/* * Copyright (c) 2016-2018, 2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "LCDB: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #define QPNP_LCDB_REGULATOR_DRIVER_NAME "qcom,qpnp-lcdb-regulator" /* LCDB */ #define LCDB_STS1_REG 0x08 #define INT_RT_STATUS_REG 0x10 #define VREG_OK_RT_STS_BIT BIT(0) #define SC_ERROR_RT_STS_BIT BIT(1) #define LCDB_STS3_REG 0x0A #define LDO_VREG_OK_BIT BIT(7) #define LCDB_STS4_REG 0x0B #define NCP_VREG_OK_BIT BIT(7) #define LCDB_AUTO_TOUCH_WAKE_CTL_REG 0x40 #define EN_AUTO_TOUCH_WAKE_BIT BIT(7) #define ATTW_TOFF_TIME_MASK GENMASK(3, 2) #define ATTW_TON_TIME_MASK GENMASK(1, 0) #define ATTW_TOFF_TIME_SHIFT 2 #define ATTW_MIN_MS 4 #define ATTW_MAX_MS 32 #define LCDB_BST_OUTPUT_VOLTAGE_REG 0x41 #define LCDB_MODULE_RDY_REG 0x45 #define MODULE_RDY_BIT BIT(7) #define LCDB_ENABLE_CTL1_REG 0x46 #define MODULE_EN_BIT BIT(7) #define HWEN_RDY_BIT BIT(6) /* BST */ #define LCDB_BST_PD_CTL_REG 0x47 #define BOOST_DIS_PULLDOWN_BIT BIT(1) #define BOOST_PD_STRENGTH_BIT BIT(0) #define LCDB_BST_ILIM_CTL_REG 0x4B #define EN_BST_ILIM_BIT BIT(7) #define SET_BST_ILIM_MASK GENMASK(2, 0) #define MIN_BST_ILIM_MA 200 #define MAX_BST_ILIM_MA 1600 #define LCDB_PS_CTL_REG 0x50 #define EN_PS_BIT BIT(7) #define PS_THRESHOLD_MASK GENMASK(1, 0) #define MIN_BST_PS_MA 50 #define MAX_BST_PS_MA 80 #define LCDB_RDSON_MGMNT_REG 0x53 #define NFET_SW_SIZE_MASK GENMASK(3, 2) #define NFET_SW_SIZE_SHIFT 2 #define PFET_SW_SIZE_MASK GENMASK(1, 0) #define LCDB_BST_VREG_OK_CTL_REG 0x55 #define BST_VREG_OK_DEB_MASK GENMASK(1, 0) #define LCDB_SOFT_START_CTL_REG 0x5F #define LCDB_MISC_CTL_REG 0x60 #define AUTO_GM_EN_BIT BIT(4) #define EN_TOUCH_WAKE_BIT BIT(3) #define DIS_SCP_BIT BIT(0) #define LCDB_PFM_CTL_REG 0x62 #define EN_PFM_BIT BIT(7) #define BYP_BST_SOFT_START_COMP_BIT BIT(0) #define PFM_HYSTERESIS_SHIFT 4 #define PFM_CURRENT_SHIFT 2 #define LCDB_PWRUP_PWRDN_CTL_REG 0x66 /* LDO */ #define LCDB_LDO_OUTPUT_VOLTAGE_REG 0x71 #define SET_OUTPUT_VOLTAGE_MASK GENMASK(4, 0) #define LCDB_LDO_VREG_OK_CTL_REG 0x75 #define VREG_OK_DEB_MASK GENMASK(1, 0) #define LCDB_LDO_PD_CTL_REG 0x77 #define LDO_DIS_PULLDOWN_BIT BIT(1) #define LDO_PD_STRENGTH_BIT BIT(0) #define LCDB_LDO_ILIM_CTL1_REG 0x7B #define EN_LDO_ILIM_BIT BIT(7) #define SET_LDO_ILIM_MASK GENMASK(2, 0) #define MIN_LDO_ILIM_MA 110 #define MAX_LDO_ILIM_MA 460 #define LDO_ILIM_STEP_MA 50 #define LCDB_LDO_ILIM_CTL2_REG 0x7C #define LCDB_LDO_SOFT_START_CTL_REG 0x7F #define SOFT_START_MASK GENMASK(1, 0) /* NCP */ #define LCDB_NCP_OUTPUT_VOLTAGE_REG 0x81 #define LCDB_NCP_VREG_OK_CTL_REG 0x85 #define LCDB_NCP_PD_CTL_REG 0x87 #define NCP_DIS_PULLDOWN_BIT BIT(1) #define NCP_PD_STRENGTH_BIT BIT(0) #define LCDB_NCP_ILIM_CTL1_REG 0x8B #define EN_NCP_ILIM_BIT BIT(7) #define SET_NCP_ILIM_MASK GENMASK(1, 0) #define MIN_NCP_ILIM_MA 260 #define MAX_NCP_ILIM_MA 810 #define LCDB_NCP_ILIM_CTL2_REG 0x8C #define LCDB_NCP_SOFT_START_CTL_REG 0x8F /* common for BST/NCP/LDO */ #define MIN_DBC_US 2 #define MAX_DBC_US 32 #define MIN_SOFT_START_US 0 #define MAX_SOFT_START_US 2000 #define BST_HEADROOM_DEFAULT_MV 200 struct ldo_regulator { struct regulator_desc rdesc; struct regulator_dev *rdev; struct device_node *node; /* LDO DT params */ int pd; int pd_strength; int ilim_ma; int soft_start_us; int vreg_ok_dbc_us; int voltage_mv; }; struct ncp_regulator { struct regulator_desc rdesc; struct regulator_dev *rdev; struct device_node *node; /* NCP DT params */ int pd; int pd_strength; int ilim_ma; int soft_start_us; int vreg_ok_dbc_us; int voltage_mv; }; struct bst_params { struct device_node *node; /* BST DT params */ int pd; int pd_strength; int ilim_ma; int ps; int ps_threshold; int soft_start_us; int vreg_ok_dbc_us; int voltage_mv; u16 headroom_mv; }; struct qpnp_lcdb { struct device *dev; struct platform_device *pdev; struct regmap *regmap; struct pmic_revid_data *pmic_rev_id; u32 base; u32 wa_flags; int sc_irq; /* TTW params */ bool ttw_enable; bool ttw_mode_sw; /* status parameters */ bool lcdb_enabled; bool settings_saved; bool lcdb_sc_disable; int sc_count; ktime_t sc_module_enable_time; struct mutex lcdb_mutex; struct mutex read_write_mutex; struct bst_params bst; struct ldo_regulator ldo; struct ncp_regulator ncp; }; struct settings { u16 address; u8 value; bool sec_access; }; enum lcdb_module { LDO, NCP, BST, }; enum pfm_hysteresis { PFM_HYST_15MV, PFM_HYST_25MV, PFM_HYST_35MV, PFM_HYST_45MV, }; enum pfm_peak_current { PFM_PEAK_CURRENT_300MA, PFM_PEAK_CURRENT_400MA, PFM_PEAK_CURRENT_500MA, PFM_PEAK_CURRENT_600MA, }; enum rdson_fet_size { RDSON_QUARTER, RDSON_HALF, RDSON_THREE_FOURTH, RDSON_FULLSIZE, }; enum lcdb_settings_index { LCDB_BST_PD_CTL = 0, LCDB_RDSON_MGMNT, LCDB_MISC_CTL, LCDB_SOFT_START_CTL, LCDB_PFM_CTL, LCDB_PWRUP_PWRDN_CTL, LCDB_LDO_PD_CTL, LCDB_LDO_SOFT_START_CTL, LCDB_NCP_PD_CTL, LCDB_NCP_SOFT_START_CTL, LCDB_SETTING_MAX, }; enum lcdb_wa_flags { NCP_SCP_DISABLE_WA = BIT(0), }; static u32 soft_start_us[] = { 0, 500, 1000, 2000, }; static u32 dbc_us[] = { 2, 4, 16, 32, }; static u32 ncp_ilim_ma[] = { 260, 460, 640, 810, }; #define SETTING(_id, _sec_access) \ [_id] = { \ .address = _id##_REG, \ .sec_access = _sec_access, \ } \ static bool is_between(int value, int min, int max) { if (value < min || value > max) return false; return true; } static int qpnp_lcdb_read(struct qpnp_lcdb *lcdb, u16 addr, u8 *value, u8 count) { int rc = 0; mutex_lock(&lcdb->read_write_mutex); rc = regmap_bulk_read(lcdb->regmap, addr, value, count); if (rc < 0) pr_err("Failed to read from addr=0x%02x rc=%d\n", addr, rc); mutex_unlock(&lcdb->read_write_mutex); return rc; } static int qpnp_lcdb_write(struct qpnp_lcdb *lcdb, u16 addr, u8 *value, u8 count) { int rc; mutex_lock(&lcdb->read_write_mutex); rc = regmap_bulk_write(lcdb->regmap, addr, value, count); if (rc < 0) pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc); mutex_unlock(&lcdb->read_write_mutex); return rc; } #define SEC_ADDRESS_REG 0xD0 #define SECURE_UNLOCK_VALUE 0xA5 static int qpnp_lcdb_secure_write(struct qpnp_lcdb *lcdb, u16 addr, u8 value) { int rc; u8 val = SECURE_UNLOCK_VALUE; mutex_lock(&lcdb->read_write_mutex); rc = regmap_write(lcdb->regmap, lcdb->base + SEC_ADDRESS_REG, val); if (rc < 0) { pr_err("Failed to unlock register rc=%d\n", rc); goto fail_write; } rc = regmap_write(lcdb->regmap, addr, value); if (rc < 0) pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc); fail_write: mutex_unlock(&lcdb->read_write_mutex); return rc; } static int qpnp_lcdb_masked_write(struct qpnp_lcdb *lcdb, u16 addr, u8 mask, u8 value) { int rc = 0; mutex_lock(&lcdb->read_write_mutex); rc = regmap_update_bits(lcdb->regmap, addr, mask, value); if (rc < 0) pr_err("Failed to write addr=0x%02x value=0x%02x rc=%d\n", addr, value, rc); mutex_unlock(&lcdb->read_write_mutex); return rc; } static bool is_lcdb_enabled(struct qpnp_lcdb *lcdb) { int rc; u8 val = 0; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) pr_err("Failed to read ENABLE_CTL1 rc=%d\n", rc); return rc ? false : !!(val & MODULE_EN_BIT); } static int dump_status_registers(struct qpnp_lcdb *lcdb) { int rc = 0; u8 sts[6] = {0}; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_STS1_REG, &sts[0], 6); if (rc < 0) { pr_err("Failed to write to STS registers rc=%d\n", rc); } else { rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_STS1_REG, sts, 6); if (rc < 0) pr_err("Failed to read lcdb status rc=%d\n", rc); else pr_err("STS1=0x%02x STS2=0x%02x STS3=0x%02x STS4=0x%02x STS5=0x%02x, STS6=0x%02x\n", sts[0], sts[1], sts[2], sts[3], sts[4], sts[5]); } return rc; } static struct settings lcdb_settings[] = { SETTING(LCDB_BST_PD_CTL, false), SETTING(LCDB_RDSON_MGMNT, false), SETTING(LCDB_MISC_CTL, false), SETTING(LCDB_SOFT_START_CTL, false), SETTING(LCDB_PFM_CTL, false), SETTING(LCDB_PWRUP_PWRDN_CTL, true), SETTING(LCDB_LDO_PD_CTL, false), SETTING(LCDB_LDO_SOFT_START_CTL, false), SETTING(LCDB_NCP_PD_CTL, false), SETTING(LCDB_NCP_SOFT_START_CTL, false), }; static int qpnp_lcdb_save_settings(struct qpnp_lcdb *lcdb) { int i, rc = 0; for (i = 0; i < ARRAY_SIZE(lcdb_settings); i++) { rc = qpnp_lcdb_read(lcdb, lcdb->base + lcdb_settings[i].address, &lcdb_settings[i].value, 1); if (rc < 0) { pr_err("Failed to read lcdb register address=%x\n", lcdb_settings[i].address); return rc; } } return rc; } static int qpnp_lcdb_restore_settings(struct qpnp_lcdb *lcdb) { int i, rc = 0; for (i = 0; i < ARRAY_SIZE(lcdb_settings); i++) { if (lcdb_settings[i].sec_access) rc = qpnp_lcdb_secure_write(lcdb, lcdb->base + lcdb_settings[i].address, lcdb_settings[i].value); else rc = qpnp_lcdb_write(lcdb, lcdb->base + lcdb_settings[i].address, &lcdb_settings[i].value, 1); if (rc < 0) { pr_err("Failed to write register address=%x\n", lcdb_settings[i].address); return rc; } } return rc; } static int qpnp_lcdb_ttw_enter(struct qpnp_lcdb *lcdb) { int rc; u8 val; if (!lcdb->settings_saved) { rc = qpnp_lcdb_save_settings(lcdb); if (rc < 0) { pr_err("Failed to save LCDB settings rc=%d\n", rc); return rc; } lcdb->settings_saved = true; } val = BOOST_DIS_PULLDOWN_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_BST_PD_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set BST PD rc=%d\n", rc); return rc; } val = (RDSON_HALF << NFET_SW_SIZE_SHIFT) | RDSON_HALF; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_RDSON_MGMNT_REG, &val, 1); if (rc < 0) { pr_err("Failed to set RDSON MGMT rc=%d\n", rc); return rc; } val = AUTO_GM_EN_BIT | EN_TOUCH_WAKE_BIT | DIS_SCP_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_MISC_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set MISC CTL rc=%d\n", rc); return rc; } val = 0; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set LCDB_SOFT_START rc=%d\n", rc); return rc; } val = EN_PFM_BIT | (PFM_HYST_25MV << PFM_HYSTERESIS_SHIFT) | (PFM_PEAK_CURRENT_400MA << PFM_CURRENT_SHIFT) | BYP_BST_SOFT_START_COMP_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_PFM_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set PFM_CTL rc=%d\n", rc); return rc; } val = 0; rc = qpnp_lcdb_secure_write(lcdb, lcdb->base + LCDB_PWRUP_PWRDN_CTL_REG, val); if (rc < 0) { pr_err("Failed to set PWRUP_PWRDN_CTL rc=%d\n", rc); return rc; } val = LDO_DIS_PULLDOWN_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_PD_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set LDO_PD_CTL rc=%d\n", rc); return rc; } val = 0; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set LDO_SOFT_START rc=%d\n", rc); return rc; } val = NCP_DIS_PULLDOWN_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set NCP_PD_CTL rc=%d\n", rc); return rc; } val = 0; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to set NCP_SOFT_START rc=%d\n", rc); return rc; } if (lcdb->ttw_mode_sw) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_AUTO_TOUCH_WAKE_CTL_REG, EN_AUTO_TOUCH_WAKE_BIT, EN_AUTO_TOUCH_WAKE_BIT); if (rc < 0) pr_err("Failed to enable auto(sw) TTW\n rc = %d\n", rc); } else { val = HWEN_RDY_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) pr_err("Failed to hw_enable lcdb rc= %d\n", rc); } return rc; } static int qpnp_lcdb_ttw_exit(struct qpnp_lcdb *lcdb) { int rc; if (lcdb->settings_saved) { rc = qpnp_lcdb_restore_settings(lcdb); if (rc < 0) { pr_err("Failed to restore lcdb settings rc=%d\n", rc); return rc; } lcdb->settings_saved = false; } return 0; } static int qpnp_lcdb_enable_wa(struct qpnp_lcdb *lcdb) { int rc; u8 val = 0; /* required only for PM660L */ if (lcdb->pmic_rev_id->pmic_subtype != PM660L_SUBTYPE) return 0; val = MODULE_EN_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) { pr_err("Failed to enable lcdb rc= %d\n", rc); return rc; } val = 0; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) { pr_err("Failed to disable lcdb rc= %d\n", rc); return rc; } if (lcdb->wa_flags & NCP_SCP_DISABLE_WA) { /* * delay to make sure that the MID pin – ie the * output of the LCDB boost – returns to 0V * after the module is disabled */ usleep_range(10000, 10100); rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_MISC_CTL_REG, DIS_SCP_BIT, DIS_SCP_BIT); if (rc < 0) { pr_err("Failed to disable SC rc=%d\n", rc); return rc; } /* delay for SC-disable to take effect */ usleep_range(1000, 1100); rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_MISC_CTL_REG, DIS_SCP_BIT, 0); if (rc < 0) { pr_err("Failed to enable SC rc=%d\n", rc); return rc; } /* delay for SC-enable to take effect */ usleep_range(1000, 1100); } return 0; } static int qpnp_lcdb_enable(struct qpnp_lcdb *lcdb) { int rc = 0, timeout, delay; u8 val = 0; if (lcdb->lcdb_enabled || lcdb->lcdb_sc_disable) { pr_debug("lcdb_enabled=%d lcdb_sc_disable=%d\n", lcdb->lcdb_enabled, lcdb->lcdb_sc_disable); return 0; } if (lcdb->ttw_enable) { rc = qpnp_lcdb_ttw_exit(lcdb); if (rc < 0) { pr_err("Failed to exit TTW mode rc=%d\n", rc); return rc; } } rc = qpnp_lcdb_enable_wa(lcdb); if (rc < 0) { pr_err("Failed to execute enable_wa rc=%d\n", rc); return rc; } val = MODULE_EN_BIT; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) { pr_err("Failed to disable lcdb rc= %d\n", rc); goto fail_enable; } /* poll for vreg_ok */ timeout = 10; delay = lcdb->bst.soft_start_us + lcdb->ldo.soft_start_us + lcdb->ncp.soft_start_us; delay += lcdb->bst.vreg_ok_dbc_us + lcdb->ldo.vreg_ok_dbc_us + lcdb->ncp.vreg_ok_dbc_us; while (timeout--) { rc = qpnp_lcdb_read(lcdb, lcdb->base + INT_RT_STATUS_REG, &val, 1); if (rc < 0) { pr_err("Failed to poll for vreg-ok status rc=%d\n", rc); break; } if (val & VREG_OK_RT_STS_BIT) break; usleep_range(delay, delay + 100); } if (rc || !timeout) { if (!timeout) { pr_err("lcdb-vreg-ok status failed to change\n"); rc = -ETIMEDOUT; } goto fail_enable; } lcdb->lcdb_enabled = true; pr_debug("lcdb enabled successfully!\n"); return 0; fail_enable: dump_status_registers(lcdb); pr_err("Failed to enable lcdb rc=%d\n", rc); return rc; } static int qpnp_lcdb_disable(struct qpnp_lcdb *lcdb) { int rc = 0; u8 val; if (!lcdb->lcdb_enabled) return 0; if (lcdb->ttw_enable) { rc = qpnp_lcdb_ttw_enter(lcdb); if (rc < 0) { pr_err("Failed to enable TTW mode rc=%d\n", rc); return rc; } lcdb->lcdb_enabled = false; return 0; } val = 0; rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1); if (rc < 0) pr_err("Failed to disable lcdb rc= %d\n", rc); else lcdb->lcdb_enabled = false; return rc; } #define LCDB_SC_RESET_CNT_DLY_US 1000000 #define LCDB_SC_CNT_MAX 10 static int qpnp_lcdb_handle_sc_event(struct qpnp_lcdb *lcdb) { int rc = 0; s64 elapsed_time_us; mutex_lock(&lcdb->lcdb_mutex); rc = qpnp_lcdb_disable(lcdb); if (rc < 0) { pr_err("Failed to disable lcdb rc=%d\n", rc); goto unlock_mutex; } /* Check if the SC re-occurred immediately */ elapsed_time_us = ktime_us_delta(ktime_get(), lcdb->sc_module_enable_time); if (elapsed_time_us > LCDB_SC_RESET_CNT_DLY_US) { lcdb->sc_count = 0; } else if (lcdb->sc_count > LCDB_SC_CNT_MAX) { pr_err("SC trigged %d times, disabling LCDB forever!\n", lcdb->sc_count); lcdb->lcdb_sc_disable = true; goto unlock_mutex; } lcdb->sc_count++; lcdb->sc_module_enable_time = ktime_get(); /* delay for SC to clear */ usleep_range(10000, 10100); rc = qpnp_lcdb_enable(lcdb); if (rc < 0) pr_err("Failed to enable lcdb rc=%d\n", rc); unlock_mutex: mutex_unlock(&lcdb->lcdb_mutex); return rc; } static irqreturn_t qpnp_lcdb_sc_irq_handler(int irq, void *data) { struct qpnp_lcdb *lcdb = data; int rc; u8 val, val2[2] = {0}; rc = qpnp_lcdb_read(lcdb, lcdb->base + INT_RT_STATUS_REG, &val, 1); if (rc < 0) goto irq_handled; if (val & SC_ERROR_RT_STS_BIT) { rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_MISC_CTL_REG, &val, 1); if (rc < 0) goto irq_handled; if (val & EN_TOUCH_WAKE_BIT) { /* blanking time */ usleep_range(300, 310); /* * The status registers need to written with any value * before reading */ rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_STS3_REG, val2, 2); if (rc < 0) goto irq_handled; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_STS3_REG, val2, 2); if (rc < 0) goto irq_handled; if (!(val2[0] & LDO_VREG_OK_BIT) || !(val2[1] & NCP_VREG_OK_BIT)) { rc = qpnp_lcdb_handle_sc_event(lcdb); if (rc < 0) { pr_err("Failed to handle SC rc=%d\n", rc); goto irq_handled; } } } else { /* blanking time */ usleep_range(2000, 2100); /* Read the SC status again to confirm true SC */ rc = qpnp_lcdb_read(lcdb, lcdb->base + INT_RT_STATUS_REG, &val, 1); if (rc < 0) goto irq_handled; if (val & SC_ERROR_RT_STS_BIT) { rc = qpnp_lcdb_handle_sc_event(lcdb); if (rc < 0) { pr_err("Failed to handle SC rc=%d\n", rc); goto irq_handled; } } } } irq_handled: return IRQ_HANDLED; } #define MIN_BST_VOLTAGE_MV 4700 #define MAX_BST_VOLTAGE_MV 6250 #define MIN_VOLTAGE_MV 4000 #define MAX_VOLTAGE_MV 6000 #define VOLTAGE_MIN_STEP_100_MV 4000 #define VOLTAGE_MIN_STEP_50_MV 4950 #define VOLTAGE_STEP_100_MV 100 #define VOLTAGE_STEP_50_MV 50 #define VOLTAGE_STEP_50MV_OFFSET 0xA static int qpnp_lcdb_set_bst_voltage(struct qpnp_lcdb *lcdb, int voltage_mv, u8 type) { int rc = 0; u8 val = 0; int bst_voltage_mv; struct ldo_regulator *ldo = &lcdb->ldo; struct ncp_regulator *ncp = &lcdb->ncp; struct bst_params *bst = &lcdb->bst; /* Vout_Boost = headroom_mv + max( Vout_LDO, abs (Vout_NCP)) */ bst_voltage_mv = max(voltage_mv, max(ldo->voltage_mv, ncp->voltage_mv)); bst_voltage_mv += bst->headroom_mv; if (bst_voltage_mv < MIN_BST_VOLTAGE_MV) bst_voltage_mv = MIN_BST_VOLTAGE_MV; else if (bst_voltage_mv > MAX_BST_VOLTAGE_MV) bst_voltage_mv = MAX_BST_VOLTAGE_MV; if (bst_voltage_mv != bst->voltage_mv) { val = DIV_ROUND_UP(bst_voltage_mv - MIN_BST_VOLTAGE_MV, VOLTAGE_STEP_50_MV); rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_BST_OUTPUT_VOLTAGE_REG, SET_OUTPUT_VOLTAGE_MASK, val); if (rc < 0) { pr_err("Failed to set boost voltage %d mv rc=%d\n", bst_voltage_mv, rc); } else { pr_debug("Boost voltage set = %d mv (0x%02x = 0x%02x)\n", bst_voltage_mv, LCDB_BST_OUTPUT_VOLTAGE_REG, val); bst->voltage_mv = bst_voltage_mv; } } return rc; } static int qpnp_lcdb_get_bst_voltage(struct qpnp_lcdb *lcdb, int *voltage_mv) { int rc; u8 val = 0; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_BST_OUTPUT_VOLTAGE_REG, &val, 1); if (rc < 0) { pr_err("Failed to reat BST voltage rc=%d\n", rc); return rc; } val &= SET_OUTPUT_VOLTAGE_MASK; *voltage_mv = (val * VOLTAGE_STEP_50_MV) + MIN_BST_VOLTAGE_MV; return 0; } static int qpnp_lcdb_set_voltage(struct qpnp_lcdb *lcdb, int voltage_mv, u8 type) { int rc = 0; u16 offset = LCDB_LDO_OUTPUT_VOLTAGE_REG; u8 val = 0; if (!is_between(voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV)) { pr_err("Invalid voltage %dmv (min=%d max=%d)\n", voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV); return -EINVAL; } rc = qpnp_lcdb_set_bst_voltage(lcdb, voltage_mv, type); if (rc < 0) { pr_err("Failed to set boost voltage rc=%d\n", rc); return rc; } /* Below logic is only valid for LDO and NCP type */ if (voltage_mv < VOLTAGE_MIN_STEP_50_MV) { val = DIV_ROUND_UP(voltage_mv - VOLTAGE_MIN_STEP_100_MV, VOLTAGE_STEP_100_MV); } else { val = DIV_ROUND_UP(voltage_mv - VOLTAGE_MIN_STEP_50_MV, VOLTAGE_STEP_50_MV); val += VOLTAGE_STEP_50MV_OFFSET; } if (type == NCP) offset = LCDB_NCP_OUTPUT_VOLTAGE_REG; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + offset, SET_OUTPUT_VOLTAGE_MASK, val); if (rc < 0) pr_err("Failed to set output voltage %d mv for %s rc=%d\n", voltage_mv, (type == LDO) ? "LDO" : "NCP", rc); else pr_debug("%s voltage set = %d mv (0x%02x = 0x%02x)\n", (type == LDO) ? "LDO" : "NCP", voltage_mv, offset, val); return rc; } static int qpnp_lcdb_get_voltage(struct qpnp_lcdb *lcdb, u32 *voltage_mv, u8 type) { int rc = 0; u16 offset = LCDB_LDO_OUTPUT_VOLTAGE_REG; u8 val = 0; if (type == BST) return qpnp_lcdb_get_bst_voltage(lcdb, voltage_mv); if (type == NCP) offset = LCDB_NCP_OUTPUT_VOLTAGE_REG; rc = qpnp_lcdb_read(lcdb, lcdb->base + offset, &val, 1); if (rc < 0) { pr_err("Failed to read %s volatge rc=%d\n", (type == LDO) ? "LDO" : "NCP", rc); return rc; } if (val < VOLTAGE_STEP_50MV_OFFSET) { *voltage_mv = VOLTAGE_MIN_STEP_100_MV + (val * VOLTAGE_STEP_100_MV); } else { *voltage_mv = VOLTAGE_MIN_STEP_50_MV + ((val - VOLTAGE_STEP_50MV_OFFSET) * VOLTAGE_STEP_50_MV); } if (!rc) pr_debug("%s voltage read-back = %d mv (0x%02x = 0x%02x)\n", (type == LDO) ? "LDO" : "NCP", *voltage_mv, offset, val); return rc; } static int qpnp_lcdb_set_soft_start(struct qpnp_lcdb *lcdb, u32 ss_us, u8 type) { int rc = 0, i = 0; u16 offset = LCDB_LDO_SOFT_START_CTL_REG; u8 val = 0; if (type == NCP) offset = LCDB_NCP_SOFT_START_CTL_REG; if (!is_between(ss_us, MIN_SOFT_START_US, MAX_SOFT_START_US)) { pr_err("Invalid soft_start_us %d (min=%d max=%d)\n", ss_us, MIN_SOFT_START_US, MAX_SOFT_START_US); return -EINVAL; } i = 0; while (ss_us > soft_start_us[i]) i++; val = ((i == 0) ? 0 : i - 1) & SOFT_START_MASK; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + offset, SOFT_START_MASK, val); if (rc < 0) pr_err("Failed to write %s soft-start time %d rc=%d", (type == LDO) ? "LDO" : "NCP", soft_start_us[i], rc); return rc; } static int qpnp_lcdb_ldo_regulator_enable(struct regulator_dev *rdev) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); mutex_lock(&lcdb->lcdb_mutex); rc = qpnp_lcdb_enable(lcdb); if (rc < 0) pr_err("Failed to enable lcdb rc=%d\n", rc); mutex_unlock(&lcdb->lcdb_mutex); return rc; } static int qpnp_lcdb_ldo_regulator_disable(struct regulator_dev *rdev) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); mutex_lock(&lcdb->lcdb_mutex); rc = qpnp_lcdb_disable(lcdb); if (rc < 0) pr_err("Failed to disable lcdb rc=%d\n", rc); mutex_unlock(&lcdb->lcdb_mutex); return rc; } static int qpnp_lcdb_ldo_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); return lcdb->lcdb_enabled; } static int qpnp_lcdb_ldo_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); rc = qpnp_lcdb_set_voltage(lcdb, min_uV / 1000, LDO); if (rc < 0) pr_err("Failed to set LDO voltage rc=%c\n", rc); else lcdb->ldo.voltage_mv = min_uV / 1000; return rc; } static int qpnp_lcdb_ldo_regulator_get_voltage(struct regulator_dev *rdev) { int rc = 0; u32 voltage_mv = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); rc = qpnp_lcdb_get_voltage(lcdb, &voltage_mv, LDO); if (rc < 0) { pr_err("Failed to get ldo voltage rc=%d\n", rc); return rc; } return voltage_mv * 1000; } static struct regulator_ops qpnp_lcdb_ldo_ops = { .enable = qpnp_lcdb_ldo_regulator_enable, .disable = qpnp_lcdb_ldo_regulator_disable, .is_enabled = qpnp_lcdb_ldo_regulator_is_enabled, .set_voltage = qpnp_lcdb_ldo_regulator_set_voltage, .get_voltage = qpnp_lcdb_ldo_regulator_get_voltage, }; static int qpnp_lcdb_ncp_regulator_enable(struct regulator_dev *rdev) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); mutex_lock(&lcdb->lcdb_mutex); rc = qpnp_lcdb_enable(lcdb); if (rc < 0) pr_err("Failed to enable lcdb rc=%d\n", rc); mutex_unlock(&lcdb->lcdb_mutex); return rc; } static int qpnp_lcdb_ncp_regulator_disable(struct regulator_dev *rdev) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); mutex_lock(&lcdb->lcdb_mutex); rc = qpnp_lcdb_disable(lcdb); if (rc < 0) pr_err("Failed to disable lcdb rc=%d\n", rc); mutex_unlock(&lcdb->lcdb_mutex); return rc; } static int qpnp_lcdb_ncp_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); return lcdb->lcdb_enabled; } static int qpnp_lcdb_ncp_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { int rc = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); rc = qpnp_lcdb_set_voltage(lcdb, min_uV / 1000, NCP); if (rc < 0) pr_err("Failed to set LDO voltage rc=%c\n", rc); else lcdb->ncp.voltage_mv = min_uV / 1000; return rc; } static int qpnp_lcdb_ncp_regulator_get_voltage(struct regulator_dev *rdev) { int rc; u32 voltage_mv = 0; struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev); rc = qpnp_lcdb_get_voltage(lcdb, &voltage_mv, NCP); if (rc < 0) { pr_err("Failed to get ncp voltage rc=%d\n", rc); return rc; } return voltage_mv * 1000; } static struct regulator_ops qpnp_lcdb_ncp_ops = { .enable = qpnp_lcdb_ncp_regulator_enable, .disable = qpnp_lcdb_ncp_regulator_disable, .is_enabled = qpnp_lcdb_ncp_regulator_is_enabled, .set_voltage = qpnp_lcdb_ncp_regulator_set_voltage, .get_voltage = qpnp_lcdb_ncp_regulator_get_voltage, }; static int qpnp_lcdb_regulator_register(struct qpnp_lcdb *lcdb, u8 type) { int rc = 0; struct regulator_init_data *init_data; struct regulator_config cfg = {}; struct regulator_desc *rdesc; struct regulator_dev *rdev; struct device_node *node; if (type == LDO) { node = lcdb->ldo.node; rdesc = &lcdb->ldo.rdesc; rdesc->ops = &qpnp_lcdb_ldo_ops; rdev = lcdb->ldo.rdev; } else if (type == NCP) { node = lcdb->ncp.node; rdesc = &lcdb->ncp.rdesc; rdesc->ops = &qpnp_lcdb_ncp_ops; rdev = lcdb->ncp.rdev; } else { pr_err("Invalid regulator type %d\n", type); return -EINVAL; } init_data = of_get_regulator_init_data(lcdb->dev, node, rdesc); if (!init_data) { pr_err("Failed to get regulator_init_data for %s\n", (type == LDO) ? "LDO" : "NCP"); return -ENOMEM; } if (init_data->constraints.name) { rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; rdesc->name = init_data->constraints.name; cfg.dev = lcdb->dev; cfg.init_data = init_data; cfg.driver_data = lcdb; cfg.of_node = node; if (of_get_property(lcdb->dev->of_node, "parent-supply", NULL)) init_data->supply_regulator = "parent"; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS; rdev = devm_regulator_register(lcdb->dev, rdesc, &cfg); if (IS_ERR(rdev)) { rc = PTR_ERR(rdev); rdev = NULL; pr_err("Failed to register lcdb_%s regulator rc = %d\n", (type == LDO) ? "LDO" : "NCP", rc); return rc; } } else { pr_err("%s_regulator name missing\n", (type == LDO) ? "LDO" : "NCP"); return -EINVAL; } return rc; } static int qpnp_lcdb_parse_ttw(struct qpnp_lcdb *lcdb) { int rc = 0; u32 temp; u8 val = 0; struct device_node *node = lcdb->dev->of_node; if (of_property_read_bool(node, "qcom,ttw-mode-sw")) { lcdb->ttw_mode_sw = true; rc = of_property_read_u32(node, "qcom,attw-toff-ms", &temp); if (!rc) { if (!is_between(temp, ATTW_MIN_MS, ATTW_MAX_MS)) { pr_err("Invalid TOFF val %d (min=%d max=%d)\n", temp, ATTW_MIN_MS, ATTW_MAX_MS); return -EINVAL; } val = ilog2(temp / 4) << ATTW_TOFF_TIME_SHIFT; } else { pr_err("qcom,attw-toff-ms not specified for TTW SW mode\n"); return rc; } rc = of_property_read_u32(node, "qcom,attw-ton-ms", &temp); if (!rc) { if (!is_between(temp, ATTW_MIN_MS, ATTW_MAX_MS)) { pr_err("Invalid TON value %d (min=%d max=%d)\n", temp, ATTW_MIN_MS, ATTW_MAX_MS); return -EINVAL; } val |= ilog2(temp / 4); } else { pr_err("qcom,attw-ton-ms not specified for TTW SW mode\n"); return rc; } rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_AUTO_TOUCH_WAKE_CTL_REG, ATTW_TON_TIME_MASK | ATTW_TOFF_TIME_MASK, val); if (rc < 0) { pr_err("Failed to write ATTW ON/OFF rc=%d\n", rc); return rc; } } return 0; } static int qpnp_lcdb_ldo_dt_init(struct qpnp_lcdb *lcdb) { int rc = 0; struct device_node *node = lcdb->ldo.node; /* LDO output voltage */ lcdb->ldo.voltage_mv = -EINVAL; rc = of_property_read_u32(node, "qcom,ldo-voltage-mv", &lcdb->ldo.voltage_mv); if (!rc && !is_between(lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV)) { pr_err("Invalid LDO voltage %dmv (min=%d max=%d)\n", lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV); return -EINVAL; } /* LDO PD configuration */ lcdb->ldo.pd = -EINVAL; of_property_read_u32(node, "qcom,ldo-pd", &lcdb->ldo.pd); lcdb->ldo.pd_strength = -EINVAL; of_property_read_u32(node, "qcom,ldo-pd-strength", &lcdb->ldo.pd_strength); /* LDO ILIM configuration */ lcdb->ldo.ilim_ma = -EINVAL; rc = of_property_read_u32(node, "qcom,ldo-ilim-ma", &lcdb->ldo.ilim_ma); if (!rc && !is_between(lcdb->ldo.ilim_ma, MIN_LDO_ILIM_MA, MAX_LDO_ILIM_MA)) { pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n", lcdb->ldo.ilim_ma, MIN_LDO_ILIM_MA, MAX_LDO_ILIM_MA); return -EINVAL; } /* LDO soft-start (SS) configuration */ lcdb->ldo.soft_start_us = -EINVAL; of_property_read_u32(node, "qcom,ldo-soft-start-us", &lcdb->ldo.soft_start_us); return 0; } static int qpnp_lcdb_ncp_dt_init(struct qpnp_lcdb *lcdb) { int rc = 0; struct device_node *node = lcdb->ncp.node; /* NCP output voltage */ lcdb->ncp.voltage_mv = -EINVAL; rc = of_property_read_u32(node, "qcom,ncp-voltage-mv", &lcdb->ncp.voltage_mv); if (!rc && !is_between(lcdb->ncp.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV)) { pr_err("Invalid NCP voltage %dmv (min=%d max=%d)\n", lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV); return -EINVAL; } /* NCP PD configuration */ lcdb->ncp.pd = -EINVAL; of_property_read_u32(node, "qcom,ncp-pd", &lcdb->ncp.pd); lcdb->ncp.pd_strength = -EINVAL; of_property_read_u32(node, "qcom,ncp-pd-strength", &lcdb->ncp.pd_strength); /* NCP ILIM configuration */ lcdb->ncp.ilim_ma = -EINVAL; rc = of_property_read_u32(node, "qcom,ncp-ilim-ma", &lcdb->ncp.ilim_ma); if (!rc && !is_between(lcdb->ncp.ilim_ma, MIN_NCP_ILIM_MA, MAX_NCP_ILIM_MA)) { pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n", lcdb->ncp.ilim_ma, MIN_NCP_ILIM_MA, MAX_NCP_ILIM_MA); return -EINVAL; } /* NCP soft-start (SS) configuration */ lcdb->ncp.soft_start_us = -EINVAL; of_property_read_u32(node, "qcom,ncp-soft-start-us", &lcdb->ncp.soft_start_us); return 0; } static int qpnp_lcdb_bst_dt_init(struct qpnp_lcdb *lcdb) { int rc = 0; struct device_node *node = lcdb->bst.node; /* Boost PD configuration */ lcdb->bst.pd = -EINVAL; of_property_read_u32(node, "qcom,bst-pd", &lcdb->bst.pd); lcdb->bst.pd_strength = -EINVAL; of_property_read_u32(node, "qcom,bst-pd-strength", &lcdb->bst.pd_strength); /* Boost ILIM */ lcdb->bst.ilim_ma = -EINVAL; rc = of_property_read_u32(node, "qcom,bst-ilim-ma", &lcdb->bst.ilim_ma); if (!rc && !is_between(lcdb->bst.ilim_ma, MIN_BST_ILIM_MA, MAX_BST_ILIM_MA)) { pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n", lcdb->bst.ilim_ma, MIN_BST_ILIM_MA, MAX_BST_ILIM_MA); return -EINVAL; } /* Boost PS configuration */ lcdb->bst.ps = -EINVAL; of_property_read_u32(node, "qcom,bst-ps", &lcdb->bst.ps); lcdb->bst.ps_threshold = -EINVAL; rc = of_property_read_u32(node, "qcom,bst-ps-threshold-ma", &lcdb->bst.ps_threshold); if (!rc && !is_between(lcdb->bst.ps_threshold, MIN_BST_PS_MA, MAX_BST_PS_MA)) { pr_err("Invalid bst ps_threshold %d (min=%d, max=%d)\n", lcdb->bst.ps_threshold, MIN_BST_PS_MA, MAX_BST_PS_MA); return -EINVAL; } /* Boost head room configuration */ of_property_read_u16(node, "qcom,bst-headroom-mv", &lcdb->bst.headroom_mv); if (lcdb->bst.headroom_mv < BST_HEADROOM_DEFAULT_MV) lcdb->bst.headroom_mv = BST_HEADROOM_DEFAULT_MV; return 0; } static int qpnp_lcdb_init_ldo(struct qpnp_lcdb *lcdb) { int rc = 0, ilim_ma; u8 val = 0; /* configure parameters only if LCDB is disabled */ if (!is_lcdb_enabled(lcdb)) { if (lcdb->ldo.voltage_mv != -EINVAL) { rc = qpnp_lcdb_set_voltage(lcdb, lcdb->ldo.voltage_mv, LDO); if (rc < 0) { pr_err("Failed to set voltage rc=%d\n", rc); return rc; } } if (lcdb->ldo.pd != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_LDO_PD_CTL_REG, LDO_DIS_PULLDOWN_BIT, lcdb->ldo.pd ? 0 : LDO_DIS_PULLDOWN_BIT); if (rc < 0) { pr_err("Failed to configure LDO PD rc=%d\n", rc); return rc; } } if (lcdb->ldo.pd_strength != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_LDO_PD_CTL_REG, LDO_PD_STRENGTH_BIT, lcdb->ldo.pd_strength ? LDO_PD_STRENGTH_BIT : 0); if (rc < 0) { pr_err("Failed to configure LDO PD strength %s rc=%d", lcdb->ldo.pd_strength ? "(strong)" : "(weak)", rc); return rc; } } if (lcdb->ldo.ilim_ma != -EINVAL) { ilim_ma = lcdb->ldo.ilim_ma - MIN_LDO_ILIM_MA; ilim_ma /= LDO_ILIM_STEP_MA; val = (ilim_ma & SET_LDO_ILIM_MASK) | EN_LDO_ILIM_BIT; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_LDO_ILIM_CTL1_REG, SET_LDO_ILIM_MASK | EN_LDO_ILIM_BIT, val); if (rc < 0) { pr_err("Failed to configure LDO ilim_ma (CTL1=%d) rc=%d", val, rc); return rc; } val = ilim_ma & SET_LDO_ILIM_MASK; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_LDO_ILIM_CTL2_REG, SET_LDO_ILIM_MASK, val); if (rc < 0) { pr_err("Failed to configure LDO ilim_ma (CTL2=%d) rc=%d", val, rc); return rc; } } if (lcdb->ldo.soft_start_us != -EINVAL) { rc = qpnp_lcdb_set_soft_start(lcdb, lcdb->ldo.soft_start_us, LDO); if (rc < 0) { pr_err("Failed to set LDO soft_start rc=%d\n", rc); return rc; } } } rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->ldo.voltage_mv, LDO); if (rc < 0) { pr_err("Failed to get LDO volatge rc=%d\n", rc); return rc; } rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_LDO_VREG_OK_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read ldo_vreg_ok rc=%d\n", rc); return rc; } lcdb->ldo.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK]; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_LDO_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read ldo_soft_start_ctl rc=%d\n", rc); return rc; } lcdb->ldo.soft_start_us = soft_start_us[val & SOFT_START_MASK]; rc = qpnp_lcdb_regulator_register(lcdb, LDO); if (rc < 0) pr_err("Failed to register ldo rc=%d\n", rc); return rc; } static int qpnp_lcdb_init_ncp(struct qpnp_lcdb *lcdb) { int rc = 0, i = 0; u8 val = 0; /* configure parameters only if LCDB is disabled */ if (!is_lcdb_enabled(lcdb)) { if (lcdb->ncp.voltage_mv != -EINVAL) { rc = qpnp_lcdb_set_voltage(lcdb, lcdb->ncp.voltage_mv, NCP); if (rc < 0) { pr_err("Failed to set voltage rc=%d\n", rc); return rc; } } if (lcdb->ncp.pd != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG, NCP_DIS_PULLDOWN_BIT, lcdb->ncp.pd ? 0 : NCP_DIS_PULLDOWN_BIT); if (rc < 0) { pr_err("Failed to configure NCP PD rc=%d\n", rc); return rc; } } if (lcdb->ncp.pd_strength != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG, NCP_PD_STRENGTH_BIT, lcdb->ncp.pd_strength ? NCP_PD_STRENGTH_BIT : 0); if (rc < 0) { pr_err("Failed to configure NCP PD strength %s rc=%d", lcdb->ncp.pd_strength ? "(strong)" : "(weak)", rc); return rc; } } if (lcdb->ncp.ilim_ma != -EINVAL) { while (lcdb->ncp.ilim_ma > ncp_ilim_ma[i]) i++; val = (i == 0) ? 0 : i - 1; val = (lcdb->ncp.ilim_ma & SET_NCP_ILIM_MASK) | EN_NCP_ILIM_BIT; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_NCP_ILIM_CTL1_REG, SET_NCP_ILIM_MASK | EN_NCP_ILIM_BIT, val); if (rc < 0) { pr_err("Failed to configure NCP ilim_ma (CTL1=%d) rc=%d", val, rc); return rc; } val = lcdb->ncp.ilim_ma & SET_NCP_ILIM_MASK; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_NCP_ILIM_CTL2_REG, SET_NCP_ILIM_MASK, val); if (rc < 0) { pr_err("Failed to configure NCP ilim_ma (CTL2=%d) rc=%d", val, rc); return rc; } } if (lcdb->ncp.soft_start_us != -EINVAL) { rc = qpnp_lcdb_set_soft_start(lcdb, lcdb->ncp.soft_start_us, NCP); if (rc < 0) { pr_err("Failed to set NCP soft_start rc=%d\n", rc); return rc; } } } rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->ncp.voltage_mv, NCP); if (rc < 0) { pr_err("Failed to get NCP volatge rc=%d\n", rc); return rc; } rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_NCP_VREG_OK_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read ncp_vreg_ok rc=%d\n", rc); return rc; } lcdb->ncp.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK]; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_NCP_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read ncp_soft_start_ctl rc=%d\n", rc); return rc; } lcdb->ncp.soft_start_us = soft_start_us[val & SOFT_START_MASK]; rc = qpnp_lcdb_regulator_register(lcdb, NCP); if (rc < 0) pr_err("Failed to register NCP rc=%d\n", rc); return rc; } static int qpnp_lcdb_init_bst(struct qpnp_lcdb *lcdb) { int rc = 0; u8 val = 0; /* configure parameters only if LCDB is disabled */ if (!is_lcdb_enabled(lcdb)) { if (lcdb->bst.pd != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_BST_PD_CTL_REG, BOOST_DIS_PULLDOWN_BIT, lcdb->bst.pd ? 0 : BOOST_DIS_PULLDOWN_BIT); if (rc < 0) { pr_err("Failed to configure BST PD rc=%d\n", rc); return rc; } } if (lcdb->bst.pd_strength != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG, BOOST_PD_STRENGTH_BIT, lcdb->bst.pd_strength ? BOOST_PD_STRENGTH_BIT : 0); if (rc < 0) { pr_err("Failed to configure NCP PD strength %s rc=%d", lcdb->bst.pd_strength ? "(strong)" : "(weak)", rc); return rc; } } if (lcdb->bst.ilim_ma != -EINVAL) { val = (lcdb->bst.ilim_ma / MIN_BST_ILIM_MA) - 1; val = (lcdb->bst.ilim_ma & SET_BST_ILIM_MASK) | EN_BST_ILIM_BIT; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_BST_ILIM_CTL_REG, SET_BST_ILIM_MASK | EN_BST_ILIM_BIT, val); if (rc < 0) { pr_err("Failed to configure BST ilim_ma rc=%d", rc); return rc; } } if (lcdb->bst.ps != -EINVAL) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_PS_CTL_REG, EN_PS_BIT, lcdb->bst.ps ? EN_PS_BIT : 0); if (rc < 0) { pr_err("Failed to disable BST PS rc=%d", rc); return rc; } } if (lcdb->bst.ps_threshold != -EINVAL) { val = (lcdb->bst.ps_threshold - MIN_BST_PS_MA) / 10; val = (lcdb->bst.ps_threshold & PS_THRESHOLD_MASK) | EN_PS_BIT; rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_PS_CTL_REG, PS_THRESHOLD_MASK | EN_PS_BIT, val); if (rc < 0) { pr_err("Failed to configure BST PS threshold rc=%d", rc); return rc; } } } rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->bst.voltage_mv, BST); if (rc < 0) { pr_err("Failed to get BST volatge rc=%d\n", rc); return rc; } rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_BST_VREG_OK_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read bst_vreg_ok rc=%d\n", rc); return rc; } lcdb->bst.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK]; rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_SOFT_START_CTL_REG, &val, 1); if (rc < 0) { pr_err("Failed to read ncp_soft_start_ctl rc=%d\n", rc); return rc; } lcdb->bst.soft_start_us = (val & SOFT_START_MASK) * 200 + 200; if (!lcdb->bst.headroom_mv) lcdb->bst.headroom_mv = BST_HEADROOM_DEFAULT_MV; return 0; } static void qpnp_lcdb_pmic_config(struct qpnp_lcdb *lcdb) { switch (lcdb->pmic_rev_id->pmic_subtype) { case PM660L_SUBTYPE: if (lcdb->pmic_rev_id->rev4 < PM660L_V2P0_REV4) lcdb->wa_flags |= NCP_SCP_DISABLE_WA; break; default: break; } pr_debug("LCDB wa_flags = 0x%2x\n", lcdb->wa_flags); } static int qpnp_lcdb_hw_init(struct qpnp_lcdb *lcdb) { int rc = 0; u8 val = 0; qpnp_lcdb_pmic_config(lcdb); rc = qpnp_lcdb_init_bst(lcdb); if (rc < 0) { pr_err("Failed to initialize BOOST rc=%d\n", rc); return rc; } rc = qpnp_lcdb_init_ldo(lcdb); if (rc < 0) { pr_err("Failed to initialize LDO rc=%d\n", rc); return rc; } rc = qpnp_lcdb_init_ncp(lcdb); if (rc < 0) { pr_err("Failed to initialize NCP rc=%d\n", rc); return rc; } if (lcdb->sc_irq >= 0 && !(lcdb->wa_flags & NCP_SCP_DISABLE_WA)) { lcdb->sc_count = 0; rc = devm_request_threaded_irq(lcdb->dev, lcdb->sc_irq, NULL, qpnp_lcdb_sc_irq_handler, IRQF_ONESHOT, "qpnp_lcdb_sc_irq", lcdb); if (rc < 0) { pr_err("Unable to request sc(%d) irq rc=%d\n", lcdb->sc_irq, rc); return rc; } } if (!is_lcdb_enabled(lcdb)) { rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_MODULE_RDY_REG, &val, 1); if (rc < 0) { pr_err("Failed to read MODULE_RDY rc=%d\n", rc); return rc; } if (!(val & MODULE_RDY_BIT)) { rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + LCDB_MODULE_RDY_REG, MODULE_RDY_BIT, MODULE_RDY_BIT); if (rc < 0) { pr_err("Failed to set MODULE RDY rc=%d\n", rc); return rc; } } } else { /* module already enabled */ lcdb->lcdb_enabled = true; } return 0; } static int qpnp_lcdb_parse_dt(struct qpnp_lcdb *lcdb) { int rc = 0; const char *label; struct device_node *revid_dev_node, *temp, *node = lcdb->dev->of_node; revid_dev_node = of_parse_phandle(node, "qcom,pmic-revid", 0); if (!revid_dev_node) { pr_err("Missing qcom,pmic-revid property - fail driver\n"); return -EINVAL; } lcdb->pmic_rev_id = get_revid_data(revid_dev_node); if (IS_ERR(lcdb->pmic_rev_id)) { pr_debug("Unable to get revid data\n"); /* * revid should to be defined, return -EPROBE_DEFER * until the revid module registers. */ return -EPROBE_DEFER; } for_each_available_child_of_node(node, temp) { rc = of_property_read_string(temp, "label", &label); if (rc < 0) { pr_err("Failed to read label rc=%d\n", rc); return rc; } if (!strcmp(label, "ldo")) { lcdb->ldo.node = temp; rc = qpnp_lcdb_ldo_dt_init(lcdb); } else if (!strcmp(label, "ncp")) { lcdb->ncp.node = temp; rc = qpnp_lcdb_ncp_dt_init(lcdb); } else if (!strcmp(label, "bst")) { lcdb->bst.node = temp; rc = qpnp_lcdb_bst_dt_init(lcdb); } else { pr_err("Failed to identify label %s\n", label); return -EINVAL; } if (rc < 0) { pr_err("Failed to register %s module\n", label); return rc; } } if (of_property_read_bool(node, "qcom,ttw-enable")) { rc = qpnp_lcdb_parse_ttw(lcdb); if (rc < 0) { pr_err("Failed to parse ttw-params rc=%d\n", rc); return rc; } lcdb->ttw_enable = true; } lcdb->sc_irq = platform_get_irq_byname(lcdb->pdev, "sc-irq"); if (lcdb->sc_irq < 0) pr_debug("sc irq is not defined\n"); return rc; } static int qpnp_lcdb_regulator_probe(struct platform_device *pdev) { int rc; struct device_node *node; struct qpnp_lcdb *lcdb; node = pdev->dev.of_node; if (!node) { pr_err("No nodes defined\n"); return -ENODEV; } lcdb = devm_kzalloc(&pdev->dev, sizeof(*lcdb), GFP_KERNEL); if (!lcdb) return -ENOMEM; rc = of_property_read_u32(node, "reg", &lcdb->base); if (rc < 0) { pr_err("Failed to find reg node rc=%d\n", rc); return rc; } lcdb->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!lcdb->regmap) { pr_err("Failed to get the regmap handle rc=%d\n", rc); return -EINVAL; } lcdb->dev = &pdev->dev; lcdb->pdev = pdev; mutex_init(&lcdb->lcdb_mutex); mutex_init(&lcdb->read_write_mutex); rc = qpnp_lcdb_parse_dt(lcdb); if (rc < 0) { pr_err("Failed to parse dt rc=%d\n", rc); return rc; } rc = qpnp_lcdb_hw_init(lcdb); if (rc < 0) pr_err("Failed to initialize LCDB module rc=%d\n", rc); else pr_info("LCDB module successfully registered! lcdb_en=%d ldo_voltage=%dmV ncp_voltage=%dmV bst_voltage=%dmV\n", lcdb->lcdb_enabled, lcdb->ldo.voltage_mv, lcdb->ncp.voltage_mv, lcdb->bst.voltage_mv); return rc; } static int qpnp_lcdb_regulator_remove(struct platform_device *pdev) { struct qpnp_lcdb *lcdb = dev_get_drvdata(&pdev->dev); mutex_destroy(&lcdb->lcdb_mutex); mutex_destroy(&lcdb->read_write_mutex); return 0; } static const struct of_device_id lcdb_match_table[] = { { .compatible = QPNP_LCDB_REGULATOR_DRIVER_NAME, }, { }, }; static struct platform_driver qpnp_lcdb_regulator_driver = { .driver = { .name = QPNP_LCDB_REGULATOR_DRIVER_NAME, .of_match_table = lcdb_match_table, }, .probe = qpnp_lcdb_regulator_probe, .remove = qpnp_lcdb_regulator_remove, }; static int __init qpnp_lcdb_regulator_init(void) { return platform_driver_register(&qpnp_lcdb_regulator_driver); } arch_initcall(qpnp_lcdb_regulator_init); static void __exit qpnp_lcdb_regulator_exit(void) { platform_driver_unregister(&qpnp_lcdb_regulator_driver); } module_exit(qpnp_lcdb_regulator_exit); MODULE_DESCRIPTION("QPNP LCDB regulator driver"); MODULE_LICENSE("GPL v2");