/* Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "core.h" #include "debug.h" #include "hif.h" #include "htc.h" #include "ce.h" #include "snoc.h" #include "qmi.h" #include #include #include #include #define WCN3990_MAX_IRQ 12 #define WCN3990_WAKE_IRQ_CE 2 const char *ce_name[WCN3990_MAX_IRQ] = { "WLAN_CE_0", "WLAN_CE_1", "WLAN_CE_2", "WLAN_CE_3", "WLAN_CE_4", "WLAN_CE_5", "WLAN_CE_6", "WLAN_CE_7", "WLAN_CE_8", "WLAN_CE_9", "WLAN_CE_10", "WLAN_CE_11", }; #define ATH10K_SNOC_TARGET_WAIT 3000 #define ATH10K_SNOC_NUM_WARM_RESET_ATTEMPTS 3 #define SNOC_HIF_POWER_DOWN_DELAY 30 #define ATH10K_MAX_PROP_SIZE 32 static void ath10k_snoc_buffer_cleanup(struct ath10k *ar); static int ath10k_snoc_request_irq(struct ath10k *ar); static void ath10k_snoc_free_irq(struct ath10k *ar); static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static struct ce_attr host_ce_config_wlan[] = { /* CE0: host->target HTC control streams */ { .flags = CE_ATTR_FLAGS, .src_nentries = 16, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_snoc_htc_tx_cb, }, /* CE1: target->host HTT + HTC control */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE2: target->host WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 64, .recv_cb = ath10k_snoc_htc_rx_cb, }, /* CE3: host->target WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 32, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_snoc_htc_tx_cb, }, /* CE4: host->target HTT */ { .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, .src_nentries = 2048, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_snoc_htt_tx_cb, }, /* CE5: target->host HTT (ipa_uc->target ) */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, .recv_cb = ath10k_snoc_htt_rx_cb, }, /* CE6: target autonomous hif_memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE7: ce_diag, the Diagnostic Window */ { .flags = CE_ATTR_FLAGS, .src_nentries = 2, .src_sz_max = 2048, .dest_nentries = 2, }, /* CE8: Target to uMC */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 128, }, /* CE9 target->host HTT */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE10: target->host HTT */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE11: target -> host PKTLOG */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, }; static struct ce_pipe_config target_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .pipenum = __cpu_to_le32(0), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE1: target->host HTT + HTC control */ { .pipenum = __cpu_to_le32(1), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE2: target->host WMI */ { .pipenum = __cpu_to_le32(2), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(64), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE3: host->target WMI */ { .pipenum = __cpu_to_le32(3), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE4: host->target HTT */ { .pipenum = __cpu_to_le32(4), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(256), .nbytes_max = __cpu_to_le32(256), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE5: target->host HTT (HIF->HTT) */ { .pipenum = __cpu_to_le32(5), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(1024), .nbytes_max = __cpu_to_le32(64), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE6: Reserved for target autonomous hif_memcpy */ { .pipenum = __cpu_to_le32(6), .pipedir = __cpu_to_le32(PIPEDIR_INOUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(16384), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE7 used only by Host */ { .pipenum = __cpu_to_le32(7), .pipedir = __cpu_to_le32(4), .nentries = __cpu_to_le32(0), .nbytes_max = __cpu_to_le32(0), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE8 Target to uMC */ { .pipenum = __cpu_to_le32(8), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(0), .reserved = __cpu_to_le32(0), }, /* CE9 target->host HTT */ { .pipenum = __cpu_to_le32(9), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE10 target->host HTT */ { .pipenum = __cpu_to_le32(10), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE11 target autonomous qcache memcpy */ { .pipenum = __cpu_to_le32(11), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, }; static struct service_to_pipe target_service_to_ce_map_wlan[] = { { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(4), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(1), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_IPA_MSG), __cpu_to_le32(PIPEDIR_OUT),/* IPA service */ __cpu_to_le32(5), }, { /* in = DL = target -> host */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(9), }, { /* in = DL = target -> host */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(10), }, { /* in = DL = target -> host pktlog */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(11), }, /* (Additions here) */ { /* must be last */ __cpu_to_le32(0), __cpu_to_le32(0), __cpu_to_le32(0), }, }; #define WCN3990_SRC_WR_INDEX_OFFSET 0x3C #define WCN3990_DST_WR_INDEX_OFFSET 0x40 static struct ath10k_shadow_reg_cfg target_shadow_reg_cfg_map[] = { { 0, WCN3990_SRC_WR_INDEX_OFFSET}, { 3, WCN3990_SRC_WR_INDEX_OFFSET}, { 4, WCN3990_SRC_WR_INDEX_OFFSET}, { 5, WCN3990_SRC_WR_INDEX_OFFSET}, { 7, WCN3990_SRC_WR_INDEX_OFFSET}, { 1, WCN3990_DST_WR_INDEX_OFFSET}, { 2, WCN3990_DST_WR_INDEX_OFFSET}, { 7, WCN3990_DST_WR_INDEX_OFFSET}, { 8, WCN3990_DST_WR_INDEX_OFFSET}, { 9, WCN3990_DST_WR_INDEX_OFFSET}, { 10, WCN3990_DST_WR_INDEX_OFFSET}, { 11, WCN3990_DST_WR_INDEX_OFFSET}, }; static bool ath10k_snoc_has_fw_crashed(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); return atomic_read(&ar_snoc->fw_crashed); } static void ath10k_snoc_fw_crashed_clear(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); atomic_set(&ar_snoc->fw_crashed, 0); } void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); if (!ar_snoc) return; iowrite32(value, ar_snoc->mem + offset); } u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); u32 val; if (!ar_snoc) return -EINVAL; val = ioread32(ar_snoc->mem + offset); return val; } static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; struct sk_buff *skb; dma_addr_t paddr; int ret; skb = dev_alloc_skb(pipe->buf_sz); if (!skb) return -ENOMEM; WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); paddr = dma_map_single(ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ar->dev, paddr))) { ath10k_warn(ar, "failed to dma map snoc rx buf\n"); dev_kfree_skb_any(skb); return -EIO; } ATH10K_SKB_RXCB(skb)->paddr = paddr; spin_lock_bh(&ar_snoc->opaque_ctx.ce_lock); ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr); spin_unlock_bh(&ar_snoc->opaque_ctx.ce_lock); if (ret) { dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); return ret; } return 0; } static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; int ret, num; if (pipe->buf_sz == 0) return; if (!ce_pipe->dest_ring) return; spin_lock_bh(&ar_snoc->opaque_ctx.ce_lock); num = __ath10k_ce_rx_num_free_bufs(ce_pipe); spin_unlock_bh(&ar_snoc->opaque_ctx.ce_lock); while (num--) { ret = __ath10k_snoc_rx_post_buf(pipe); if (ret) { if (ret == -ENOSPC) break; ath10k_warn(ar, "failed to post rx buf: %d\n", ret); mod_timer(&ar_snoc->rx_post_retry, jiffies + ATH10K_SNOC_RX_POST_RETRY_MS); break; } } } static void ath10k_snoc_rx_post(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int i; for (i = 0; i < CE_COUNT; i++) ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]); } static void ath10k_snoc_rx_replenish_retry(unsigned long ptr) { struct ath10k *ar = (void *)ptr; ath10k_snoc_rx_post(ar); } static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff_head list; struct sk_buff *skb; __skb_queue_head_init(&list); while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { if (!skb) continue; __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) ath10k_htc_tx_completion_handler(ar, skb); } static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state, void (*callback)(struct ath10k *ar, struct sk_buff *skb)) { struct ath10k *ar = ce_state->ar; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_snoc_pipe *pipe_info = &ar_snoc->pipe_info[ce_state->id]; struct sk_buff *skb; struct sk_buff_head list; void *transfer_context; unsigned int nbytes, max_nbytes; __skb_queue_head_init(&list); while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, &nbytes) == 0) { skb = transfer_context; max_nbytes = skb->len + skb_tailroom(skb); dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, max_nbytes, DMA_FROM_DEVICE); if (unlikely(max_nbytes < nbytes)) { ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", nbytes, max_nbytes); dev_kfree_skb_any(skb); continue; } skb_put(skb, nbytes); __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n", ce_state->id, skb->len); callback(ar, skb); } ath10k_snoc_rx_post_pipe(pipe_info); } static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { /* CE4 polling needs to be done whenever CE pipe which transports * HTT Rx (target->host) is processed. */ ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE); ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff *skb; while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { if (!skb) continue; dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, skb->len, DMA_TO_DEVICE); ath10k_htt_hif_tx_complete(ar, skb); } } static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) { skb_pull(skb, sizeof(struct ath10k_htc_hdr)); ath10k_htt_t2h_msg_handler(ar, skb); } static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE); ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver); } static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id, struct ath10k_hif_sg_item *items, int n_items) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_snoc_pipe *snoc_pipe; struct ath10k_ce_pipe *ce_pipe; int err, i = 0; if (!ar_snoc) return -EINVAL; if (atomic_read(&ar_snoc->fw_crashed)) return -ESHUTDOWN; snoc_pipe = &ar_snoc->pipe_info[pipe_id]; ce_pipe = snoc_pipe->ce_hdl; spin_lock_bh(&ar_snoc->opaque_ctx.ce_lock); for (i = 0; i < n_items - 1; i++) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); if (ath10k_snoc_has_fw_crashed(ar)) return -EINVAL; err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, CE_SEND_FLAG_GATHER); if (err) goto err; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, 0); if (err) goto err; spin_unlock_bh(&ar_snoc->opaque_ctx.ce_lock); return 0; err: for (; i > 0; i--) __ath10k_ce_send_revert(ce_pipe); spin_unlock_bh(&ar_snoc->opaque_ctx.ce_lock); return err; } static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n"); return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl); } static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe, int force) { int resources; ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n"); if (!force) { resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe); if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) return; } ath10k_ce_per_engine_service(ar, pipe); } static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe) { const struct service_to_pipe *entry; bool ul_set = false, dl_set = false; int i; ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n"); for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { entry = &target_service_to_ce_map_wlan[i]; if (__le32_to_cpu(entry->service_id) != service_id) continue; switch (__le32_to_cpu(entry->pipedir)) { case PIPEDIR_NONE: break; case PIPEDIR_IN: WARN_ON(dl_set); *dl_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; break; case PIPEDIR_OUT: WARN_ON(ul_set); *ul_pipe = __le32_to_cpu(entry->pipenum); ul_set = true; break; case PIPEDIR_INOUT: WARN_ON(dl_set); WARN_ON(ul_set); *dl_pipe = __le32_to_cpu(entry->pipenum); *ul_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; ul_set = true; break; } } return 0; } static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n"); (void)ath10k_snoc_hif_map_service_to_pipe(ar, ATH10K_HTC_SVC_ID_RSVD_CTRL, ul_pipe, dl_pipe); } static void ath10k_snoc_irq_disable(struct ath10k *ar) { ath10k_ce_disable_interrupts(ar); } static void ath10k_snoc_irq_enable(struct ath10k *ar) { ath10k_ce_enable_interrupts(ar); } static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe) { struct ath10k *ar; struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; int i; ar = snoc_pipe->hif_ce_state; ce_pipe = snoc_pipe->ce_hdl; ce_ring = ce_pipe->dest_ring; if (!ce_ring) return; if (!snoc_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } } static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe) { struct ath10k *ar; struct ath10k_snoc *ar_snoc; struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; int i; ar = snoc_pipe->hif_ce_state; ar_snoc = ath10k_snoc_priv(ar); ce_pipe = snoc_pipe->ce_hdl; ce_ring = ce_pipe->src_ring; if (!ce_ring) return; if (!snoc_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; ath10k_htc_tx_completion_handler(ar, skb); } } static void ath10k_snoc_buffer_cleanup(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int pipe_num; del_timer_sync(&ar_snoc->rx_post_retry); for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { struct ath10k_snoc_pipe *pipe_info; pipe_info = &ar_snoc->pipe_info[pipe_num]; ath10k_snoc_rx_pipe_cleanup(pipe_info); ath10k_snoc_tx_pipe_cleanup(pipe_info); } } static void ath10k_snoc_flush(struct ath10k *ar) { ath10k_snoc_buffer_cleanup(ar); } static void ath10k_snoc_hif_stop(struct ath10k *ar) { if (!ar) return; if (ath10k_snoc_has_fw_crashed(ar) || test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) { ath10k_snoc_free_irq(ar); } else { ath10k_snoc_irq_disable(ar); } ath10k_snoc_flush(ar); napi_synchronize(&ar->napi); napi_disable(&ar->napi); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); } static int ath10k_snoc_alloc_pipes(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_snoc_pipe *pipe; int i, ret; for (i = 0; i < CE_COUNT; i++) { pipe = &ar_snoc->pipe_info[i]; pipe->ce_hdl = &ar_snoc->opaque_ctx.ce_states[i]; pipe->pipe_num = i; pipe->hif_ce_state = ar; ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", i, ret); return ret; } pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max); } return 0; } static void ath10k_snoc_free_pipes(struct ath10k *ar) { int i; for (i = 0; i < CE_COUNT; i++) ath10k_ce_free_pipe(ar, i); } static void ath10k_snoc_release_resource(struct ath10k *ar) { netif_napi_del(&ar->napi); ath10k_snoc_free_pipes(ar); } static int ath10k_snoc_init_pipes(struct ath10k *ar) { int i, ret; for (i = 0; i < CE_COUNT; i++) { ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", i, ret); return ret; } } return 0; } static void ath10k_snoc_hif_power_down(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); msleep(SNOC_HIF_POWER_DOWN_DELAY); if (!atomic_read(&ar_snoc->pm_ops_inprogress)) ath10k_snoc_qmi_wlan_disable(ar); ce_remove_rri_on_ddr(ar); } int ath10k_snoc_get_ce_id(struct ath10k *ar, int irq) { int i; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = 0; i < CE_COUNT_MAX; i++) { if (ar_snoc->ce_irqs[i].irq_line == irq) return i; } ath10k_err(ar, "No matching CE id for irq %d\n", irq); return -EINVAL; } static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ce_id = ath10k_snoc_get_ce_id(ar, irq); if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) { ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq, ce_id); return IRQ_HANDLED; } ath10k_snoc_irq_disable(ar); napi_schedule(&ar->napi); return IRQ_HANDLED; } static int ath10k_snoc_request_irq(struct ath10k *ar) { int ret, id; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int irqflags = IRQF_TRIGGER_RISING; for (id = 0; id < CE_COUNT_MAX; id++) { ret = request_irq(ar_snoc->ce_irqs[id].irq_line, ath10k_snoc_per_engine_handler, irqflags, ce_name[id], ar); if (ret) { ath10k_err(ar, "%s: cannot register CE %d irq handler, ret = %d", __func__, id, ret); atomic_set(&ar_snoc->ce_irqs[id].irq_req_stat, 0); return ret; } else { atomic_set(&ar_snoc->ce_irqs[id].irq_req_stat, 1); } } return 0; } static void ath10k_snoc_free_irq(struct ath10k *ar) { int id; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (id = 0; id < CE_COUNT_MAX; id++) { if (atomic_read(&ar_snoc->ce_irqs[id].irq_req_stat)) { free_irq(ar_snoc->ce_irqs[id].irq_line, ar); atomic_set(&ar_snoc->ce_irqs[id].irq_req_stat, 0); } } } static int ath10k_snoc_get_soc_info(struct ath10k *ar) { struct resource *res; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct platform_device *pdev; pdev = ar_snoc->dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase"); if (!res) { ath10k_err(ar, "Memory base not found in DT\n"); return -EINVAL; } ar_snoc->mem_pa = res->start; ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa, resource_size(res)); if (!ar_snoc->mem) { ath10k_err(ar, "Memory base ioremap failed: phy addr: %pa\n", &ar_snoc->mem_pa); return -EINVAL; } ar_snoc->target_info.soc_version = ATH10K_HW_WCN3990; ar_snoc->target_info.target_version = ATH10K_HW_WCN3990; ar_snoc->target_info.target_revision = 0; ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s: mem = %pS mem_pa = %pad soc ver=%x tgt ver=%x\n", __func__, ar_snoc->mem, &ar_snoc->mem_pa, ar_snoc->target_info.soc_version, ar_snoc->target_info.target_version); return 0; } static int ath10k_snoc_wlan_enable(struct ath10k *ar) { struct ath10k_wlan_enable_cfg cfg; enum ath10k_driver_mode mode; int pipe_num; struct ath10k_ce_tgt_pipe_cfg tgt_cfg[CE_COUNT_MAX]; for (pipe_num = 0; pipe_num < CE_COUNT_MAX; pipe_num++) { tgt_cfg[pipe_num].pipe_num = target_ce_config_wlan[pipe_num].pipenum; tgt_cfg[pipe_num].pipe_dir = target_ce_config_wlan[pipe_num].pipedir; tgt_cfg[pipe_num].nentries = target_ce_config_wlan[pipe_num].nentries; tgt_cfg[pipe_num].nbytes_max = target_ce_config_wlan[pipe_num].nbytes_max; tgt_cfg[pipe_num].flags = target_ce_config_wlan[pipe_num].flags; tgt_cfg[pipe_num].reserved = 0; } cfg.num_ce_tgt_cfg = sizeof(target_ce_config_wlan) / sizeof(struct ath10k_ce_tgt_pipe_cfg); cfg.ce_tgt_cfg = (struct ath10k_ce_tgt_pipe_cfg *) &tgt_cfg; cfg.num_ce_svc_pipe_cfg = sizeof(target_service_to_ce_map_wlan) / sizeof(struct ath10k_ce_svc_pipe_cfg); cfg.ce_svc_cfg = (struct ath10k_ce_svc_pipe_cfg *) &target_service_to_ce_map_wlan; cfg.num_shadow_reg_cfg = sizeof(target_shadow_reg_cfg_map) / sizeof(struct ath10k_shadow_reg_cfg); cfg.shadow_reg_cfg = (struct ath10k_shadow_reg_cfg *) &target_shadow_reg_cfg_map; mode = ar->testmode.utf_monitor ? ATH10K_FTM : ATH10K_MISSION; return ath10k_snoc_qmi_wlan_enable(ar, &cfg, mode, "5.1.0.26N"); } static int ath10k_snoc_bus_configure(struct ath10k *ar) { int ret; ret = ath10k_snoc_wlan_enable(ar); if (ret < 0) { ath10k_err(ar, "%s: ath10k_snoc_bus_configure error = %d", __func__, ret); return ret; } ce_config_rri_on_ddr(ar); return 0; } static int ath10k_snoc_hif_start(struct ath10k *ar) { if (ath10k_snoc_has_fw_crashed(ar)) { ath10k_snoc_request_irq(ar); ath10k_snoc_fw_crashed_clear(ar); } ath10k_snoc_irq_enable(ar); ath10k_snoc_rx_post(ar); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); return 0; } static int ath10k_snoc_claim(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_snoc_get_soc_info(ar); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot snoc_mem 0x%p\n", ar_snoc->mem); return 0; } static int ath10k_snoc_hif_power_up(struct ath10k *ar) { int ret; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n", __func__, ar->state); if (atomic_read(&ar_snoc->pm_ops_inprogress)) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s: WLAN OFF CMD Reset on PM Resume\n", __func__); ath10k_snoc_qmi_wlan_disable(ar); atomic_set(&ar_snoc->pm_ops_inprogress, 0); } if ((ar->state == ATH10K_STATE_ON) || (ar->state == ATH10K_STATE_RESTARTING) || test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) { ret = ath10k_snoc_bus_configure(ar); if (ret) { ath10k_err(ar, "failed to configure bus: %d\n", ret); return ret; } } ret = ath10k_snoc_init_pipes(ar); if (ret) { ath10k_err(ar, "failed to initialize CE: %d\n", ret); goto err_sleep; } napi_enable(&ar->napi); return 0; err_sleep: return ret; } static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget) { struct ath10k *ar = container_of(ctx, struct ath10k, napi); int done = 0; if (ath10k_snoc_has_fw_crashed(ar)) { napi_complete(ctx); return done; } ath10k_ce_per_engine_service_any(ar); done = ath10k_htt_txrx_compl_task(ar, budget); if (done < budget) { napi_complete(ctx); ath10k_snoc_irq_enable(ar); } return done; } static int ath10k_snoc_resource_init(struct ath10k *ar) { int i, ret = 0; struct resource *res; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = 0; i < CE_COUNT; i++) { res = platform_get_resource(ar_snoc->dev, IORESOURCE_IRQ, i); if (!res) { ath10k_err(ar, "Fail to get IRQ-%d\n", i); ret = -ENODEV; goto out; } else { ar_snoc->ce_irqs[i].irq_line = res->start; } } out: return ret; } static int ath10k_snoc_pm_notifier(struct notifier_block *nb, unsigned long pm_event, void *data) { struct ath10k_snoc *ar_snoc = container_of(nb, struct ath10k_snoc, pm_notifier); struct ath10k *ar = ar_snoc->ar; ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s: PM Event: %lu\n", __func__, pm_event); switch (pm_event) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: case PM_POST_HIBERNATION: case PM_POST_SUSPEND: case PM_RESTORE_PREPARE: case PM_POST_RESTORE: atomic_set(&ar_snoc->pm_ops_inprogress, 1); break; default: break; } return NOTIFY_DONE; } static int ath10k_get_vreg_info(struct ath10k *ar, struct device *dev, struct ath10k_wcn3990_vreg_info *vreg_info) { int ret = 0; char prop_name[ATH10K_MAX_PROP_SIZE]; struct regulator *reg; const __be32 *prop; int len = 0; int i; reg = devm_regulator_get_optional(dev, vreg_info->name); if (PTR_ERR(reg) == -EPROBE_DEFER) { ath10k_err(ar, "EPROBE_DEFER for regulator: %s\n", vreg_info->name); ret = PTR_ERR(reg); goto out; } if (IS_ERR(reg)) { ret = PTR_ERR(reg); if (vreg_info->required) { ath10k_err(ar, "Regulator %s doesn't exist: %d\n", vreg_info->name, ret); goto out; } else { ath10k_dbg(ar, ATH10K_DBG_SNOC, "Optional regulator %s doesn't exist: %d\n", vreg_info->name, ret); goto done; } } vreg_info->reg = reg; snprintf(prop_name, ATH10K_MAX_PROP_SIZE, "qcom,%s-config", vreg_info->name); prop = of_get_property(dev->of_node, prop_name, &len); ath10k_dbg(ar, ATH10K_DBG_SNOC, "Got regulator cfg,prop: %s, len: %d\n", prop_name, len); if (!prop || len < (2 * sizeof(__be32))) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "Property %s %s\n", prop_name, prop ? "invalid format" : "doesn't exist"); goto done; } for (i = 0; (i * sizeof(__be32)) < len; i++) { switch (i) { case 0: vreg_info->min_v = be32_to_cpup(&prop[0]); break; case 1: vreg_info->max_v = be32_to_cpup(&prop[1]); break; case 2: vreg_info->load_ua = be32_to_cpup(&prop[2]); break; case 3: vreg_info->settle_delay = be32_to_cpup(&prop[3]); break; default: ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s, ignoring val %d\n", prop_name, i); break; } } done: ath10k_dbg(ar, ATH10K_DBG_SNOC, "vreg: %s, min_v: %u, max_v: %u, load: %u, delay: %lu\n", vreg_info->name, vreg_info->min_v, vreg_info->max_v, vreg_info->load_ua, vreg_info->settle_delay); return 0; out: return ret; } static int ath10k_get_clk_info(struct ath10k *ar, struct device *dev, struct ath10k_wcn3990_clk_info *clk_info) { struct clk *handle; int ret = 0; handle = devm_clk_get(dev, clk_info->name); if (IS_ERR(handle)) { ret = PTR_ERR(handle); if (clk_info->required) { ath10k_err(ar, "Clock %s isn't available: %d\n", clk_info->name, ret); goto out; } else { ath10k_dbg(ar, ATH10K_DBG_SNOC, "Ignoring clk %s: %d\n", clk_info->name, ret); ret = 0; goto out; } } ath10k_dbg(ar, ATH10K_DBG_SNOC, "Clock: %s, freq: %u\n", clk_info->name, clk_info->freq); clk_info->handle = handle; out: return ret; } static int ath10k_wcn3990_vreg_on(struct ath10k *ar) { int ret = 0; struct ath10k_wcn3990_vreg_info *vreg_info; int i; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = 0; i < ATH10K_WCN3990_VREG_INFO_SIZE; i++) { vreg_info = &ar_snoc->vreg[i]; if (!vreg_info->reg) continue; ath10k_dbg(ar, ATH10K_DBG_SNOC, "Regulator %s being enabled\n", vreg_info->name); ret = regulator_set_voltage(vreg_info->reg, vreg_info->min_v, vreg_info->max_v); if (ret) { ath10k_err(ar, "vreg %s, set failed:min:%u,max:%u,ret: %d\n", vreg_info->name, vreg_info->min_v, vreg_info->max_v, ret); break; } if (vreg_info->load_ua) { ret = regulator_set_load(vreg_info->reg, vreg_info->load_ua); if (ret < 0) { ath10k_err(ar, "Reg %s, can't set load:%u,ret: %d\n", vreg_info->name, vreg_info->load_ua, ret); break; } } ret = regulator_enable(vreg_info->reg); if (ret) { ath10k_err(ar, "Regulator %s, can't enable: %d\n", vreg_info->name, ret); break; } if (vreg_info->settle_delay) udelay(vreg_info->settle_delay); } if (!ret) return 0; for (; i >= 0; i--) { vreg_info = &ar_snoc->vreg[i]; if (!vreg_info->reg) continue; regulator_disable(vreg_info->reg); regulator_set_load(vreg_info->reg, 0); regulator_set_voltage(vreg_info->reg, 0, vreg_info->max_v); } return ret; } static int ath10k_wcn3990_vreg_off(struct ath10k *ar) { int ret = 0; struct ath10k_wcn3990_vreg_info *vreg_info; int i; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = ATH10K_WCN3990_VREG_INFO_SIZE - 1; i >= 0; i--) { vreg_info = &ar_snoc->vreg[i]; if (!vreg_info->reg) continue; ath10k_dbg(ar, ATH10K_DBG_SNOC, "Regulator %s being disabled\n", vreg_info->name); ret = regulator_disable(vreg_info->reg); if (ret) ath10k_err(ar, "Regulator %s, can't disable: %d\n", vreg_info->name, ret); ret = regulator_set_load(vreg_info->reg, 0); if (ret < 0) ath10k_err(ar, "Regulator %s, can't set load: %d\n", vreg_info->name, ret); ret = regulator_set_voltage(vreg_info->reg, 0, vreg_info->max_v); if (ret) ath10k_err(ar, "Regulator %s, can't set voltage: %d\n", vreg_info->name, ret); } return ret; } static int ath10k_wcn3990_clk_init(struct ath10k *ar) { struct ath10k_wcn3990_clk_info *clk_info; int i; int ret = 0; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = 0; i < ATH10K_WCN3990_CLK_INFO_SIZE; i++) { clk_info = &ar_snoc->clk[i]; if (!clk_info->handle) continue; ath10k_dbg(ar, ATH10K_DBG_SNOC, "Clock %s being enabled\n", clk_info->name); if (clk_info->freq) { ret = clk_set_rate(clk_info->handle, clk_info->freq); if (ret) { ath10k_err(ar, "Clk %s,set err: %u,ret: %d\n", clk_info->name, clk_info->freq, ret); break; } } ret = clk_prepare_enable(clk_info->handle); if (ret) { ath10k_err(ar, "Clock %s, can't enable: %d\n", clk_info->name, ret); break; } } if (ret == 0) return 0; for (; i >= 0; i--) { clk_info = &ar_snoc->clk[i]; if (!clk_info->handle) continue; clk_disable_unprepare(clk_info->handle); } return ret; } static int ath10k_wcn3990_clk_deinit(struct ath10k *ar) { struct ath10k_wcn3990_clk_info *clk_info; int i; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); for (i = 0; i < ATH10K_WCN3990_CLK_INFO_SIZE; i++) { clk_info = &ar_snoc->clk[i]; if (!clk_info->handle) continue; ath10k_dbg(ar, ATH10K_DBG_SNOC, "Clock %s being disabled\n", clk_info->name); clk_disable_unprepare(clk_info->handle); } return 0; } static int ath10k_hw_power_on(struct ath10k *ar) { int ret = 0; ath10k_dbg(ar, ATH10K_DBG_SNOC, "HW Power on\n"); ret = ath10k_wcn3990_vreg_on(ar); if (ret) goto out; ret = ath10k_wcn3990_clk_init(ar); if (ret) goto vreg_off; return ret; vreg_off: ath10k_wcn3990_vreg_off(ar); out: return ret; } static int ath10k_hw_power_off(struct ath10k *ar) { int ret = 0; ath10k_dbg(ar, ATH10K_DBG_SNOC, "HW Power off\n"); ath10k_wcn3990_clk_deinit(ar); ret = ath10k_wcn3990_vreg_off(ar); return ret; } static int ath10k_snoc_hif_suspend(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret = 0; if (!ar_snoc) return -EINVAL; if (!device_may_wakeup(ar->dev)) return -EINVAL; ret = enable_irq_wake(ar_snoc->ce_irqs[WCN3990_WAKE_IRQ_CE].irq_line); if (ret) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "HIF Suspend: Failed to enable wakeup IRQ\n"); return ret; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "HIF Suspended\n"); return ret; } static int ath10k_snoc_hif_resume(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret = 0; if (!ar_snoc) return -EINVAL; if (!device_may_wakeup(ar->dev)) return -EINVAL; ret = disable_irq_wake(ar_snoc->ce_irqs[WCN3990_WAKE_IRQ_CE].irq_line); if (ret) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "HIF Resume: Failed to disable wakeup IRQ\n"); return ret; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "HIF Resumed\n"); return ret; } static const struct ath10k_hif_ops ath10k_snoc_hif_ops = { .tx_sg = ath10k_snoc_hif_tx_sg, .start = ath10k_snoc_hif_start, .stop = ath10k_snoc_hif_stop, .map_service_to_pipe = ath10k_snoc_hif_map_service_to_pipe, .get_default_pipe = ath10k_snoc_hif_get_default_pipe, .send_complete_check = ath10k_snoc_hif_send_complete_check, .get_free_queue_number = ath10k_snoc_hif_get_free_queue_number, .power_up = ath10k_snoc_hif_power_up, .power_down = ath10k_snoc_hif_power_down, .read32 = ath10k_snoc_read32, .write32 = ath10k_snoc_write32, .suspend = ath10k_snoc_hif_suspend, .resume = ath10k_snoc_hif_resume, }; static const struct ath10k_bus_ops ath10k_snoc_bus_ops = { .read32 = ath10k_snoc_read32, .write32 = ath10k_snoc_write32, }; static int ath10k_snoc_probe(struct platform_device *pdev) { int ret; struct ath10k *ar; struct ath10k_snoc *ar_snoc; enum ath10k_hw_rev hw_rev; struct device *dev; u32 chip_id; u32 i; dev = &pdev->dev; hw_rev = ATH10K_HW_WCN3990; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(37)); ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC, hw_rev, &ath10k_snoc_hif_ops); if (!ar) { dev_err(dev, "failed to allocate core\n"); return -ENOMEM; } ar_snoc = ath10k_snoc_priv(ar); if (!ar_snoc) return -EINVAL; ar_snoc->dev = pdev; platform_set_drvdata(pdev, ar); ar_snoc->ar = ar; ret = ath10k_snoc_start_qmi_service(ar); if (ret) { ath10k_err(ar, "failed to start QMI service: %d\n", ret); goto err_core_destroy; } spin_lock_init(&ar_snoc->opaque_ctx.ce_lock); ar_snoc->opaque_ctx.bus_ops = &ath10k_snoc_bus_ops; ath10k_snoc_resource_init(ar); ar->target_version = ATH10K_HW_WCN3990; ar->hw->wiphy->hw_version = ATH10K_HW_WCN3990; setup_timer(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, (unsigned long)ar); memcpy(ar_snoc->vreg, vreg_cfg, sizeof(vreg_cfg)); for (i = 0; i < ATH10K_WCN3990_VREG_INFO_SIZE; i++) { ret = ath10k_get_vreg_info(ar, dev, &ar_snoc->vreg[i]); if (ret) goto err_core_destroy; } memcpy(ar_snoc->clk, clk_cfg, sizeof(clk_cfg)); for (i = 0; i < ATH10K_WCN3990_CLK_INFO_SIZE; i++) { ret = ath10k_get_clk_info(ar, dev, &ar_snoc->clk[i]); if (ret) goto err_core_destroy; } ret = ath10k_hw_power_on(ar); if (ret) { ath10k_err(ar, "failed to power on device: %d\n", ret); goto err_stop_qmi_service; } ret = ath10k_snoc_claim(ar); if (ret) { ath10k_err(ar, "failed to claim device: %d\n", ret); goto err_hw_power_off; } ret = ath10k_snoc_bus_configure(ar); if (ret) { ath10k_err(ar, "failed to configure bus: %d\n", ret); goto err_hw_power_off; } ret = ath10k_snoc_alloc_pipes(ar); if (ret) { ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", ret); goto err_hw_power_off; } netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll, ATH10K_NAPI_BUDGET); ret = ath10k_snoc_request_irq(ar); if (ret) { ath10k_warn(ar, "failed to request irqs: %d\n", ret); goto err_free_pipes; } chip_id = ar_snoc->target_info.soc_version; /* chip id needs to be retrieved from platform driver */ ret = ath10k_core_register(ar, chip_id); if (ret) { ath10k_err(ar, "failed to register driver core: %d\n", ret); goto err_free_irq; } ath10k_snoc_modem_ssr_register_notifier(ar); ath10k_snoc_pd_restart_enable(ar); ar_snoc->pm_notifier.notifier_call = ath10k_snoc_pm_notifier; register_pm_notifier(&ar_snoc->pm_notifier); ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 probed\n", __func__); return 0; err_free_irq: ath10k_snoc_free_irq(ar); err_free_pipes: ath10k_snoc_free_pipes(ar); err_hw_power_off: ath10k_hw_power_off(ar); err_stop_qmi_service: ath10k_snoc_stop_qmi_service(ar); err_core_destroy: ath10k_core_destroy(ar); return ret; } static int ath10k_snoc_remove(struct platform_device *pdev) { struct ath10k *ar = platform_get_drvdata(pdev); struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); if (!ar) return -EINVAL; if (!ar_snoc) return -EINVAL; ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 removed\n", __func__); unregister_pm_notifier(&ar_snoc->pm_notifier); ath10k_core_unregister(ar); ath10k_snoc_pdr_unregister_notifier(ar); ath10k_snoc_modem_ssr_unregister_notifier(ar); ath10k_snoc_free_irq(ar); ath10k_snoc_release_resource(ar); ath10k_snoc_free_pipes(ar); ath10k_snoc_stop_qmi_service(ar); ath10k_hw_power_off(ar); ath10k_core_destroy(ar); return 0; } static const struct of_device_id ath10k_snoc_dt_match[] = { {.compatible = "qcom,wcn3990-wifi"}, {} }; MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match); static struct platform_driver ath10k_snoc_driver = { .probe = ath10k_snoc_probe, .remove = ath10k_snoc_remove, .driver = { .name = "ath10k_snoc", .owner = THIS_MODULE, .of_match_table = ath10k_snoc_dt_match, }, }; static int __init ath10k_snoc_init(void) { int ret; ret = platform_driver_register(&ath10k_snoc_driver); if (ret) pr_err("failed to register ath10k snoc driver: %d\n", ret); return ret; } module_init(ath10k_snoc_init); static void __exit ath10k_snoc_exit(void) { platform_driver_unregister(&ath10k_snoc_driver); } module_exit(ath10k_snoc_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");