_table, }, .probe = qpnp_oledb_regulator_probe, .remove = qpnp_oledb_regulator_remove, }; static int __init qpnp_oledb_regulator_init(void) { return platform_driver_register(&qpnp_oledb_regulator_driver); } arch_initcall(qpnp_oledb_regulator_init); static void __exit qpnp_oledb_regulator_exit(void) { platform_driver_unregister(&qpnp_oledb_regulator_driver); } module_exit(qpnp_oledb_regulator_exit); MODULE_DESCRIPTION("QPNP OLEDB driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("qpnp-oledb-regulator");