/* * linux/drivers/mmc/core/mmc.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "host.h" #include "bus.h" #include "mmc_ops.h" #include "sd_ops.h" static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int tacc_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int tacc_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) static int mmc_switch_status(struct mmc_card *card, bool ignore_crc); /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ static int mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; /* * The selection of the format here is based upon published * specs from sandisk and from what people have reported. */ switch (card->csd.mmca_vsn) { case 0: /* MMC v1.0 - v1.2 */ case 1: /* MMC v1.4 */ card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); card->cid.serial = UNSTUFF_BITS(resp, 16, 24); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prv = UNSTUFF_BITS(resp, 48, 8); card->cid.serial = UNSTUFF_BITS(resp, 16, 32); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; default: pr_err("%s: card has unknown MMCA version %d\n", mmc_hostname(card->host), card->csd.mmca_vsn); return -EINVAL; } return 0; } static void mmc_set_erase_size(struct mmc_card *card) { if (card->ext_csd.erase_group_def & 1) card->erase_size = card->ext_csd.hc_erase_size; else card->erase_size = card->csd.erase_size; mmc_init_erase(card); } static const struct mmc_fixup mmc_fixups[] = { /* avoid HPI for specific cards */ MMC_FIXUP_EXT_CSD_REV("MMC16G", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk, MMC_QUIRK_BROKEN_HPI, MMC_V4_41), /* Disable cache for specific cards */ MMC_FIXUP("MMC16G", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_CACHE_DISABLE), END_FIXUP }; /* * Given a 128-bit response, decode to our card CSD structure. */ static int mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, a, b; u32 *resp = card->raw_csd; /* * We only understand CSD structure v1.1 and v1.2. * v1.2 has extra information in bits 15, 11 and 10. * We also support eMMC v4.4 & v4.41. */ csd->structure = UNSTUFF_BITS(resp, 126, 2); if (csd->structure == 0) { pr_err("%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd->structure); return -EINVAL; } csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); if (csd->write_blkbits >= 9) { a = UNSTUFF_BITS(resp, 42, 5); b = UNSTUFF_BITS(resp, 37, 5); csd->erase_size = (a + 1) * (b + 1); csd->erase_size <<= csd->write_blkbits - 9; } return 0; } static void mmc_select_card_type(struct mmc_card *card) { struct mmc_host *host = card->host; u8 card_type = card->ext_csd.raw_card_type; u32 caps = host->caps, caps2 = host->caps2; unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; unsigned int avail_type = 0; if (caps & MMC_CAP_MMC_HIGHSPEED && card_type & EXT_CSD_CARD_TYPE_HS_26) { hs_max_dtr = MMC_HIGH_26_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS_26; } if (caps & MMC_CAP_MMC_HIGHSPEED && card_type & EXT_CSD_CARD_TYPE_HS_52) { hs_max_dtr = MMC_HIGH_52_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS_52; } if (caps & MMC_CAP_1_8V_DDR && card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; } if (caps & MMC_CAP_1_2V_DDR && card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; } if (caps2 & MMC_CAP2_HS200_1_8V_SDR && card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; } if (caps2 & MMC_CAP2_HS200_1_2V_SDR && card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; } if (caps2 & MMC_CAP2_HS400_1_8V && card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; } if (caps2 & MMC_CAP2_HS400_1_2V && card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { hs200_max_dtr = MMC_HS200_MAX_DTR; avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; } card->ext_csd.hs_max_dtr = hs_max_dtr; card->ext_csd.hs200_max_dtr = hs200_max_dtr; card->mmc_avail_type = avail_type; } static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) { u8 hc_erase_grp_sz, hc_wp_grp_sz; /* * Disable these attributes by default */ card->ext_csd.enhanced_area_offset = -EINVAL; card->ext_csd.enhanced_area_size = -EINVAL; /* * Enhanced area feature support -- check whether the eMMC * card has the Enhanced area enabled. If so, export enhanced * area offset and size to user by adding sysfs interface. */ if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { if (card->ext_csd.partition_setting_completed) { hc_erase_grp_sz = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; hc_wp_grp_sz = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; /* * calculate the enhanced data area offset, in bytes */ card->ext_csd.enhanced_area_offset = (((unsigned long long)ext_csd[139]) << 24) + (((unsigned long long)ext_csd[138]) << 16) + (((unsigned long long)ext_csd[137]) << 8) + (((unsigned long long)ext_csd[136])); if (mmc_card_blockaddr(card)) card->ext_csd.enhanced_area_offset <<= 9; /* * calculate the enhanced data area size, in kilobytes */ card->ext_csd.enhanced_area_size = (ext_csd[142] << 16) + (ext_csd[141] << 8) + ext_csd[140]; card->ext_csd.enhanced_area_size *= (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); card->ext_csd.enhanced_area_size <<= 9; } else { pr_warn("%s: defines enhanced area without partition setting complete\n", mmc_hostname(card->host)); } } } static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) { int idx; u8 hc_erase_grp_sz, hc_wp_grp_sz; unsigned int part_size; /* * General purpose partition feature support -- * If ext_csd has the size of general purpose partitions, * set size, part_cfg, partition name in mmc_part. */ if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & EXT_CSD_PART_SUPPORT_PART_EN) { hc_erase_grp_sz = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; hc_wp_grp_sz = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) continue; if (card->ext_csd.partition_setting_completed == 0) { pr_warn("%s: has partition size defined without partition complete\n", mmc_hostname(card->host)); break; } part_size = (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] << 16) + (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] << 8) + ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; part_size *= (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); mmc_part_add(card, part_size << 19, EXT_CSD_PART_CONFIG_ACC_GP0 + idx, "gp%d", idx, false, MMC_BLK_DATA_AREA_GP); } } } /* Minimum partition switch timeout in milliseconds */ #define MMC_MIN_PART_SWITCH_TIME 300 /* * Decode extended CSD. */ static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) { int err = 0, idx; unsigned int part_size; struct device_node *np; bool broken_hpi = false; /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; if (card->csd.structure == 3) { if (card->ext_csd.raw_ext_csd_structure > 2) { pr_err("%s: unrecognised EXT_CSD structure " "version %d\n", mmc_hostname(card->host), card->ext_csd.raw_ext_csd_structure); err = -EINVAL; goto out; } } np = mmc_of_find_child_device(card->host, 0); if (np && of_device_is_compatible(np, "mmc-card")) broken_hpi = of_property_read_bool(np, "broken-hpi"); of_node_put(np); /* * The EXT_CSD format is meant to be forward compatible. As long * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV * are authorized, see JEDEC JESD84-B50 section B.8. */ card->ext_csd.rev = ext_csd[EXT_CSD_REV]; card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; if (card->ext_csd.rev >= 2) { card->ext_csd.sectors = ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; /* Cards with density > 2GiB are sector addressed */ if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) mmc_card_set_blockaddr(card); } card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; mmc_select_card_type(card); card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.raw_erase_timeout_mult = ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; card->ext_csd.raw_hc_erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; if (card->ext_csd.rev >= 3) { u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; /* EXT_CSD value is in units of 10ms, but we store in ms */ card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; /* Sleep / awake timeout in 100ns units */ if (sa_shift > 0 && sa_shift <= 0x17) card->ext_csd.sa_timeout = 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.erase_group_def = ext_csd[EXT_CSD_ERASE_GROUP_DEF]; card->ext_csd.hc_erase_timeout = 300 * ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; card->ext_csd.hc_erase_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; /* * There are two boot regions of equal size, defined in * multiples of 128K. */ if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; mmc_part_add(card, part_size, EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, "boot%d", idx, true, MMC_BLK_DATA_AREA_BOOT); } } } card->ext_csd.raw_hc_erase_gap_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; card->ext_csd.raw_sec_trim_mult = ext_csd[EXT_CSD_SEC_TRIM_MULT]; card->ext_csd.raw_sec_erase_mult = ext_csd[EXT_CSD_SEC_ERASE_MULT]; card->ext_csd.raw_sec_feature_support = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; card->ext_csd.raw_trim_mult = ext_csd[EXT_CSD_TRIM_MULT]; card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; if (card->ext_csd.rev >= 4) { if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & EXT_CSD_PART_SETTING_COMPLETED) card->ext_csd.partition_setting_completed = 1; else card->ext_csd.partition_setting_completed = 0; mmc_manage_enhanced_area(card, ext_csd); mmc_manage_gp_partitions(card, ext_csd); card->ext_csd.sec_trim_mult = ext_csd[EXT_CSD_SEC_TRIM_MULT]; card->ext_csd.sec_erase_mult = ext_csd[EXT_CSD_SEC_ERASE_MULT]; card->ext_csd.sec_feature_support = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; card->ext_csd.trim_timeout = 300 * ext_csd[EXT_CSD_TRIM_MULT]; /* * Note that the call to mmc_part_add above defaults to read * only. If this default assumption is changed, the call must * take into account the value of boot_locked below. */ card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; card->ext_csd.boot_ro_lockable = true; /* Save power class values */ card->ext_csd.raw_pwr_cl_52_195 = ext_csd[EXT_CSD_PWR_CL_52_195]; card->ext_csd.raw_pwr_cl_26_195 = ext_csd[EXT_CSD_PWR_CL_26_195]; card->ext_csd.raw_pwr_cl_52_360 = ext_csd[EXT_CSD_PWR_CL_52_360]; card->ext_csd.raw_pwr_cl_26_360 = ext_csd[EXT_CSD_PWR_CL_26_360]; card->ext_csd.raw_pwr_cl_200_195 = ext_csd[EXT_CSD_PWR_CL_200_195]; card->ext_csd.raw_pwr_cl_200_360 = ext_csd[EXT_CSD_PWR_CL_200_360]; card->ext_csd.raw_pwr_cl_ddr_52_195 = ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; card->ext_csd.raw_pwr_cl_ddr_52_360 = ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; card->ext_csd.raw_pwr_cl_ddr_200_360 = ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; } /* check whether the eMMC card supports HPI */ if ((ext_csd[EXT_CSD_HPI_FEATURES] & 0x1) && !(card->quirks & MMC_QUIRK_BROKEN_HPI)) { card->ext_csd.hpi = 1; if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; else card->ext_csd.hpi_cmd = MMC_SEND_STATUS; /* * Indicate the maximum timeout to close * a command interrupted by HPI */ card->ext_csd.out_of_int_time = ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; pr_info("%s: Out-of-interrupt timeout is %d[ms]\n", mmc_hostname(card->host), card->ext_csd.out_of_int_time); } if (card->ext_csd.rev >= 5) { /* Adjust production date as per JEDEC JESD84-B451 */ if (card->cid.year < 2010) card->cid.year += 16; /* check whether the eMMC card supports BKOPS */ if ((ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) && card->ext_csd.hpi) { card->ext_csd.bkops = 1; card->ext_csd.bkops_en = ext_csd[EXT_CSD_BKOPS_EN]; card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; if (!card->ext_csd.bkops_en) pr_debug("%s: BKOPS_EN equals 0x%x\n", mmc_hostname(card->host), card->ext_csd.bkops_en); } /* check whether the eMMC card supports HPI */ if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { card->ext_csd.hpi = 1; if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; else card->ext_csd.hpi_cmd = MMC_SEND_STATUS; /* * Indicate the maximum timeout to close * a command interrupted by HPI */ card->ext_csd.out_of_int_time = ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; } card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; /* * Some eMMC vendors violate eMMC 5.0 spec and set * REL_WR_SEC_C register to 0x10 to indicate the * ability of RPMB throughput improvement thus lead * to failure when TZ module write data to RPMB * partition. So check bit[4] of EXT_CSD[166] and * if it is not set then change value of REL_WR_SEC_C * to 0x1 directly ignoring value of EXT_CSD[222]. */ if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR)) card->ext_csd.rel_sectors = 0x1; /* * RPMB regions are defined in multiples of 128K. */ card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, EXT_CSD_PART_CONFIG_ACC_RPMB, "rpmb", 0, false, MMC_BLK_DATA_AREA_RPMB); } } card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) card->erased_byte = 0xFF; else card->erased_byte = 0x0; /* eMMC v4.5 or later */ if (card->ext_csd.rev >= 6) { card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; card->ext_csd.generic_cmd6_time = 10 * ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; card->ext_csd.power_off_longtime = 10 * ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; card->ext_csd.cache_size = ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) card->ext_csd.data_sector_size = 4096; else card->ext_csd.data_sector_size = 512; if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { card->ext_csd.data_tag_unit_size = ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * (card->ext_csd.data_sector_size); } else { card->ext_csd.data_tag_unit_size = 0; } card->ext_csd.max_packed_writes = ext_csd[EXT_CSD_MAX_PACKED_WRITES]; card->ext_csd.max_packed_reads = ext_csd[EXT_CSD_MAX_PACKED_READS]; } else { card->ext_csd.data_sector_size = 512; } if (card->ext_csd.rev >= 7) { /* Enhance Strobe is supported since v5.1 which rev should be * 8 but some eMMC devices can support it with rev 7. So handle * Enhance Strobe here. */ card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT]; card->ext_csd.fw_version = ext_csd[EXT_CSD_FIRMWARE_VERSION]; pr_info("%s: eMMC FW version: 0x%02x\n", mmc_hostname(card->host), card->ext_csd.fw_version); if (card->ext_csd.cmdq_support) { /* * Queue Depth = N + 1, * see JEDEC JESD84-B51 section 7.4.19 */ card->ext_csd.cmdq_depth = ext_csd[EXT_CSD_CMDQ_DEPTH] + 1; pr_info("%s: CMDQ supported: depth: %d\n", mmc_hostname(card->host), card->ext_csd.cmdq_depth); } card->ext_csd.barrier_support = ext_csd[EXT_CSD_BARRIER_SUPPORT]; card->ext_csd.cache_flush_policy = ext_csd[EXT_CSD_CACHE_FLUSH_POLICY]; pr_info("%s: cache barrier support %d flush policy %d\n", mmc_hostname(card->host), card->ext_csd.barrier_support, card->ext_csd.cache_flush_policy); card->ext_csd.enhanced_rpmb_supported = (card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); } else { card->ext_csd.cmdq_support = 0; card->ext_csd.cmdq_depth = 0; card->ext_csd.barrier_support = 0; card->ext_csd.cache_flush_policy = 0; } /* * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined * when accessing a specific field", so use it here if there is no * PARTITION_SWITCH_TIME. */ if (!card->ext_csd.part_time) card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; /* Some eMMC set the value too low so set a minimum */ if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; /* eMMC v5 or later */ if (card->ext_csd.rev >= 7) { memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], MMC_FIRMWARE_LEN); card->ext_csd.ffu_capable = (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; card->ext_csd.device_life_time_est_typ_a = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; card->ext_csd.device_life_time_est_typ_b = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; } out: return err; } static int mmc_read_ext_csd(struct mmc_card *card) { struct mmc_host *host = card->host; u8 *ext_csd; int err; if (!mmc_can_ext_csd(card)) return 0; err = mmc_get_ext_csd(card, &ext_csd); if (err) { pr_err("%s: %s: mmc_get_ext_csd() fails %d\n", mmc_hostname(host), __func__, err); /* If the host or the card can't do the switch, * fail more gracefully. */ if ((err != -EINVAL) && (err != -ENOSYS) && (err != -EFAULT)) return err; /* * High capacity cards should have this "magic" size * stored in their CSD. */ if (card->csd.capacity == (4096 * 512)) { pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", mmc_hostname(card->host)); } else { pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", mmc_hostname(card->host)); err = 0; } return err; } err = mmc_decode_ext_csd(card, ext_csd); kfree(ext_csd); return err; } static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) { u8 *bw_ext_csd; int err; if (bus_width == MMC_BUS_WIDTH_1) return 0; err = mmc_get_ext_csd(card, &bw_ext_csd); if (err) return err; /* only compare read only fields */ err = !((card->ext_csd.raw_partition_support == bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && (card->ext_csd.raw_erased_mem_count == bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && (card->ext_csd.rev == bw_ext_csd[EXT_CSD_REV]) && (card->ext_csd.raw_ext_csd_structure == bw_ext_csd[EXT_CSD_STRUCTURE]) && (card->ext_csd.raw_card_type == bw_ext_csd[EXT_CSD_CARD_TYPE]) && (card->ext_csd.raw_s_a_timeout == bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && (card->ext_csd.raw_hc_erase_gap_size == bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && (card->ext_csd.raw_erase_timeout_mult == bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && (card->ext_csd.raw_hc_erase_grp_size == bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && (card->ext_csd.raw_sec_trim_mult == bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && (card->ext_csd.raw_sec_erase_mult == bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && (card->ext_csd.raw_sec_feature_support == bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && (card->ext_csd.raw_trim_mult == bw_ext_csd[EXT_CSD_TRIM_MULT]) && (card->ext_csd.raw_sectors[0] == bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && (card->ext_csd.raw_sectors[1] == bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && (card->ext_csd.raw_sectors[2] == bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && (card->ext_csd.raw_sectors[3] == bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && (card->ext_csd.raw_pwr_cl_52_195 == bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && (card->ext_csd.raw_pwr_cl_26_195 == bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && (card->ext_csd.raw_pwr_cl_52_360 == bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && (card->ext_csd.raw_pwr_cl_26_360 == bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && (card->ext_csd.raw_pwr_cl_200_195 == bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && (card->ext_csd.raw_pwr_cl_200_360 == bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && (card->ext_csd.raw_pwr_cl_ddr_52_195 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && (card->ext_csd.raw_pwr_cl_ddr_52_360 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && (card->ext_csd.raw_pwr_cl_ddr_200_360 == bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); if (err) err = -EINVAL; kfree(bw_ext_csd); return err; } MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], card->raw_cid[2], card->raw_cid[3]); MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], card->raw_csd[2], card->raw_csd[3]); MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info); MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", card->ext_csd.device_life_time_est_typ_a, card->ext_csd.device_life_time_est_typ_b); MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", card->ext_csd.enhanced_area_offset); MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", card->ext_csd.enhanced_rpmb_supported); MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); static ssize_t mmc_fwrev_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_card *card = mmc_dev_to_card(dev); if (card->ext_csd.rev < 7) { return sprintf(buf, "0x%x\n", card->cid.fwrev); } else { return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, card->ext_csd.fwrev); } } static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); static struct attribute *mmc_std_attrs[] = { &dev_attr_cid.attr, &dev_attr_csd.attr, &dev_attr_date.attr, &dev_attr_erase_size.attr, &dev_attr_preferred_erase_size.attr, &dev_attr_fwrev.attr, &dev_attr_ffu_capable.attr, &dev_attr_hwrev.attr, &dev_attr_manfid.attr, &dev_attr_name.attr, &dev_attr_oemid.attr, &dev_attr_prv.attr, &dev_attr_rev.attr, &dev_attr_pre_eol_info.attr, &dev_attr_life_time.attr, &dev_attr_serial.attr, &dev_attr_enhanced_area_offset.attr, &dev_attr_enhanced_area_size.attr, &dev_attr_raw_rpmb_size_mult.attr, &dev_attr_enhanced_rpmb_supported.attr, &dev_attr_rel_sectors.attr, NULL, }; ATTRIBUTE_GROUPS(mmc_std); static struct device_type mmc_type = { .groups = mmc_std_groups, }; /* * Select the PowerClass for the current bus width * If power class is defined for 4/8 bit bus in the * extended CSD register, select it by executing the * mmc_switch command. */ static int __mmc_select_powerclass(struct mmc_card *card, unsigned int bus_width) { struct mmc_host *host = card->host; struct mmc_ext_csd *ext_csd = &card->ext_csd; unsigned int pwrclass_val = 0; int err = 0; switch (1 << host->ios.vdd) { case MMC_VDD_165_195: if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_26_195; else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_52_195 : ext_csd->raw_pwr_cl_ddr_52_195; else if (host->ios.clock <= MMC_HS200_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_200_195; break; case MMC_VDD_27_28: case MMC_VDD_28_29: case MMC_VDD_29_30: case MMC_VDD_30_31: case MMC_VDD_31_32: case MMC_VDD_32_33: case MMC_VDD_33_34: case MMC_VDD_34_35: case MMC_VDD_35_36: if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) pwrclass_val = ext_csd->raw_pwr_cl_26_360; else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_52_360 : ext_csd->raw_pwr_cl_ddr_52_360; else if (host->ios.clock <= MMC_HS200_MAX_DTR) pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? ext_csd->raw_pwr_cl_ddr_200_360 : ext_csd->raw_pwr_cl_200_360; break; default: pr_warn("%s: Voltage range not supported for power class\n", mmc_hostname(host)); return -EINVAL; } if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> EXT_CSD_PWR_CL_8BIT_SHIFT; else pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> EXT_CSD_PWR_CL_4BIT_SHIFT; /* If the power class is different from the default value */ if (pwrclass_val > 0) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_CLASS, pwrclass_val, card->ext_csd.generic_cmd6_time); } return err; } static int mmc_select_powerclass(struct mmc_card *card) { struct mmc_host *host = card->host; u32 bus_width, ext_csd_bits; int err, ddr; /* Power class selection is supported for versions >= 4.0 */ if (!mmc_can_ext_csd(card)) return 0; bus_width = host->ios.bus_width; /* Power class values are defined only for 4/8 bit bus */ if (bus_width == MMC_BUS_WIDTH_1) return 0; ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; if (ddr) ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; else ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; err = __mmc_select_powerclass(card, ext_csd_bits); if (err) pr_warn("%s: power class selection to bus width %d ddr %d failed\n", mmc_hostname(host), 1 << bus_width, ddr); return err; } /* * Set the bus speed for the selected speed mode. */ static void mmc_set_bus_speed(struct mmc_card *card) { unsigned int max_dtr = (unsigned int)-1; if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && max_dtr > card->ext_csd.hs200_max_dtr) max_dtr = card->ext_csd.hs200_max_dtr; else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) max_dtr = card->ext_csd.hs_max_dtr; else if (max_dtr > card->csd.max_dtr) max_dtr = card->csd.max_dtr; mmc_set_clock(card->host, max_dtr); } /* * Select the bus width amoung 4-bit and 8-bit(SDR). * If the bus width is changed successfully, return the selected width value. * Zero is returned instead of error value if the wide width is not supported. */ static int mmc_select_bus_width(struct mmc_card *card) { static const unsigned ext_csd_bits[] = { EXT_CSD_BUS_WIDTH_8, EXT_CSD_BUS_WIDTH_4, }; static const unsigned bus_widths[] = { MMC_BUS_WIDTH_8, MMC_BUS_WIDTH_4, }; struct mmc_host *host = card->host; unsigned idx, bus_width = 0; int err = 0; if (!mmc_can_ext_csd(card) || !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) return 0; idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; /* * Unlike SD, MMC cards dont have a configuration register to notify * supported bus width. So bus test command should be run to identify * the supported bus width or compare the ext csd values of current * bus width and ext csd values of 1 bit mode read earlier. */ for (; idx < ARRAY_SIZE(bus_widths); idx++) { /* * Host is capable of 8bit transfer, then switch * the device to work in 8bit transfer mode. If the * mmc switch command returns error then switch to * 4bit transfer mode. On success set the corresponding * bus width on the host. */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx], card->ext_csd.generic_cmd6_time); if (err) continue; bus_width = bus_widths[idx]; mmc_set_bus_width(host, bus_width); /* * If controller can't handle bus width test, * compare ext_csd previously read in 1 bit mode * against ext_csd at new bus width */ if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) err = mmc_compare_ext_csds(card, bus_width); else err = mmc_bus_test(card, bus_width); if (!err) { err = bus_width; break; } else { pr_warn("%s: switch to bus width %d failed\n", mmc_hostname(host), 1 << bus_width); } } return err; } /* * Switch to the high-speed mode */ static int mmc_select_hs(struct mmc_card *card) { int err; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, card->ext_csd.generic_cmd6_time, true, false, true); if (!err) { mmc_set_timing(card->host, MMC_TIMING_MMC_HS); err = mmc_switch_status(card, false); } return err; } /* * Activate wide bus and DDR if supported. */ static int mmc_select_hs_ddr(struct mmc_card *card) { struct mmc_host *host = card->host; u32 bus_width, ext_csd_bits; int err = 0; if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) return 0; bus_width = host->ios.bus_width; if (bus_width == MMC_BUS_WIDTH_1) return 0; ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits, card->ext_csd.generic_cmd6_time, true, false, false); if (err) { pr_err("%s: switch to bus width %d ddr failed\n", mmc_hostname(host), 1 << bus_width); return err; } /* * eMMC cards can support 3.3V to 1.2V i/o (vccq) * signaling. * * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. * * 1.8V vccq at 3.3V core voltage (vcc) is not required * in the JEDEC spec for DDR. * * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all * host controller can support this, like some of the SDHCI * controller which connect to an eMMC device. Some of these * host controller still needs to use 1.8v vccq for supporting * DDR mode. * * So the sequence will be: * if (host and device can both support 1.2v IO) * use 1.2v IO; * else if (host and device can both support 1.8v IO) * use 1.8v IO; * so if host and device can only support 3.3v IO, this is the * last choice. * * WARNING: eMMC rules are NOT the same as SD DDR */ err = -EINVAL; if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V)) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); /* make sure vccq is 3.3v after switching disaster */ if (err) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); if (!err) { mmc_set_timing(host, MMC_TIMING_MMC_DDR52); err = mmc_switch_status(card, false); } return err; } /* Caller must hold re-tuning */ static int mmc_switch_status(struct mmc_card *card, bool ignore_crc) { u32 status; int err; err = __mmc_send_status(card, &status, ignore_crc); if (err) return err; return mmc_switch_status_error(card->host, status); } static int mmc_select_hs400(struct mmc_card *card) { struct mmc_host *host = card->host; bool send_status = true; unsigned int max_dtr; int err = 0; u8 val; /* * HS400 mode requires 8-bit bus width */ if (card->ext_csd.strobe_support) { if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && host->caps & MMC_CAP_8_BIT_DATA)) return 0; /* For Enhance Strobe flow. For non Enhance Strobe, signal * voltage will not be set. */ if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); if (err) return err; } else { if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && host->ios.bus_width == MMC_BUS_WIDTH_8)) return 0; } if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) send_status = false; /* Switch card to HS mode */ val = EXT_CSD_TIMING_HS; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) { pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Set host controller to HS timing */ mmc_set_timing(card->host, MMC_TIMING_MMC_HS); /* Reduce frequency to HS frequency */ max_dtr = card->ext_csd.hs_max_dtr; mmc_set_clock(host, max_dtr); if (!send_status) { err = mmc_switch_status(card, false); if (err) goto out_err; } val = EXT_CSD_DDR_BUS_WIDTH_8; if (card->ext_csd.strobe_support) { err = mmc_select_bus_width(card); if (IS_ERR_VALUE(err)) return err; val |= EXT_CSD_BUS_WIDTH_STROBE; } /* Switch card to DDR */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, val, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: switch to bus width for hs400 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Switch card to HS400 */ val = EXT_CSD_TIMING_HS400 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) { pr_err("%s: switch to hs400 failed, err:%d\n", mmc_hostname(host), err); return err; } /* Set host controller to HS400 timing and frequency */ mmc_set_timing(host, MMC_TIMING_MMC_HS400); mmc_set_bus_speed(card); if (card->ext_csd.strobe_support && host->ops->enhanced_strobe) { mmc_host_clk_hold(host); err = host->ops->enhanced_strobe(host); if (!err) host->ios.enhanced_strobe = true; mmc_host_clk_release(host); } else if ((host->caps2 & MMC_CAP2_HS400_POST_TUNING) && host->ops->execute_tuning) { mmc_host_clk_hold(host); err = host->ops->execute_tuning(host, MMC_SEND_TUNING_BLOCK_HS200); mmc_host_clk_release(host); if (err) pr_warn("%s: tuning execution failed\n", mmc_hostname(host)); } /* * Sending of CMD13 should be done after the host calibration * for enhanced_strobe or HS400 mode is completed. * Otherwise may see CMD13 timeouts or CRC errors. */ if (!send_status) { err = mmc_switch_status(card, false); if (err) goto out_err; } return 0; out_err: pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); return err; } int mmc_hs200_to_hs400(struct mmc_card *card) { return mmc_select_hs400(card); } int mmc_hs400_to_hs200(struct mmc_card *card) { struct mmc_host *host = card->host; bool send_status = true; unsigned int max_dtr; int err; u8 val; if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) send_status = false; /* Switch HS400 to HS DDR */ val = EXT_CSD_TIMING_HS; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_DDR52); /* Reduce frequency to HS */ max_dtr = card->ext_csd.hs_max_dtr; mmc_set_clock(host, max_dtr); if (!send_status) { err = mmc_switch_status(card, false); if (err) goto out_err; } /* Switch HS DDR to HS */ err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_HS); if (!send_status) { err = mmc_switch_status(card, false); if (err) goto out_err; } /* Switch HS to HS200 */ val = EXT_CSD_TIMING_HS200 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) goto out_err; mmc_set_timing(host, MMC_TIMING_MMC_HS200); if (!send_status) { err = mmc_switch_status(card, false); if (err) goto out_err; } mmc_set_bus_speed(card); return 0; out_err: pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); return err; } static void mmc_select_driver_type(struct mmc_card *card) { int card_drv_type, drive_strength, drv_type; card_drv_type = card->ext_csd.raw_driver_strength | mmc_driver_type_mask(0); drive_strength = mmc_select_drive_strength(card, card->ext_csd.hs200_max_dtr, card_drv_type, &drv_type); card->drive_strength = drive_strength; if (drv_type) mmc_set_driver_type(card->host, drv_type); } /* * For device supporting HS200 mode, the following sequence * should be done before executing the tuning process. * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) * 2. switch to HS200 mode * 3. set the clock to > 52Mhz and <=200MHz */ static int mmc_select_hs200(struct mmc_card *card) { struct mmc_host *host = card->host; bool send_status = true; unsigned int old_timing, old_signal_voltage; int err = -EINVAL; u8 val; old_signal_voltage = host->ios.signal_voltage; if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); /* If fails try again during next card power cycle */ if (err) return err; mmc_select_driver_type(card); if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) send_status = false; /* * Set the bus width(4 or 8) with host's support and * switch to HS200 mode if bus width is set successfully. */ err = mmc_select_bus_width(card); if (!IS_ERR_VALUE(err)) { val = EXT_CSD_TIMING_HS200 | card->drive_strength << EXT_CSD_DRV_STR_SHIFT; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, val, card->ext_csd.generic_cmd6_time, true, send_status, true); if (err) goto err; old_timing = host->ios.timing; mmc_set_timing(host, MMC_TIMING_MMC_HS200); if (!send_status) { /* * Since after switching to hs200, crc errors might * occur for commands send before tuning. * So ignore crc error for cmd13. */ err = mmc_switch_status(card, true); /* * mmc_select_timing() assumes timing has not changed if * it is a switch error. */ if (err == -EBADMSG) mmc_set_timing(host, old_timing); } } err: if (err) { /* fall back to the old signal voltage, if fails report error */ if (__mmc_set_signal_voltage(host, old_signal_voltage)) err = -EIO; pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), __func__, err); } return err; } static int mmc_reboot_notify(struct notifier_block *notify_block, unsigned long event, void *unused) { struct mmc_card *card = container_of( notify_block, struct mmc_card, reboot_notify); card->pon_type = (event != SYS_RESTART) ? MMC_LONG_PON : MMC_SHRT_PON; return NOTIFY_OK; } /* * Activate High Speed or HS200 mode if supported. */ static int mmc_select_timing(struct mmc_card *card) { int err = 0; if (!mmc_can_ext_csd(card)) goto bus_speed; /* For Enhance Strobe HS400 flow */ if (card->ext_csd.strobe_support && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && card->host->caps & MMC_CAP_8_BIT_DATA) err = mmc_select_hs400(card); else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) err = mmc_select_hs200(card); else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) err = mmc_select_hs(card); if (err && err != -EBADMSG) return err; if (err) { pr_warn("%s: switch to %s failed\n", mmc_card_hs(card) ? "high-speed" : (mmc_card_hs200(card) ? "hs200" : ""), mmc_hostname(card->host)); err = 0; } bus_speed: /* * Set the bus speed to the selected bus timing. * If timing is not selected, backward compatible is the default. */ mmc_set_bus_speed(card); return err; } /* * Execute tuning sequence to seek the proper bus operating * conditions for HS200 and HS400, which sends CMD21 to the device. */ static int mmc_hs200_tuning(struct mmc_card *card) { struct mmc_host *host = card->host; /* * Timing should be adjusted to the HS400 target * operation frequency for tuning process */ if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && host->ios.bus_width == MMC_BUS_WIDTH_8) mmc_set_timing(host, MMC_TIMING_MMC_HS400); return mmc_execute_tuning(card); } static int mmc_select_cmdq(struct mmc_card *card) { struct mmc_host *host = card->host; int ret = 0; if (!host->cmdq_ops) { pr_err("%s: host controller doesn't support CMDQ\n", mmc_hostname(host)); return 0; } ret = mmc_set_blocklen(card, MMC_CARD_CMDQ_BLK_SIZE); if (ret) goto out; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 1, card->ext_csd.generic_cmd6_time); if (ret) goto out; mmc_card_set_cmdq(card); mmc_host_clk_hold(card->host); ret = host->cmdq_ops->enable(card->host); if (ret) { mmc_host_clk_release(card->host); pr_err("%s: failed (%d) enabling CMDQ on host\n", mmc_hostname(host), ret); mmc_card_clr_cmdq(card); ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 0, card->ext_csd.generic_cmd6_time); goto out; } mmc_host_clk_release(card->host); pr_info_once("%s: CMDQ enabled on card\n", mmc_hostname(host)); out: return ret; } static int mmc_select_hs_ddr52(struct mmc_host *host) { int err; mmc_select_hs(host->card); err = mmc_select_bus_width(host->card); if (err < 0) { pr_err("%s: %s: select_bus_width failed(%d)\n", mmc_hostname(host), __func__, err); return err; } err = mmc_select_hs_ddr(host->card); mmc_set_clock(host, MMC_HIGH_52_MAX_DTR); return err; } /* * Scale down from HS400 to HS in order to allow frequency change. * This is needed for cards that doesn't support changing frequency in HS400 */ static int mmc_scale_low(struct mmc_host *host, unsigned long freq) { int err = 0; mmc_set_timing(host, MMC_TIMING_LEGACY); mmc_set_clock(host, MMC_HIGH_26_MAX_DTR); if (host->clk_scaling.lower_bus_speed_mode & MMC_SCALING_LOWER_DDR52_MODE) { err = mmc_select_hs_ddr52(host); if (err) pr_err("%s: %s: failed to switch to DDR52: err: %d\n", mmc_hostname(host), __func__, err); else return err; } err = mmc_select_hs(host->card); if (err) { pr_err("%s: %s: scaling low: failed (%d)\n", mmc_hostname(host), __func__, err); return err; } err = mmc_select_bus_width(host->card); if (err < 0) { pr_err("%s: %s: select_bus_width failed(%d)\n", mmc_hostname(host), __func__, err); return err; } mmc_set_clock(host, freq); return 0; } /* * Scale UP from HS to HS200/H400 */ static int mmc_scale_high(struct mmc_host *host) { int err = 0; if (mmc_card_ddr52(host->card)) { mmc_set_timing(host, MMC_TIMING_LEGACY); mmc_set_clock(host, MMC_HIGH_26_MAX_DTR); } if (!host->card->ext_csd.strobe_support) { if (!(host->card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)) { pr_err("%s: %s: card does not support HS200\n", mmc_hostname(host), __func__); WARN_ON(1); return -EPERM; } err = mmc_select_hs200(host->card); if (err) { pr_err("%s: %s: selecting HS200 failed (%d)\n", mmc_hostname(host), __func__, err); return err; } mmc_set_bus_speed(host->card); err = mmc_hs200_tuning(host->card); if (err) { pr_err("%s: %s: hs200 tuning failed (%d)\n", mmc_hostname(host), __func__, err); return err; } if (!(host->card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400)) { pr_debug("%s: card does not support HS400\n", mmc_hostname(host)); return 0; } } err = mmc_select_hs400(host->card); if (err) { pr_err("%s: %s: select hs400 failed (%d)\n", mmc_hostname(host), __func__, err); return err; } return err; } static int mmc_set_clock_bus_speed(struct mmc_card *card, unsigned long freq) { int err = 0; if (freq == MMC_HS200_MAX_DTR) err = mmc_scale_high(card->host); else err = mmc_scale_low(card->host, freq); return err; } static inline unsigned long mmc_ddr_freq_accommodation(unsigned long freq) { if (freq == MMC_HIGH_DDR_MAX_DTR) return freq; return freq/2; } /** * mmc_change_bus_speed() - Change MMC card bus frequency at runtime * @host: pointer to mmc host structure * @freq: pointer to desired frequency to be set * * Change the MMC card bus frequency at runtime after the card is * initialized. Callers are expected to make sure of the card's * state (DATA/RCV/TRANSFER) before changing the frequency at runtime. * * If the frequency to change is greater than max. supported by card, * *freq is changed to max. supported by card. If it is less than min. * supported by host, *freq is changed to min. supported by host. * Host is assumed to be calimed while calling this funciton. */ static int mmc_change_bus_speed(struct mmc_host *host, unsigned long *freq) { int err = 0; struct mmc_card *card; unsigned long actual_freq; card = host->card; if (!card || !freq) { err = -EINVAL; goto out; } actual_freq = *freq; WARN_ON(!host->claimed); /* * For scaling up/down HS400 we'll need special handling, * for other timings we can simply do clock frequency change */ if (mmc_card_hs400(card) || (!mmc_card_hs200(host->card) && *freq == MMC_HS200_MAX_DTR)) { err = mmc_set_clock_bus_speed(card, *freq); if (err) { pr_err("%s: %s: failed (%d)to set bus and clock speed (freq=%lu)\n", mmc_hostname(host), __func__, err, *freq); goto out; } } else if (mmc_card_hs200(host->card)) { mmc_set_clock(host, *freq); err = mmc_hs200_tuning(host->card); if (err) { pr_warn("%s: %s: tuning execution failed %d\n", mmc_hostname(card->host), __func__, err); mmc_set_clock(host, host->clk_scaling.curr_freq); } } else { if (mmc_card_ddr52(host->card)) actual_freq = mmc_ddr_freq_accommodation(*freq); mmc_set_clock(host, actual_freq); } out: return err; } /* * Handle the detection and initialisation of a card. * * In the case of a resume, "oldcard" will contain the card * we're trying to reinitialise. */ static int mmc_init_card(struct mmc_host *host, u32 ocr, struct mmc_card *oldcard) { struct mmc_card *card; int err; u32 cid[4]; u32 rocr; BUG_ON(!host); WARN_ON(!host->claimed); /* Set correct bus mode for MMC before attempting init */ if (!mmc_host_is_spi(host)) mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. * mmc_go_idle is needed for eMMC that are asleep */ reinit: mmc_go_idle(host); /* The extra bit indicates that we support high capacity */ err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); if (err) { pr_err("%s: %s: mmc_send_op_cond() fails %d\n", mmc_hostname(host), __func__, err); goto err; } /* * For SPI, enable CRC as appropriate. */ if (mmc_host_is_spi(host)) { err = mmc_spi_set_crc(host, use_spi_crc); if (err) { pr_err("%s: %s: mmc_spi_set_crc() fails %d\n", mmc_hostname(host), __func__, err); goto err; } } /* * Fetch CID from card. */ if (mmc_host_is_spi(host)) err = mmc_send_cid(host, cid); else err = mmc_all_send_cid(host, cid); if (err) { pr_err("%s: %s: mmc_send_cid() fails %d\n", mmc_hostname(host), __func__, err); goto err; } if (oldcard) { if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { err = -ENOENT; pr_err("%s: %s: CID memcmp failed %d\n", mmc_hostname(host), __func__, err); goto err; } card = oldcard; } else { /* * Allocate card structure. */ card = mmc_alloc_card(host, &mmc_type); if (IS_ERR(card)) { err = PTR_ERR(card); pr_err("%s: %s: no memory to allocate for card %d\n", mmc_hostname(host), __func__, err); goto err; } card->ocr = ocr; card->type = MMC_TYPE_MMC; card->rca = 1; memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); host->card = card; card->reboot_notify.notifier_call = mmc_reboot_notify; } /* * Call the optional HC's init_card function to handle quirks. */ if (host->ops->init_card) host->ops->init_card(host, card); /* * For native busses: set card RCA and quit open drain mode. */ if (!mmc_host_is_spi(host)) { err = mmc_set_relative_addr(card); if (err) { pr_err("%s: %s: mmc_set_relative_addr() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); } if (!oldcard) { /* * Fetch CSD from card. */ err = mmc_send_csd(card, card->raw_csd); if (err) { pr_err("%s: %s: mmc_send_csd() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } err = mmc_decode_csd(card); if (err) { pr_err("%s: %s: mmc_decode_csd() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } err = mmc_decode_cid(card); if (err) { pr_err("%s: %s: mmc_decode_cid() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } } /* * handling only for cards supporting DSR and hosts requesting * DSR configuration */ if (card->csd.dsr_imp && host->dsr_req) mmc_set_dsr(host); /* * Select card, as all following commands rely on that. */ if (!mmc_host_is_spi(host)) { err = mmc_select_card(card); if (err) { pr_err("%s: %s: mmc_select_card() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } } if (!oldcard) { /* Read extended CSD. */ err = mmc_read_ext_csd(card); if (err) { pr_err("%s: %s: mmc_read_ext_csd() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } /* If doing byte addressing, check if required to do sector * addressing. Handle the case of <2GB cards needing sector * addressing. See section 8.1 JEDEC Standard JED84-A441; * ocr register has bit 30 set for sector addressing. */ if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30))) mmc_card_set_blockaddr(card); /* Erase size depends on CSD and Extended CSD */ mmc_set_erase_size(card); if (card->ext_csd.sectors && (rocr & MMC_CARD_SECTOR_ADDR)) mmc_card_set_blockaddr(card); } /* * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF * bit. This bit will be lost every time after a reset or power off. */ if (card->ext_csd.partition_setting_completed || (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for ERASE_GRP_DEF fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } if (err) { err = 0; /* * Just disable enhanced area off & sz * will try to enable ERASE_GROUP_DEF * during next time reinit */ card->ext_csd.enhanced_area_offset = -EINVAL; card->ext_csd.enhanced_area_size = -EINVAL; } else { card->ext_csd.erase_group_def = 1; /* * enable ERASE_GRP_DEF successfully. * This will affect the erase size, so * here need to reset erase size */ mmc_set_erase_size(card); } } /* * Ensure eMMC user default partition is enabled */ if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, card->ext_csd.part_config, card->ext_csd.part_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for PART_CONFIG fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } card->part_curr = card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK; } /* * Enable power_off_notification byte in the ext_csd register */ if (card->ext_csd.rev >= 6) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_OFF_NOTIFICATION, EXT_CSD_POWER_ON, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for POWER_ON PON fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } /* * The err can be -EBADMSG or 0, * so check for success and update the flag */ if (!err) card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; } /* * Select timing interface */ err = mmc_select_timing(card); if (err) { pr_err("%s: %s: mmc_select_timing() fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } if (mmc_card_hs200(card)) { err = mmc_hs200_tuning(card); if (err) goto free_card; err = mmc_select_hs400(card); if (err) goto free_card; } else if (!mmc_card_hs400(card)) { /* Select the desired bus width optionally */ err = mmc_select_bus_width(card); if (!IS_ERR_VALUE(err) && mmc_card_hs(card)) { err = mmc_select_hs_ddr(card); if (err) goto free_card; } } card->clk_scaling_lowest = host->f_min; if ((card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400) || (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)) card->clk_scaling_highest = card->ext_csd.hs200_max_dtr; else if ((card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) || (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) card->clk_scaling_highest = card->ext_csd.hs_max_dtr; else card->clk_scaling_highest = card->csd.max_dtr; /* * Choose the power class with selected bus interface */ mmc_select_powerclass(card); /* * Enable HPI feature (if supported) */ if (card->ext_csd.hpi) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HPI_MGMT, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for HPI_MGMT fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } if (err) { pr_warn("%s: Enabling HPI failed\n", mmc_hostname(card->host)); card->ext_csd.hpi_en = 0; err = 0; } else { card->ext_csd.hpi_en = 1; } } /* * If cache size is higher than 0, this indicates * the existence of cache and it can be turned on. * If HPI is not supported then cache shouldn't be enabled. */ if (card->ext_csd.cache_size > 0) { if (card->ext_csd.hpi_en && (!(card->quirks & MMC_QUIRK_CACHE_DISABLE))) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: fail on CACHE_CTRL ON %d\n", mmc_hostname(host), __func__, err); goto free_card; } /* * Only if no error, cache is turned on successfully. */ if (err) { pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", mmc_hostname(card->host), err); card->ext_csd.cache_ctrl = 0; err = 0; } else { card->ext_csd.cache_ctrl = 1; } /* enable cache barrier if supported by the device */ if (card->ext_csd.cache_ctrl && card->ext_csd.barrier_support) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BARRIER_CTRL, 1, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for BARRIER_CTRL fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } if (err) { pr_warn("%s: Barrier is supported but failed to turn on (%d)\n", mmc_hostname(card->host), err); card->ext_csd.barrier_en = 0; err = 0; } else { card->ext_csd.barrier_en = 1; } } } else { /* * mmc standard doesn't say what is the card default * value for EXT_CSD_CACHE_CTRL. * Hence, cache may be enabled by default by * card vendors. * Thus, it is best to explicitly disable cache in case * we want to avoid cache. */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, 0, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: %s: fail on CACHE_CTRL OFF %d\n", mmc_hostname(host), __func__, err); goto free_card; } } } /* * The mandatory minimum values are defined for packed command. * read: 5, write: 3 */ if (card->ext_csd.max_packed_writes >= 3 && card->ext_csd.max_packed_reads >= 5 && host->caps2 & MMC_CAP2_PACKED_CMD) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_EXP_EVENTS_CTRL, EXT_CSD_PACKED_EVENT_EN, card->ext_csd.generic_cmd6_time); if (err && err != -EBADMSG) { pr_err("%s: %s: mmc_switch() for EXP_EVENTS_CTRL fails %d\n", mmc_hostname(host), __func__, err); goto free_card; } if (err) { pr_warn("%s: Enabling packed event failed\n", mmc_hostname(card->host)); card->ext_csd.packed_event_en = 0; err = 0; } else { card->ext_csd.packed_event_en = 1; } } if (!oldcard) { if ((host->caps2 & MMC_CAP2_PACKED_CMD) && (card->ext_csd.max_packed_writes > 0)) { /* * We would like to keep the statistics in an index * that equals the num of packed requests * (1 to max_packed_writes) */ card->wr_pack_stats.packing_events = kzalloc( (card->ext_csd.max_packed_writes + 1) * sizeof(*card->wr_pack_stats.packing_events), GFP_KERNEL); if (!card->wr_pack_stats.packing_events) { pr_err("%s: %s: no memory for packing events\n", mmc_hostname(host), __func__); goto free_card; } } } /* * Start auto bkops, if supported. * * Note: This leaves the possibility of having both manual and * auto bkops running in parallel. The runtime implementation * will allow this, but ignore bkops exceptions on the premises * that auto bkops will eventually kick in and the device will * handle bkops without START_BKOPS from the host. */ if (mmc_card_support_auto_bkops(card)) { /* * Ignore the return value of setting auto bkops. * If it failed, will run in backward compatible mode. */ (void)mmc_set_auto_bkops(card, true); } if (card->ext_csd.cmdq_support && (card->host->caps2 & MMC_CAP2_CMD_QUEUE)) { err = mmc_select_cmdq(card); if (err) { pr_err("%s: selecting CMDQ mode: failed: %d\n", mmc_hostname(card->host), err); card->ext_csd.cmdq_support = 0; oldcard = card; goto reinit; } } return 0; free_card: if (!oldcard) { host->card = NULL; mmc_remove_card(card); } err: return err; } static int mmc_can_sleepawake(struct mmc_host *host) { return host && (host->caps2 & MMC_CAP2_SLEEP_AWAKE) && host->card && (host->card->ext_csd.rev >= 3); } static int mmc_sleepawake(struct mmc_host *host, bool sleep) { struct mmc_command cmd = {0}; struct mmc_card *card = host->card; unsigned int timeout_ms; int err; if (!card) { pr_err("%s: %s: invalid card\n", mmc_hostname(host), __func__); return -EINVAL; } timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); if (card->ext_csd.rev >= 3 && card->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB) { u8 part_config = card->ext_csd.part_config; /* * If the last access before suspend is RPMB access, then * switch to default part config so that sleep command CMD5 * and deselect CMD7 can be sent to the card. */ part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (err) { pr_err("%s: %s: failed to switch to default part config %x\n", mmc_hostname(host), __func__, part_config); return err; } card->ext_csd.part_config = part_config; card->part_curr = card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK; } /* Re-tuning can't be done once the card is deselected */ mmc_retune_hold(host); if (sleep) { err = mmc_deselect_cards(host); if (err) goto out_release; } cmd.opcode = MMC_SLEEP_AWAKE; cmd.arg = card->rca << 16; if (sleep) cmd.arg |= 1 << 15; /* * If the max_busy_timeout of the host is specified, validate it against * the sleep cmd timeout. A failure means we need to prevent the host * from doing hw busy detection, which is done by converting to a R1 * response instead of a R1B. */ if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; } else { cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.busy_timeout = timeout_ms; } err = mmc_wait_for_cmd(host, &cmd, 0); if (err) goto out_release; /* * If the host does not wait while the card signals busy, then we will * will have to wait the sleep/awake timeout. Note, we cannot use the * SEND_STATUS command to poll the status because that command (and most * others) is invalid while the card sleeps. */ if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) mmc_delay(timeout_ms); if (!sleep) err = mmc_select_card(card); out_release: mmc_retune_release(host); return err; } static int mmc_can_poweroff_notify(const struct mmc_card *card) { return card && mmc_card_mmc(card) && (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); } static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) { unsigned int timeout = card->ext_csd.generic_cmd6_time; int err; /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ if (notify_type == EXT_CSD_POWER_OFF_LONG) timeout = card->ext_csd.power_off_longtime; err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_OFF_NOTIFICATION, notify_type, timeout, true, false, false); if (err) pr_err("%s: Power Off Notification timed out, %u\n", mmc_hostname(card->host), timeout); /* Disable the power off notification after the switch operation. */ card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; return err; } int mmc_send_pon(struct mmc_card *card) { int err = 0; struct mmc_host *host = card->host; if (!mmc_can_poweroff_notify(card)) goto out; mmc_get_card(card); if (card->pon_type & MMC_LONG_PON) err = mmc_poweroff_notify(host->card, EXT_CSD_POWER_OFF_LONG); else if (card->pon_type & MMC_SHRT_PON) err = mmc_poweroff_notify(host->card, EXT_CSD_POWER_OFF_SHORT); if (err) pr_warn("%s: error %d sending PON type %u", mmc_hostname(host), err, card->pon_type); mmc_put_card(card); out: return err; } /* * Host is being removed. Free up the current card. */ static void mmc_remove(struct mmc_host *host) { BUG_ON(!host); BUG_ON(!host->card); unregister_reboot_notifier(&host->card->reboot_notify); mmc_exit_clk_scaling(host); mmc_remove_card(host->card); mmc_claim_host(host); host->card = NULL; mmc_release_host(host); } /* * Card detection - card is alive. */ static int mmc_alive(struct mmc_host *host) { return mmc_send_status(host->card, NULL); } /* * Card detection callback from host. */ static void mmc_detect(struct mmc_host *host) { int err; BUG_ON(!host); BUG_ON(!host->card); mmc_get_card(host->card); /* * Just check if our card has been removed. */ err = _mmc_detect_card_removed(host); mmc_put_card(host->card); if (err) { mmc_remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); } } static int mmc_cache_card_ext_csd(struct mmc_host *host) { int err; u8 *ext_csd; struct mmc_card *card = host->card; err = mmc_get_ext_csd(card, &ext_csd); if (err || !ext_csd) { pr_err("%s: %s: mmc_get_ext_csd failed (%d)\n", mmc_hostname(host), __func__, err); return err; } /* only cache read/write fields that the sw changes */ card->ext_csd.raw_ext_csd_cmdq = ext_csd[EXT_CSD_CMDQ]; card->ext_csd.raw_ext_csd_cache_ctrl = ext_csd[EXT_CSD_CACHE_CTRL]; card->ext_csd.raw_ext_csd_bus_width = ext_csd[EXT_CSD_BUS_WIDTH]; card->ext_csd.raw_ext_csd_hs_timing = ext_csd[EXT_CSD_HS_TIMING]; kfree(ext_csd); return 0; } static int mmc_test_awake_ext_csd(struct mmc_host *host) { int err; u8 *ext_csd; struct mmc_card *card = host->card; err = mmc_get_ext_csd(card, &ext_csd); if (err || !ext_csd) { pr_err("%s: %s: mmc_get_ext_csd failed (%d)\n", mmc_hostname(host), __func__, err); return err; } /* only compare read/write fields that the sw changes */ pr_debug("%s: %s: type(cached:current) cmdq(%d:%d) cache_ctrl(%d:%d) bus_width (%d:%d) timing(%d:%d)\n", mmc_hostname(host), __func__, card->ext_csd.raw_ext_csd_cmdq, ext_csd[EXT_CSD_CMDQ], card->ext_csd.raw_ext_csd_cache_ctrl, ext_csd[EXT_CSD_CACHE_CTRL], card->ext_csd.raw_ext_csd_bus_width, ext_csd[EXT_CSD_BUS_WIDTH], card->ext_csd.raw_ext_csd_hs_timing, ext_csd[EXT_CSD_HS_TIMING]); err = !((card->ext_csd.raw_ext_csd_cmdq == ext_csd[EXT_CSD_CMDQ]) && (card->ext_csd.raw_ext_csd_cache_ctrl == ext_csd[EXT_CSD_CACHE_CTRL]) && (card->ext_csd.raw_ext_csd_bus_width == ext_csd[EXT_CSD_BUS_WIDTH]) && (card->ext_csd.raw_ext_csd_hs_timing == ext_csd[EXT_CSD_HS_TIMING])); kfree(ext_csd); return err; } static int _mmc_suspend(struct mmc_host *host, bool is_suspend) { int err = 0, ret; BUG_ON(!host); BUG_ON(!host->card); err = mmc_suspend_clk_scaling(host); if (err) { pr_err("%s: %s: fail to suspend clock scaling (%d)\n", mmc_hostname(host), __func__, err); if (host->card->cmdq_init) wake_up(&host->cmdq_ctx.wait); return err; } mmc_claim_host(host); if (mmc_card_suspended(host->card)) goto out; if (host->card->cmdq_init) { BUG_ON(host->cmdq_ctx.active_reqs); err = mmc_cmdq_halt(host, true); if (err) { pr_err("%s: halt: failed: %d\n", __func__, err); goto out; } mmc_host_clk_hold(host); host->cmdq_ops->disable(host, true); mmc_host_clk_release(host); } if (mmc_card_doing_bkops(host->card)) { err = mmc_stop_bkops(host->card); if (err) goto out_err; } err = mmc_flush_cache(host->card); if (err) goto out_err; if (mmc_can_sleepawake(host)) { /* * For caching host->ios to cached_ios we need to * make sure that clocks are not gated otherwise * cached_ios->clock will be 0. */ mmc_host_clk_hold(host); memcpy(&host->cached_ios, &host->ios, sizeof(host->cached_ios)); mmc_cache_card_ext_csd(host); err = mmc_sleepawake(host, true); mmc_host_clk_release(host); } else if (!mmc_host_is_spi(host)) { err = mmc_deselect_cards(host); } if (err) goto out_err; mmc_power_off(host); mmc_card_set_suspended(host->card); goto out; out_err: /* * In case of err let's put controller back in cmdq mode and unhalt * the controller. * We expect cmdq_enable and unhalt won't return any error * since it is anyway enabling few registers. */ if (host->card->cmdq_init) { mmc_host_clk_hold(host); ret = host->cmdq_ops->enable(host); if (ret) pr_err("%s: %s: enabling CMDQ mode failed (%d)\n", mmc_hostname(host), __func__, ret); mmc_host_clk_release(host); mmc_cmdq_halt(host, false); } out: /* Kick CMDQ thread to process any requests came in while suspending */ if (host->card->cmdq_init) wake_up(&host->cmdq_ctx.wait); mmc_release_host(host); if (err) mmc_resume_clk_scaling(host); return err; } static int mmc_partial_init(struct mmc_host *host) { int err = 0; struct mmc_card *card = host->card; pr_debug("%s: %s: starting partial init\n", mmc_hostname(host), __func__); mmc_set_bus_width(host, host->cached_ios.bus_width); mmc_set_timing(host, host->cached_ios.timing); mmc_set_clock(host, host->cached_ios.clock); mmc_set_bus_mode(host, host->cached_ios.bus_mode); mmc_host_clk_hold(host); if (mmc_card_hs400(card)) { if (card->ext_csd.strobe_support && host->ops->enhanced_strobe) err = host->ops->enhanced_strobe(host); else if (host->ops->execute_tuning) err = host->ops->execute_tuning(host, MMC_SEND_TUNING_BLOCK_HS200); } else if (mmc_card_hs200(card) && host->ops->execute_tuning) { err = host->ops->execute_tuning(host, MMC_SEND_TUNING_BLOCK_HS200); if (err) pr_warn("%s: %s: tuning execution failed (%d)\n", mmc_hostname(host), __func__, err); } /* * The ext_csd is read to make sure the card did not went through * Power-failure during sleep period. * A subset of the W/E_P, W/C_P register will be tested. In case * these registers values are different from the values that were * cached during suspend, we will conclude that a Power-failure occurred * and will do full initialization sequence. * In addition, full init sequence also transfer ext_csd before moving * to CMDQ mode which has a side affect of configuring SDHCI registers * which needed to be done before moving to CMDQ mode. The same * registers need to be configured for partial init. */ err = mmc_test_awake_ext_csd(host); if (err) { pr_debug("%s: %s: fail on ext_csd read (%d)\n", mmc_hostname(host), __func__, err); goto out; } pr_debug("%s: %s: reading and comparing ext_csd successful\n", mmc_hostname(host), __func__); if (card->ext_csd.cmdq_support && (card->host->caps2 & MMC_CAP2_CMD_QUEUE)) { err = mmc_select_cmdq(card); if (err) { pr_warn("%s: %s: enabling CMDQ mode failed (%d)\n", mmc_hostname(card->host), __func__, err); } } out: mmc_host_clk_release(host); pr_debug("%s: %s: done partial init (%d)\n", mmc_hostname(host), __func__, err); return err; } /* * Suspend callback */ static int mmc_suspend(struct mmc_host *host) { int err; ktime_t start = ktime_get(); MMC_TRACE(host, "%s: Enter\n", __func__); err = _mmc_suspend(host, true); if (!err) { pm_runtime_disable(&host->card->dev); pm_runtime_set_suspended(&host->card->dev); } trace_mmc_suspend(mmc_hostname(host), err, ktime_to_us(ktime_sub(ktime_get(), start))); MMC_TRACE(host, "%s: Exit err: %d\n", __func__, err); return err; } /* * This function tries to determine if the same card is still present * and, if so, restore all state to it. */ static int _mmc_resume(struct mmc_host *host) { int err = -ENOSYS; int retries; BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); if (!mmc_card_suspended(host->card)) { mmc_release_host(host); goto out; } mmc_power_up(host, host->card->ocr); retries = 3; while (retries) { if (mmc_can_sleepawake(host)) { err = mmc_sleepawake(host, false); if (!err) err = mmc_partial_init(host); if (err) pr_err("%s: %s: awake failed (%d), fallback to full init\n", mmc_hostname(host), __func__, err); } if (err) err = mmc_init_card(host, host->card->ocr, host->card); if (err) { pr_err("%s: MMC card re-init failed rc = %d (retries = %d)\n", mmc_hostname(host), err, retries); retries--; mmc_power_off(host); usleep_range(5000, 5500); mmc_power_up(host, host->card->ocr); mmc_select_voltage(host, host->card->ocr); continue; } break; } if (!err && mmc_card_cmdq(host->card)) { err = mmc_cmdq_halt(host, false); if (err) pr_err("%s: un-halt: failed: %d\n", __func__, err); } mmc_card_clr_suspended(host->card); mmc_release_host(host); err = mmc_resume_clk_scaling(host); if (err) pr_err("%s: %s: fail to resume clock scaling (%d)\n", mmc_hostname(host), __func__, err); out: return err; } /* * Callback for resume. */ static int mmc_resume(struct mmc_host *host) { int err = 0; ktime_t start = ktime_get(); MMC_TRACE(host, "%s: Enter\n", __func__); if (!(host->caps & MMC_CAP_RUNTIME_RESUME)) { err = _mmc_resume(host); pm_runtime_set_active(&host->card->dev); pm_runtime_mark_last_busy(&host->card->dev); } pm_runtime_enable(&host->card->dev); trace_mmc_resume(mmc_hostname(host), err, ktime_to_us(ktime_sub(ktime_get(), start))); MMC_TRACE(host, "%s: Exit err: %d\n", __func__, err); return err; } #define MAX_DEFER_SUSPEND_COUNTER 20 static bool mmc_process_bkops(struct mmc_host *host) { int err = 0; bool is_running = false; u32 status; mmc_claim_host(host); if (mmc_card_cmdq(host->card)) { BUG_ON(host->cmdq_ctx.active_reqs); err = mmc_cmdq_halt(host, true); if (err) { pr_err("%s: halt: failed: %d\n", __func__, err); goto unhalt; } } if (mmc_card_doing_bkops(host->card)) { /* check that manual bkops finished */ err = mmc_send_status(host->card, &status); if (err) { pr_err("%s: Get card status fail\n", __func__); goto unhalt; } if (R1_CURRENT_STATE(status) != R1_STATE_PRG) { mmc_card_clr_doing_bkops(host->card); goto unhalt; } } else { mmc_check_bkops(host->card); } if (host->card->bkops.needs_bkops && !mmc_card_support_auto_bkops(host->card)) mmc_start_manual_bkops(host->card); unhalt: if (mmc_card_cmdq(host->card)) { err = mmc_cmdq_halt(host, false); if (err) pr_err("%s: unhalt: failed: %d\n", __func__, err); } mmc_release_host(host); if (host->card->bkops.needs_bkops || mmc_card_doing_bkops(host->card)) { if (host->card->bkops.retry_counter++ < MAX_DEFER_SUSPEND_COUNTER) { host->card->bkops.needs_check = true; is_running = true; } else { host->card->bkops.retry_counter = 0; } } return is_running; } /* * Callback for runtime_suspend. */ static int mmc_runtime_suspend(struct mmc_host *host) { int err; ktime_t start = ktime_get(); if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) return 0; if (mmc_process_bkops(host)) { pm_runtime_mark_last_busy(&host->card->dev); pr_debug("%s: defered, need bkops\n", __func__); return -EBUSY; } MMC_TRACE(host, "%s\n", __func__); err = _mmc_suspend(host, true); if (err) pr_err("%s: error %d doing aggressive suspend\n", mmc_hostname(host), err); trace_mmc_runtime_suspend(mmc_hostname(host), err, ktime_to_us(ktime_sub(ktime_get(), start))); return err; } /* * Callback for runtime_resume. */ static int mmc_runtime_resume(struct mmc_host *host) { int err; ktime_t start = ktime_get(); if (!(host->caps & (MMC_CAP_AGGRESSIVE_PM | MMC_CAP_RUNTIME_RESUME))) return 0; MMC_TRACE(host, "%s\n", __func__); err = _mmc_resume(host); if (err) pr_err("%s: error %d doing aggressive resume\n", mmc_hostname(host), err); trace_mmc_runtime_resume(mmc_hostname(host), err, ktime_to_us(ktime_sub(ktime_get(), start))); return err; } int mmc_can_reset(struct mmc_card *card) { u8 rst_n_function; rst_n_function = card->ext_csd.rst_n_function; if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) return 0; return 1; } EXPORT_SYMBOL(mmc_can_reset); static int mmc_reset(struct mmc_host *host) { struct mmc_card *card = host->card; int ret; if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && mmc_can_reset(card)) { /* If the card accept RST_n signal, send it. */ mmc_set_clock(host, host->f_init); host->ops->hw_reset(host); /* Set initial state and call mmc_set_ios */ mmc_set_initial_state(host); } else { /* Do a brute force power cycle */ mmc_power_cycle(host, card->ocr); } /* Suspend clk scaling to avoid switching frequencies intermittently */ ret = mmc_suspend_clk_scaling(host); if (ret) { pr_err("%s: %s: fail to suspend clock scaling (%d)\n", mmc_hostname(host), __func__, ret); return ret; } ret = mmc_init_card(host, host->card->ocr, host->card); if (ret) { pr_err("%s: %s: mmc_init_card failed (%d)\n", mmc_hostname(host), __func__, ret); return ret; } ret = mmc_resume_clk_scaling(host); if (ret) pr_err("%s: %s: fail to resume clock scaling (%d)\n", mmc_hostname(host), __func__, ret); return ret; } static int mmc_shutdown(struct mmc_host *host) { struct mmc_card *card = host->card; /* * Exit clock scaling so that it doesn't kick in after * power off notification is sent */ if (host->caps2 & MMC_CAP2_CLK_SCALE) mmc_exit_clk_scaling(card->host); /* send power off notification */ if (mmc_card_mmc(card)) mmc_send_pon(card); return 0; } static int mmc_pre_hibernate(struct mmc_host *host) { int ret = 0; mmc_get_card(host->card); host->cached_caps2 = host->caps2; /* * Increase usage_count of card and host device till * hibernation is over. This will ensure they will not runtime suspend. */ pm_runtime_get_noresume(mmc_dev(host)); pm_runtime_get_noresume(&host->card->dev); if (!mmc_can_scale_clk(host)) goto out; /* * Suspend clock scaling and mask host capability so that * we will run in max frequency during: * 1. Hibernation preparation and image creation * 2. After finding hibernation image during reboot * 3. Once hibernation image is loaded and till hibernation * restore is complete. */ if (host->clk_scaling.enable) mmc_suspend_clk_scaling(host); host->caps2 &= ~MMC_CAP2_CLK_SCALE; host->clk_scaling.state = MMC_LOAD_HIGH; ret = mmc_clk_update_freq(host, host->card->clk_scaling_highest, host->clk_scaling.state); if (ret) pr_err("%s: %s: Setting clk frequency to max failed: %d\n", mmc_hostname(host), __func__, ret); out: mmc_host_clk_hold(host); mmc_put_card(host->card); return ret; } static int mmc_post_hibernate(struct mmc_host *host) { int ret = 0; mmc_get_card(host->card); if (!(host->cached_caps2 & MMC_CAP2_CLK_SCALE)) goto enable_pm; /* Enable the clock scaling and set the host capability */ host->caps2 |= MMC_CAP2_CLK_SCALE; if (!host->clk_scaling.enable) ret = mmc_resume_clk_scaling(host); if (ret) pr_err("%s: %s: Resuming clk scaling failed: %d\n", mmc_hostname(host), __func__, ret); enable_pm: /* * Reduce usage count of card and host device so that they may * runtime suspend. */ pm_runtime_put_noidle(&host->card->dev); pm_runtime_put_noidle(mmc_dev(host)); mmc_host_clk_release(host); mmc_put_card(host->card); return ret; } static const struct mmc_bus_ops mmc_ops = { .remove = mmc_remove, .detect = mmc_detect, .suspend = mmc_suspend, .resume = mmc_resume, .runtime_suspend = mmc_runtime_suspend, .runtime_resume = mmc_runtime_resume, .alive = mmc_alive, .change_bus_speed = mmc_change_bus_speed, .reset = mmc_reset, .shutdown = mmc_shutdown, .pre_hibernate = mmc_pre_hibernate, .post_hibernate = mmc_post_hibernate }; /* * Starting point for MMC card init. */ int mmc_attach_mmc(struct mmc_host *host) { int err; u32 ocr, rocr; BUG_ON(!host); WARN_ON(!host->claimed); /* Set correct bus mode for MMC before attempting attach */ if (!mmc_host_is_spi(host)) mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); err = mmc_send_op_cond(host, 0, &ocr); if (err) return err; mmc_attach_bus(host, &mmc_ops); if (host->ocr_avail_mmc) host->ocr_avail = host->ocr_avail_mmc; /* * We need to get OCR a different way for SPI. */ if (mmc_host_is_spi(host)) { err = mmc_spi_read_ocr(host, 1, &ocr); if (err) goto err; } rocr = mmc_select_voltage(host, ocr); /* * Can we support the voltage of the card? */ if (!rocr) { err = -EINVAL; goto err; } /* * Detect and init the card. */ err = mmc_init_card(host, rocr, NULL); if (err) goto err; mmc_release_host(host); err = mmc_add_card(host->card); if (err) goto remove_card; mmc_claim_host(host); err = mmc_init_clk_scaling(host); if (err) { mmc_release_host(host); goto remove_card; } register_reboot_notifier(&host->card->reboot_notify); return 0; remove_card: mmc_remove_card(host->card); mmc_claim_host(host); host->card = NULL; err: mmc_detach_bus(host); pr_err("%s: error %d whilst initialising MMC card\n", mmc_hostname(host), err); return err; }