/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_K61 0 #if DEBUG_K61 == 1 #define LOGDI(...) dev_info(&priv_data->spidev->dev, __VA_ARGS__) #define LOGNI(...) netdev_info(netdev, __VA_ARGS__) #else #define LOGDI(...) #define LOGNI(...) #endif #define LOGDE(...) dev_err(&priv_data->spidev->dev, __VA_ARGS__) #define LOGNE(...) netdev_err(netdev, __VA_ARGS__) #define MAX_TX_BUFFERS 1 #define XFER_BUFFER_SIZE 64 #define K61_CLOCK 120000000 #define K61_MAX_CHANNELS 1 #define K61_FW_QUERY_RETRY_COUNT 3 struct k61_can { struct net_device *netdev; struct spi_device *spidev; struct mutex spi_lock; /* SPI device lock */ struct workqueue_struct *tx_wq; char *tx_buf, *rx_buf; int xfer_length; atomic_t msg_seq; atomic_t netif_queue_stop; struct completion response_completion; int reset; int wait_cmd; int cmd_result; int bits_per_word; int reset_delay_msec; }; struct k61_netdev_privdata { struct can_priv can; struct k61_can *k61_can; }; struct k61_tx_work { struct work_struct work; struct sk_buff *skb; struct net_device *netdev; }; /* Message definitions */ struct spi_mosi { /* TLV for MOSI line */ u8 cmd; u8 len; u16 seq; u8 data[]; } __packed; struct spi_miso { /* TLV for MISO line */ u8 cmd; u8 len; u16 seq; /* should match seq field from request, or 0 for unsols */ u8 data[]; } __packed; #define CMD_GET_FW_VERSION 0x81 #define CMD_CAN_SEND_FRAME 0x82 #define CMD_CAN_ADD_FILTER 0x83 #define CMD_CAN_REMOVE_FILTER 0x84 #define CMD_CAN_RECEIVE_FRAME 0x85 #define CMD_CAN_DATA_BUFF_ADD 0x87 #define CMD_CAN_DATA_BUFF_REMOVE 0x88 #define CMD_CAN_RELEASE_BUFFER 0x89 #define CMD_CAN_DATA_BUFF_REMOVE_ALL 0x8A #define IOCTL_RELEASE_CAN_BUFFER (SIOCDEVPRIVATE + 0) #define IOCTL_ENABLE_BUFFERING (SIOCDEVPRIVATE + 1) #define IOCTL_ADD_FRAME_FILTER (SIOCDEVPRIVATE + 2) #define IOCTL_REMOVE_FRAME_FILTER (SIOCDEVPRIVATE + 3) #define IOCTL_DISABLE_BUFFERING (SIOCDEVPRIVATE + 5) #define IOCTL_DISABLE_ALL_BUFFERING (SIOCDEVPRIVATE + 6) struct can_fw_resp { u8 maj; u8 min; u8 ver; } __packed; struct can_write_req { u32 ts; u32 mid; u8 dlc; u8 data[]; } __packed; struct can_write_resp { u8 err; } __packed; struct can_receive_frame { u32 ts; u32 mid; u8 dlc; u8 data[]; } __packed; struct can_add_filter_req { u8 can_if; u32 mid; u32 mask; u8 type; } __packed; static struct can_bittiming_const k61_bittiming_const = { .name = "k61", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 4, .brp_max = 1023, .brp_inc = 1, }; struct k61_add_can_buffer { u8 can_if; u32 mid; u32 mask; } __packed; struct k61_delete_can_buffer { u8 can_if; u32 mid; u32 mask; } __packed; static int k61_rx_message(struct k61_can *priv_data); static irqreturn_t k61_irq(int irq, void *priv) { struct k61_can *priv_data = priv; LOGDI("k61_irq\n"); k61_rx_message(priv_data); return IRQ_HANDLED; } static void k61_frame_error(struct k61_can *priv_data, struct can_receive_frame *frame) { struct can_frame *cf; struct sk_buff *skb; struct net_device *netdev; netdev = priv_data->netdev; skb = alloc_can_err_skb(netdev, &cf); if (!skb) { LOGDE("skb alloc failed\n"); return; } cf->can_id |= CAN_ERR_BUSERROR; cf->data[2] |= CAN_ERR_PROT_FORM; netdev->stats.rx_errors++; netif_rx(skb); netdev->stats.rx_packets++; netdev->stats.rx_bytes += cf->can_dlc; } static void k61_receive_frame(struct k61_can *priv_data, struct can_receive_frame *frame) { struct can_frame *cf; struct sk_buff *skb; struct skb_shared_hwtstamps *skt; struct timeval tv; static int msec; struct net_device *netdev; int i; if (frame->dlc > 8) { LOGDE("can rx frame error\n"); k61_frame_error(priv_data, frame); return; } netdev = priv_data->netdev; skb = alloc_can_skb(netdev, &cf); if (!skb) { LOGDE("skb alloc failed\n"); return; } LOGDI("rcv frame %d %x %d %x %x %x %x %x %x %x %x\n", frame->ts, frame->mid, frame->dlc, frame->data[0], frame->data[1], frame->data[2], frame->data[3], frame->data[4], frame->data[5], frame->data[6], frame->data[7]); cf->can_id = le32_to_cpu(frame->mid); cf->can_dlc = get_can_dlc(frame->dlc); for (i = 0; i < cf->can_dlc; i++) cf->data[i] = frame->data[i]; msec = le32_to_cpu(frame->ts); tv.tv_sec = msec / 1000; tv.tv_usec = (msec - tv.tv_sec * 1000) * 1000; skt = skb_hwtstamps(skb); skt->hwtstamp = timeval_to_ktime(tv); LOGDI(" hwtstamp %lld\n", ktime_to_ms(skt->hwtstamp)); skb->tstamp = timeval_to_ktime(tv); netif_rx(skb); netdev->stats.rx_packets++; netdev->stats.rx_bytes += cf->can_dlc; } static void k61_process_response(struct k61_can *priv_data, struct spi_miso *resp) { int ret = 0; LOGDI("<%x %2d [%d]\n", resp->cmd, resp->len, resp->seq); if (resp->cmd == CMD_CAN_RECEIVE_FRAME) { struct can_receive_frame *frame = (struct can_receive_frame *)&resp->data; k61_receive_frame(priv_data, frame); } else if (resp->cmd == CMD_GET_FW_VERSION) { struct can_fw_resp *fw_resp = (struct can_fw_resp *)resp->data; dev_info(&priv_data->spidev->dev, "fw %d.%d.%d", fw_resp->maj, fw_resp->min, fw_resp->ver); } if (resp->cmd == priv_data->wait_cmd) { priv_data->cmd_result = ret; complete(&priv_data->response_completion); } } static void k61_process_rx(struct k61_can *priv_data, char *rx_buf) { struct spi_miso *resp; int length_processed = 0, actual_length = priv_data->xfer_length; while (length_processed < actual_length) { int length_left = actual_length - length_processed; int length = 0; /* length of consumed chunk */ void *data; data = rx_buf + length_processed; resp = (struct spi_miso *)data; if (resp->cmd == 0) { /* special case. ignore cmd==0 */ length_processed += 1; continue; } LOGDI("processing. p %d -> l %d (t %d)\n", length_processed, length_left, priv_data->xfer_length); length = resp->len + sizeof(*resp); if (length <= length_left) { k61_process_response(priv_data, resp); length_processed += length; } else { /* Incomplete command */ break; } } } static int k61_do_spi_transaction(struct k61_can *priv_data) { struct spi_device *spi; struct spi_transfer *xfer; struct spi_message *msg; int ret; spi = priv_data->spidev; msg = devm_kzalloc(&spi->dev, sizeof(*msg), GFP_KERNEL); xfer = devm_kzalloc(&spi->dev, sizeof(*xfer), GFP_KERNEL); if (xfer == 0 || msg == 0) return -ENOMEM; spi_message_init(msg); spi_message_add_tail(xfer, msg); xfer->tx_buf = priv_data->tx_buf; xfer->rx_buf = priv_data->rx_buf; xfer->len = XFER_BUFFER_SIZE; xfer->bits_per_word = priv_data->bits_per_word; ret = spi_sync(spi, msg); LOGDI("spi_sync ret %d\n", ret); if (ret == 0) { devm_kfree(&spi->dev, msg); devm_kfree(&spi->dev, xfer); k61_process_rx(priv_data, priv_data->rx_buf); } return ret; } static int k61_rx_message(struct k61_can *priv_data) { char *tx_buf, *rx_buf; int ret; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; ret = k61_do_spi_transaction(priv_data); mutex_unlock(&priv_data->spi_lock); return ret; } static int k61_query_firmware_version(struct k61_can *priv_data) { char *tx_buf, *rx_buf; int ret; struct spi_mosi *req; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; req = (struct spi_mosi *)tx_buf; req->cmd = CMD_GET_FW_VERSION; req->len = 0; req->seq = atomic_inc_return(&priv_data->msg_seq); priv_data->wait_cmd = CMD_GET_FW_VERSION; priv_data->cmd_result = -1; reinit_completion(&priv_data->response_completion); ret = k61_do_spi_transaction(priv_data); mutex_unlock(&priv_data->spi_lock); if (ret == 0) { wait_for_completion_interruptible_timeout( &priv_data->response_completion, 0.001 * HZ); ret = priv_data->cmd_result; } return ret; } static int k61_can_write(struct k61_can *priv_data, struct can_frame *cf) { char *tx_buf, *rx_buf; int ret, i; struct spi_mosi *req; struct can_write_req *req_d; struct net_device *netdev; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; req = (struct spi_mosi *)tx_buf; req->cmd = CMD_CAN_SEND_FRAME; req->len = sizeof(struct can_write_req) + 8; req->seq = atomic_inc_return(&priv_data->msg_seq); req_d = (struct can_write_req *)req->data; req_d->mid = cf->can_id; req_d->dlc = cf->can_dlc; for (i = 0; i < cf->can_dlc; i++) req_d->data[i] = cf->data[i]; ret = k61_do_spi_transaction(priv_data); netdev = priv_data->netdev; netdev->stats.tx_packets++; netdev->stats.tx_bytes += cf->can_dlc; mutex_unlock(&priv_data->spi_lock); return ret; } static int k61_netdev_open(struct net_device *netdev) { int err; LOGNI("Open"); err = open_candev(netdev); if (err) return err; netif_start_queue(netdev); return 0; } static int k61_netdev_close(struct net_device *netdev) { LOGNI("Close"); netif_stop_queue(netdev); close_candev(netdev); return 0; } static void k61_send_can_frame(struct work_struct *ws) { struct k61_tx_work *tx_work; struct can_frame *cf; struct k61_can *priv_data; struct net_device *netdev; struct k61_netdev_privdata *netdev_priv_data; tx_work = container_of(ws, struct k61_tx_work, work); netdev = tx_work->netdev; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; LOGDI("send_can_frame ws %p\n", ws); LOGDI("send_can_frame tx %p\n", tx_work); cf = (struct can_frame *)tx_work->skb->data; k61_can_write(priv_data, cf); dev_kfree_skb(tx_work->skb); kfree(tx_work); } static int k61_frame_filter(struct net_device *netdev, struct ifreq *ifr, int cmd) { char *tx_buf, *rx_buf; int ret; struct spi_mosi *req; struct can_add_filter_req *add_filter; struct can_add_filter_req *filter_request; struct k61_can *priv_data; struct k61_netdev_privdata *netdev_priv_data; struct spi_device *spi; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; spi = priv_data->spidev; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; if (!ifr) return -EINVAL; filter_request = devm_kzalloc(&spi->dev, sizeof(struct can_add_filter_req), GFP_KERNEL); if (!filter_request) return -ENOMEM; if (copy_from_user(filter_request, ifr->ifr_data, sizeof(struct can_add_filter_req))) { devm_kfree(&spi->dev, filter_request); return -EFAULT; } req = (struct spi_mosi *)tx_buf; if (cmd == IOCTL_ADD_FRAME_FILTER) req->cmd = CMD_CAN_ADD_FILTER; else req->cmd = CMD_CAN_REMOVE_FILTER; req->len = sizeof(struct can_add_filter_req); req->seq = atomic_inc_return(&priv_data->msg_seq); add_filter = (struct can_add_filter_req *)req->data; add_filter->can_if = filter_request->can_if; add_filter->mid = filter_request->mid; add_filter->mask = filter_request->mask; ret = k61_do_spi_transaction(priv_data); devm_kfree(&spi->dev, filter_request); mutex_unlock(&priv_data->spi_lock); return ret; } static netdev_tx_t k61_netdev_start_xmit( struct sk_buff *skb, struct net_device *netdev) { struct k61_netdev_privdata *netdev_priv_data = netdev_priv(netdev); struct k61_can *priv_data = netdev_priv_data->k61_can; struct k61_tx_work *tx_work; LOGNI("netdev_start_xmit"); if (can_dropped_invalid_skb(netdev, skb)) { LOGNE("Dropping invalid can frame\n"); return NETDEV_TX_OK; } tx_work = kzalloc(sizeof(*tx_work), GFP_ATOMIC); if (tx_work == 0) return NETDEV_TX_OK; INIT_WORK(&tx_work->work, k61_send_can_frame); tx_work->netdev = netdev; tx_work->skb = skb; queue_work(priv_data->tx_wq, &tx_work->work); return NETDEV_TX_OK; } static int k61_send_release_can_buffer_cmd(struct net_device *netdev) { struct k61_can *priv_data; struct k61_netdev_privdata *netdev_priv_data; struct spi_device *spi; char *tx_buf, *rx_buf; int ret; struct spi_mosi *req; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; spi = priv_data->spidev; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; req = (struct spi_mosi *)tx_buf; req->cmd = CMD_CAN_RELEASE_BUFFER; req->len = 0; req->seq = atomic_inc_return(&priv_data->msg_seq); ret = k61_do_spi_transaction(priv_data); mutex_unlock(&priv_data->spi_lock); return ret; } static int k61_remove_all_buffering(struct net_device *netdev) { char *tx_buf, *rx_buf; int ret; struct spi_mosi *req; struct k61_can *priv_data; struct k61_netdev_privdata *netdev_priv_data; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; mutex_lock(&priv_data->spi_lock); tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; req = (struct spi_mosi *)tx_buf; req->cmd = CMD_CAN_DATA_BUFF_REMOVE_ALL; req->len = 0; req->seq = atomic_inc_return(&priv_data->msg_seq); priv_data->wait_cmd = req->cmd; priv_data->cmd_result = -1; reinit_completion(&priv_data->response_completion); ret = k61_do_spi_transaction(priv_data); mutex_unlock(&priv_data->spi_lock); if (ret == 0) { LOGDI("k61_do_blocking_ioctl ready to wait for response\n"); /* Flash write may take some time. Hence give 2s as * wait duration in the worst case. This wait time should * increase if more number of frame IDs are stored in flash. */ ret = wait_for_completion_interruptible_timeout( &priv_data->response_completion, 2 * HZ); ret = priv_data->cmd_result; } return ret; } static int k61_convert_ioctl_cmd_to_spi_cmd(int ioctl_cmd) { switch (ioctl_cmd) { case IOCTL_ENABLE_BUFFERING: return CMD_CAN_DATA_BUFF_ADD; case IOCTL_DISABLE_BUFFERING: return CMD_CAN_DATA_BUFF_REMOVE; } return -EINVAL; } static int k61_data_buffering(struct net_device *netdev, struct ifreq *ifr, int cmd) { int spi_cmd, ret; char *tx_buf, *rx_buf; struct k61_can *priv_data; struct spi_mosi *req; struct k61_netdev_privdata *netdev_priv_data; struct k61_add_can_buffer *enable_buffering; struct k61_add_can_buffer *add_request; struct spi_device *spi; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; spi = priv_data->spidev; mutex_lock(&priv_data->spi_lock); spi_cmd = k61_convert_ioctl_cmd_to_spi_cmd(cmd); if (spi_cmd < 0) { LOGDE("k61_do_blocking_ioctl wrong command %d\n", cmd); return spi_cmd; } if (!ifr) return -EINVAL; add_request = devm_kzalloc(&spi->dev, sizeof(struct k61_add_can_buffer), GFP_KERNEL); if (!add_request) return -ENOMEM; if (copy_from_user(add_request, ifr->ifr_data, sizeof(struct k61_add_can_buffer))) { devm_kfree(&spi->dev, add_request); return -EFAULT; } tx_buf = priv_data->tx_buf; rx_buf = priv_data->rx_buf; memset(tx_buf, 0, XFER_BUFFER_SIZE); memset(rx_buf, 0, XFER_BUFFER_SIZE); priv_data->xfer_length = XFER_BUFFER_SIZE; req = (struct spi_mosi *)tx_buf; req->cmd = spi_cmd; req->len = sizeof(struct k61_add_can_buffer); req->seq = atomic_inc_return(&priv_data->msg_seq); enable_buffering = (struct k61_add_can_buffer *)req->data; enable_buffering->can_if = add_request->can_if; enable_buffering->mid = add_request->mid; enable_buffering->mask = add_request->mask; priv_data->wait_cmd = spi_cmd; priv_data->cmd_result = -1; reinit_completion(&priv_data->response_completion); ret = k61_do_spi_transaction(priv_data); devm_kfree(&spi->dev, add_request); mutex_unlock(&priv_data->spi_lock); if (ret == 0) { LOGDI("k61_do_blocking_ioctl ready to wait for response\n"); /* Flash write may take some time. Hence give 400ms as * wait duration in the worst case. */ ret = wait_for_completion_interruptible_timeout( &priv_data->response_completion, 0.4 * HZ); ret = priv_data->cmd_result; } return ret; } static int k61_netdev_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct k61_can *priv_data; struct k61_netdev_privdata *netdev_priv_data; int ret = -EINVAL; netdev_priv_data = netdev_priv(netdev); priv_data = netdev_priv_data->k61_can; LOGDI("k61_netdev_do_ioctl %x\n", cmd); switch (cmd) { case IOCTL_ADD_FRAME_FILTER: case IOCTL_REMOVE_FRAME_FILTER: ret = k61_frame_filter(netdev, ifr, cmd); break; case IOCTL_ENABLE_BUFFERING: case IOCTL_DISABLE_BUFFERING: ret = k61_data_buffering(netdev, ifr, cmd); break; case IOCTL_DISABLE_ALL_BUFFERING: ret = k61_remove_all_buffering(netdev); break; case IOCTL_RELEASE_CAN_BUFFER: ret = k61_send_release_can_buffer_cmd(netdev); break; } return ret; } static const struct net_device_ops k61_netdev_ops = { .ndo_open = k61_netdev_open, .ndo_stop = k61_netdev_close, .ndo_start_xmit = k61_netdev_start_xmit, .ndo_do_ioctl = k61_netdev_do_ioctl, }; static int k61_create_netdev(struct spi_device *spi, struct k61_can *priv_data) { struct net_device *netdev; struct k61_netdev_privdata *netdev_priv_data; LOGDI("k61_create_netdev\n"); netdev = alloc_candev(sizeof(*netdev_priv_data), MAX_TX_BUFFERS); if (!netdev) { LOGDE("Couldn't alloc candev\n"); return -ENOMEM; } netdev_priv_data = netdev_priv(netdev); netdev_priv_data->k61_can = priv_data; priv_data->netdev = netdev; netdev->netdev_ops = &k61_netdev_ops; SET_NETDEV_DEV(netdev, &spi->dev); netdev_priv_data->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY; netdev_priv_data->can.bittiming_const = &k61_bittiming_const; netdev_priv_data->can.clock.freq = K61_CLOCK; return 0; } static struct k61_can *k61_create_priv_data(struct spi_device *spi) { struct k61_can *priv_data; int err; struct device *dev; dev = &spi->dev; priv_data = devm_kzalloc(dev, sizeof(*priv_data), GFP_KERNEL); if (!priv_data) { dev_err(dev, "Couldn't alloc k61_can\n"); return 0; } spi_set_drvdata(spi, priv_data); atomic_set(&priv_data->netif_queue_stop, 0); priv_data->spidev = spi; priv_data->tx_wq = alloc_workqueue("k61_tx_wq", 0, 0); if (!priv_data->tx_wq) { dev_err(dev, "Couldn't alloc workqueue\n"); err = -ENOMEM; goto cleanup_privdata; } priv_data->tx_buf = devm_kzalloc(dev, XFER_BUFFER_SIZE, GFP_KERNEL); priv_data->rx_buf = devm_kzalloc(dev, XFER_BUFFER_SIZE, GFP_KERNEL); if (!priv_data->tx_buf || !priv_data->rx_buf) { dev_err(dev, "Couldn't alloc tx or rx buffers\n"); err = -ENOMEM; goto cleanup_privdata; } priv_data->xfer_length = 0; mutex_init(&priv_data->spi_lock); atomic_set(&priv_data->msg_seq, 0); init_completion(&priv_data->response_completion); return priv_data; cleanup_privdata: if (priv_data) { if (priv_data->tx_wq) destroy_workqueue(priv_data->tx_wq); } return 0; } static int k61_probe(struct spi_device *spi) { int err, retry = 0, query_err = -1; struct k61_can *priv_data; struct device *dev; dev = &spi->dev; dev_dbg(dev, "k61_probe"); err = spi_setup(spi); if (err) { dev_err(dev, "spi_setup failed: %d", err); return err; } priv_data = k61_create_priv_data(spi); if (!priv_data) { dev_err(dev, "Failed to create k61_can priv_data\n"); err = -ENOMEM; return err; } dev_dbg(dev, "k61_probe created priv_data"); err = of_property_read_u32(spi->dev.of_node, "bits-per-word", &priv_data->bits_per_word); if (err) priv_data->bits_per_word = 16; err = of_property_read_u32(spi->dev.of_node, "reset-delay-msec", &priv_data->reset_delay_msec); if (err) priv_data->reset_delay_msec = 1; priv_data->reset = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); if (gpio_is_valid(priv_data->reset)) { err = gpio_request(priv_data->reset, "k61-reset"); if (err < 0) { dev_err(&spi->dev, "failed to request gpio %d: %d\n", priv_data->reset, err); goto cleanup_candev; } gpio_direction_output(priv_data->reset, 0); udelay(1); gpio_direction_output(priv_data->reset, 1); msleep(priv_data->reset_delay_msec); } err = k61_create_netdev(spi, priv_data); if (err) { dev_err(dev, "Failed to create CAN device: %d", err); goto cleanup_candev; } err = register_candev(priv_data->netdev); if (err) { dev_err(dev, "Failed to register CAN device: %d", err); goto unregister_candev; } err = request_threaded_irq(spi->irq, NULL, k61_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "k61", priv_data); if (err) { dev_err(dev, "Failed to request irq: %d", err); goto unregister_candev; } dev_dbg(dev, "Request irq %d ret %d\n", spi->irq, err); while ((query_err != 0) && (retry < K61_FW_QUERY_RETRY_COUNT)) { query_err = k61_query_firmware_version(priv_data); retry++; } if (query_err) { dev_info(dev, "K61 probe failed\n"); err = -ENODEV; goto free_irq; } return 0; free_irq: free_irq(spi->irq, priv_data); unregister_candev: unregister_candev(priv_data->netdev); cleanup_candev: if (priv_data) { if (priv_data->netdev) free_candev(priv_data->netdev); if (priv_data->tx_wq) destroy_workqueue(priv_data->tx_wq); } return err; } static int k61_remove(struct spi_device *spi) { struct k61_can *priv_data = spi_get_drvdata(spi); LOGDI("k61_remove\n"); unregister_candev(priv_data->netdev); free_candev(priv_data->netdev); destroy_workqueue(priv_data->tx_wq); return 0; } static const struct of_device_id k61_match_table[] = { { .compatible = "fsl,k61" }, { } }; #ifdef CONFIG_PM static int k61_suspend(struct device *dev) { struct spi_device *spi = to_spi_device(dev); enable_irq_wake(spi->irq); return 0; } static int k61_resume(struct device *dev) { struct spi_device *spi = to_spi_device(dev); struct k61_can *priv_data = spi_get_drvdata(spi); disable_irq_wake(spi->irq); k61_rx_message(priv_data); return 0; } static const struct dev_pm_ops k61_dev_pm_ops = { .suspend = k61_suspend, .resume = k61_resume, }; #endif static struct spi_driver k61_driver = { .driver = { .name = "k61", .of_match_table = k61_match_table, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &k61_dev_pm_ops, #endif }, .probe = k61_probe, .remove = k61_remove, }; module_spi_driver(k61_driver); MODULE_DESCRIPTION("Freescale K61 SPI-CAN module"); MODULE_LICENSE("GPL v2");