/* * Goodix GT9xx touchscreen driver * * Copyright (C) 2010 - 2014 Goodix. Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be a reference * to you, when you are integrating the GOODiX's CTP IC into your system, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Version: 2.4 * Release Date: 2014/11/28 */ #include #include "gt9xx.h" #if GTP_ICS_SLOT_REPORT #include #endif static const char *goodix_ts_name = "goodix-ts"; static const char *goodix_input_phys = "input/ts"; static struct workqueue_struct *goodix_wq; struct i2c_client * i2c_connect_client = NULL; int gtp_rst_gpio; int gtp_int_gpio; static int gesture_enabled = 0; #if TOUCH_SYS static atomic_t gt_device_count; #endif u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff}; #if GTP_HAVE_TOUCH_KEY static const u16 touch_key_array[] = GTP_KEY_TAB; #define GTP_MAX_KEY_NUM (sizeof(touch_key_array)/sizeof(touch_key_array[0])) #if GTP_DEBUG_ON static const int key_codes[] = {KEY_HOME, KEY_BACK, KEY_MENU, KEY_SEARCH}; static const char *key_names[] = {"Key_Home", "Key_Back", "Key_Menu", "Key_Search"}; #endif #endif static s8 gtp_i2c_test(struct i2c_client *client); void gtp_reset_guitar(struct i2c_client *client, s32 ms); s32 gtp_send_cfg(struct i2c_client *client); void gtp_int_sync(s32 ms); static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id); static ssize_t gt91xx_config_read_proc(struct file *, char __user *, size_t, loff_t *); static ssize_t gt91xx_config_write_proc(struct file *, const char __user *, size_t, loff_t *); static struct proc_dir_entry *gt91xx_config_proc = NULL; static const struct file_operations config_proc_ops = { .owner = THIS_MODULE, .read = gt91xx_config_read_proc, .write = gt91xx_config_write_proc, }; static int gtp_register_powermanger(struct goodix_ts_data *ts); static int gtp_unregister_powermanger(struct goodix_ts_data *ts); #if GTP_CREATE_WR_NODE extern s32 init_wr_node(struct i2c_client*); extern void uninit_wr_node(void); #endif #if GTP_AUTO_UPDATE extern u8 gup_init_update_proc(struct goodix_ts_data *); #endif #if GTP_ESD_PROTECT static struct delayed_work gtp_esd_check_work; static struct workqueue_struct * gtp_esd_check_workqueue = NULL; static void gtp_esd_check_func(struct work_struct *); static s32 gtp_init_ext_watchdog(struct i2c_client *client); void gtp_esd_switch(struct i2c_client *, s32); #endif //*********** For GT9XXF Start **********// #if GTP_COMPATIBLE_MODE extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len); extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len); extern s32 gup_clk_calibration(void); extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode); extern u8 gup_check_fs_mounted(char *path_name); void gtp_recovery_reset(struct i2c_client *client); static s32 gtp_esd_recovery(struct i2c_client *client); s32 gtp_fw_startup(struct i2c_client *client); static s32 gtp_main_clk_proc(struct goodix_ts_data *ts); static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode); #endif //********** For GT9XXF End **********// #if GTP_GESTURE_WAKEUP typedef enum { DOZE_DISABLED = 0, DOZE_ENABLED = 1, DOZE_WAKEUP = 2, }DOZE_T; static DOZE_T doze_status = DOZE_DISABLED; static s8 gtp_enter_doze(struct goodix_ts_data *ts); #endif #ifdef GTP_CONFIG_OF int gtp_parse_dt_cfg(struct device *dev, u8 *cfg, int *cfg_len, u8 sid); #endif /******************************************************* Function: Read data from the i2c slave device. Input: client: i2c device. buf[0~1]: read start address. buf[2~len-1]: read data buffer. len: GTP_ADDR_LENGTH + read bytes count Output: numbers of i2c_msgs to transfer: 2: succeed, otherwise: failed *********************************************************/ s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len) { struct i2c_msg msgs[2]; s32 ret=-1; s32 retries = 0; GTP_DEBUG_FUNC(); msgs[0].flags = !I2C_M_RD; msgs[0].addr = client->addr; msgs[0].len = GTP_ADDR_LENGTH; msgs[0].buf = &buf[0]; //msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc. msgs[1].flags = I2C_M_RD; msgs[1].addr = client->addr; msgs[1].len = len - GTP_ADDR_LENGTH; msgs[1].buf = &buf[GTP_ADDR_LENGTH]; //msgs[1].scl_rate = 300 * 1000; while(retries < 5) { ret = i2c_transfer(client->adapter, msgs, 2); if(ret == 2)break; retries++; } if((retries >= 5)) { #if GTP_COMPATIBLE_MODE struct goodix_ts_data *ts = i2c_get_clientdata(client); #endif #if GTP_GESTURE_WAKEUP // reset chip would quit doze mode if (DOZE_ENABLED == doze_status) { return ret; } #endif GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret); #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { gtp_recovery_reset(client); } else #endif { gtp_reset_guitar(client, 10); } } return ret; } /******************************************************* Function: Write data to the i2c slave device. Input: client: i2c device. buf[0~1]: write start address. buf[2~len-1]: data buffer len: GTP_ADDR_LENGTH + write bytes count Output: numbers of i2c_msgs to transfer: 1: succeed, otherwise: failed *********************************************************/ s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len) { struct i2c_msg msg; s32 ret = -1; s32 retries = 0; GTP_DEBUG_FUNC(); msg.flags = !I2C_M_RD; msg.addr = client->addr; msg.len = len; msg.buf = buf; //msg.scl_rate = 300 * 1000; // for Rockchip, etc while(retries < 5) { ret = i2c_transfer(client->adapter, &msg, 1); if (ret == 1)break; retries++; } if((retries >= 5)) { #if GTP_COMPATIBLE_MODE struct goodix_ts_data *ts = i2c_get_clientdata(client); #endif #if GTP_GESTURE_WAKEUP if (DOZE_ENABLED == doze_status) { return ret; } #endif GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret); #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { gtp_recovery_reset(client); } else #endif { gtp_reset_guitar(client, 10); } } return ret; } /******************************************************* Function: i2c read twice, compare the results Input: client: i2c device addr: operate address rxbuf: read data to store, if compare successful len: bytes to read Output: FAIL: read failed SUCCESS: read successful *********************************************************/ s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len) { u8 buf[16] = {0}; u8 confirm_buf[16] = {0}; u8 retry = 0; while (retry++ < 3) { memset(buf, 0xAA, 16); buf[0] = (u8)(addr >> 8); buf[1] = (u8)(addr & 0xFF); gtp_i2c_read(client, buf, len + 2); memset(confirm_buf, 0xAB, 16); confirm_buf[0] = (u8)(addr >> 8); confirm_buf[1] = (u8)(addr & 0xFF); gtp_i2c_read(client, confirm_buf, len + 2); if (!memcmp(buf, confirm_buf, len+2)) { memcpy(rxbuf, confirm_buf+2, len); return SUCCESS; } } GTP_ERROR("I2C read 0x%04X, %d bytes, double check failed!", addr, len); return FAIL; } /******************************************************* Function: Send config. Input: client: i2c device. Output: result of i2c write operation. 1: succeed, otherwise: failed *********************************************************/ s32 gtp_send_cfg(struct i2c_client *client) { s32 ret = 2; #if GTP_DRIVER_SEND_CFG s32 retry = 0; struct goodix_ts_data *ts = i2c_get_clientdata(client); if (ts->pnl_init_error) { GTP_INFO("Error occured in init_panel, no config sent"); return 0; } GTP_INFO("Driver send config."); for (retry = 0; retry < 5; retry++) { ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH); if (ret > 0) { break; } } #endif return ret; } /******************************************************* Function: Disable irq function Input: ts: goodix i2c_client private data Output: None. *********************************************************/ void gtp_irq_disable(struct goodix_ts_data *ts) { unsigned long irqflags; GTP_DEBUG_FUNC(); spin_lock_irqsave(&ts->irq_lock, irqflags); if ((!ts->irq_is_disable)&&(!ts->irq_is_free)) { ts->irq_is_disable = 1; disable_irq_nosync(ts->client->irq); } spin_unlock_irqrestore(&ts->irq_lock, irqflags); } /******************************************************* Function: Enable irq function Input: ts: goodix i2c_client private data Output: None. *********************************************************/ void gtp_irq_enable(struct goodix_ts_data *ts) { unsigned long irqflags = 0; GTP_DEBUG_FUNC(); spin_lock_irqsave(&ts->irq_lock, irqflags); if ((ts->irq_is_disable)&&(!ts->irq_is_free)) { enable_irq(ts->client->irq); ts->irq_is_disable = 0; } spin_unlock_irqrestore(&ts->irq_lock, irqflags); } /******************************************************* Function: Free irq function Input: ts: goodix i2c_client private data Output: None. *********************************************************/ void gtp_irq_free(struct goodix_ts_data *ts) { GTP_DEBUG_FUNC(); if (!ts->irq_is_disable) gtp_irq_disable(ts); if(!ts->irq_is_free){ ts->irq_is_free = 1; free_irq(ts->client->irq, ts); ts->irq_is_disable = 1; } } /******************************************************* Function: Request irq function Input: ts: goodix i2c_client private data Output: None. *********************************************************/ void gtp_irq_request(struct goodix_ts_data *ts) { const u8 irq_table[] = GTP_IRQ_TAB; int ret; GTP_DEBUG_FUNC(); if (ts->irq_is_free) { ret = request_irq(ts->client->irq, goodix_ts_irq_handler, irq_table[ts->int_trigger_type], ts->client->name, ts); ts->irq_is_disable = 0; ts->irq_is_free = 0; } } /******************************************************* Function: Report touch point event Input: ts: goodix i2c_client private data id: trackId x: input x coordinate y: input y coordinate w: input pressure Output: None. *********************************************************/ static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w) { #if GTP_CHANGE_X2Y GTP_SWAP(x, y); #endif #if GTP_ICS_SLOT_REPORT input_mt_slot(ts->input_dev, id); input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x); input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y); input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w); input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w); #else input_report_key(ts->input_dev, BTN_TOUCH, 1); input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x); input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y); input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w); input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w); input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id); input_mt_sync(ts->input_dev); #endif GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w); } /******************************************************* Function: Report touch release event Input: ts: goodix i2c_client private data Output: None. *********************************************************/ static void gtp_touch_up(struct goodix_ts_data* ts, s32 id) { #if GTP_ICS_SLOT_REPORT input_mt_slot(ts->input_dev, id); input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1); GTP_DEBUG("Touch id[%2d] release!", id); #else input_report_key(ts->input_dev, BTN_TOUCH, 0); #endif } #if GTP_WITH_PEN static void gtp_pen_init(struct goodix_ts_data *ts) { s32 ret = 0; GTP_INFO("Request input device for pen/stylus."); ts->pen_dev = input_allocate_device(); if (ts->pen_dev == NULL) { GTP_ERROR("Failed to allocate input device for pen/stylus."); return; } ts->pen_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ; #if GTP_ICS_SLOT_REPORT input_mt_init_slots(ts->pen_dev, 16, 0); // in case of "out of memory" #else ts->pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif set_bit(BTN_TOOL_PEN, ts->pen_dev->keybit); set_bit(INPUT_PROP_DIRECT, ts->pen_dev->propbit); //set_bit(INPUT_PROP_POINTER, ts->pen_dev->propbit); #if GTP_PEN_HAVE_BUTTON input_set_capability(ts->pen_dev, EV_KEY, BTN_STYLUS); input_set_capability(ts->pen_dev, EV_KEY, BTN_STYLUS2); #endif input_set_abs_params(ts->pen_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0); input_set_abs_params(ts->pen_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0); input_set_abs_params(ts->pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0); input_set_abs_params(ts->pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(ts->pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0); ts->pen_dev->name = "goodix-pen"; ts->pen_dev->id.bustype = BUS_I2C; ret = input_register_device(ts->pen_dev); if (ret) { GTP_ERROR("Register %s input device failed", ts->pen_dev->name); return; } } static void gtp_pen_down(s32 x, s32 y, s32 w, s32 id) { struct goodix_ts_data *ts = i2c_get_clientdata(i2c_connect_client); #if GTP_CHANGE_X2Y GTP_SWAP(x, y); #endif input_report_key(ts->pen_dev, BTN_TOOL_PEN, 1); #if GTP_ICS_SLOT_REPORT input_mt_slot(ts->pen_dev, id); input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, id); input_report_abs(ts->pen_dev, ABS_MT_POSITION_X, x); input_report_abs(ts->pen_dev, ABS_MT_POSITION_Y, y); input_report_abs(ts->pen_dev, ABS_MT_PRESSURE, w); input_report_abs(ts->pen_dev, ABS_MT_TOUCH_MAJOR, w); #else input_report_key(ts->pen_dev, BTN_TOUCH, 1); input_report_abs(ts->pen_dev, ABS_MT_POSITION_X, x); input_report_abs(ts->pen_dev, ABS_MT_POSITION_Y, y); input_report_abs(ts->pen_dev, ABS_MT_PRESSURE, w); input_report_abs(ts->pen_dev, ABS_MT_TOUCH_MAJOR, w); input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, id); input_mt_sync(ts->pen_dev); #endif GTP_DEBUG("(%d)(%d, %d)[%d]", id, x, y, w); } static void gtp_pen_up(s32 id) { struct goodix_ts_data *ts = i2c_get_clientdata(i2c_connect_client); input_report_key(ts->pen_dev, BTN_TOOL_PEN, 0); #if GTP_ICS_SLOT_REPORT input_mt_slot(ts->pen_dev, id); input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, -1); #else input_report_key(ts->pen_dev, BTN_TOUCH, 0); #endif } #endif /******************************************************* Function: Goodix touchscreen work function Input: work: work struct of goodix_workqueue Output: None. *********************************************************/ static void goodix_ts_work_func(struct work_struct *work) { u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0}; u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF}; u8 touch_num = 0; u8 finger = 0; static u16 pre_touch = 0; static u8 pre_key = 0; #if GTP_WITH_PEN u8 pen_active = 0; static u8 pre_pen = 0; #endif u8 key_value = 0; u8* coor_data = NULL; s32 input_x = 0; s32 input_y = 0; s32 input_w = 0; s32 id = 0; s32 i = 0; s32 ret = -1; struct goodix_ts_data *ts = NULL; #if GTP_COMPATIBLE_MODE u8 rqst_buf[3] = {0x80, 0x43}; // for GT9XXF #endif #if GTP_GESTURE_WAKEUP u8 doze_buf[3] = {0x81, 0x4B}; #endif GTP_DEBUG_FUNC(); ts = container_of(work, struct goodix_ts_data, work); if (ts->enter_update) { return; } #if GTP_GESTURE_WAKEUP if (DOZE_DISABLED != doze_status) { ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3); GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]); if (ret > 0) { if ((doze_buf[2] == 'a') || (doze_buf[2] == 'b') || (doze_buf[2] == 'c') || (doze_buf[2] == 'd') || (doze_buf[2] == 'e') || (doze_buf[2] == 'g') || (doze_buf[2] == 'h') || (doze_buf[2] == 'm') || (doze_buf[2] == 'o') || (doze_buf[2] == 'q') || (doze_buf[2] == 's') || (doze_buf[2] == 'v') || (doze_buf[2] == 'w') || (doze_buf[2] == 'y') || (doze_buf[2] == 'z') || (doze_buf[2] == 0x5E) /* ^ */ ) { if (doze_buf[2] != 0x5E) { GTP_INFO("Wakeup by gesture(%c), light up the screen!", doze_buf[2]); } else { GTP_INFO("Wakeup by gesture(^), light up the screen!"); } doze_status = DOZE_WAKEUP; input_report_key(ts->input_dev, KEY_POWER, 1); input_sync(ts->input_dev); input_report_key(ts->input_dev, KEY_POWER, 0); input_sync(ts->input_dev); // clear 0x814B doze_buf[2] = 0x00; gtp_i2c_write(i2c_connect_client, doze_buf, 3); } else if ( (doze_buf[2] == 0xAA) || (doze_buf[2] == 0xBB) || (doze_buf[2] == 0xAB) || (doze_buf[2] == 0xBA) ) { char *direction[4] = {"Right", "Down", "Up", "Left"}; u8 type = ((doze_buf[2] & 0x0F) - 0x0A) + (((doze_buf[2] >> 4) & 0x0F) - 0x0A) * 2; GTP_INFO("%s slide to light up the screen!", direction[type]); doze_status = DOZE_WAKEUP; input_report_key(ts->input_dev, KEY_POWER, 1); input_sync(ts->input_dev); input_report_key(ts->input_dev, KEY_POWER, 0); input_sync(ts->input_dev); // clear 0x814B doze_buf[2] = 0x00; gtp_i2c_write(i2c_connect_client, doze_buf, 3); } else if (0xCC == doze_buf[2]) { GTP_INFO("Double click to light up the screen!"); doze_status = DOZE_WAKEUP; input_report_key(ts->input_dev, KEY_GESTURE_DT, 1); input_sync(ts->input_dev); input_report_key(ts->input_dev, KEY_GESTURE_DT, 0); input_sync(ts->input_dev); // clear 0x814B doze_buf[2] = 0x00; gtp_i2c_write(i2c_connect_client, doze_buf, 3); } else { // clear 0x814B doze_buf[2] = 0x00; gtp_i2c_write(i2c_connect_client, doze_buf, 3); gtp_enter_doze(ts); } } if (ts->use_irq) { gtp_irq_enable(ts); } return; } #endif ret = gtp_i2c_read(ts->client, point_data, 12); if (ret < 0) { GTP_ERROR("I2C transfer error. errno:%d\n ", ret); if (ts->use_irq) { gtp_irq_enable(ts); } return; } finger = point_data[GTP_ADDR_LENGTH]; #if GTP_COMPATIBLE_MODE // GT9XXF reques event if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type)) // request arrived { ret = gtp_i2c_read(ts->client, rqst_buf, 3); if (ret < 0) { GTP_ERROR("Read request status error!"); goto exit_work_func; } switch (rqst_buf[2]) { case GTP_RQST_CONFIG: GTP_INFO("Request for config."); ret = gtp_send_cfg(ts->client); if (ret < 0) { GTP_ERROR("Request for config unresponded!"); } else { rqst_buf[2] = GTP_RQST_RESPONDED; gtp_i2c_write(ts->client, rqst_buf, 3); GTP_INFO("Request for config responded!"); } break; case GTP_RQST_BAK_REF: GTP_INFO("Request for backup reference."); ts->rqst_processing = 1; ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND); if (SUCCESS == ret) { rqst_buf[2] = GTP_RQST_RESPONDED; gtp_i2c_write(ts->client, rqst_buf, 3); ts->rqst_processing = 0; GTP_INFO("Request for backup reference responded!"); } else { GTP_ERROR("Requeset for backup reference unresponed!"); } break; case GTP_RQST_RESET: GTP_INFO("Request for reset."); gtp_recovery_reset(ts->client); break; case GTP_RQST_MAIN_CLOCK: GTP_INFO("Request for main clock."); ts->rqst_processing = 1; ret = gtp_main_clk_proc(ts); if (FAIL == ret) { GTP_ERROR("Request for main clock unresponded!"); } else { GTP_INFO("Request for main clock responded!"); rqst_buf[2] = GTP_RQST_RESPONDED; gtp_i2c_write(ts->client, rqst_buf, 3); ts->rqst_processing = 0; ts->clk_chk_fs_times = 0; } break; default: GTP_INFO("Undefined request: 0x%02X", rqst_buf[2]); rqst_buf[2] = GTP_RQST_RESPONDED; gtp_i2c_write(ts->client, rqst_buf, 3); break; } } #endif if (finger == 0x00) { if (ts->use_irq) { gtp_irq_enable(ts); } return; } if((finger & 0x80) == 0) { goto exit_work_func; } touch_num = finger & 0x0f; if (touch_num > GTP_MAX_TOUCH) { goto exit_work_func; } if (touch_num > 1) { u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff}; ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1)); memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1)); } #if (GTP_HAVE_TOUCH_KEY || GTP_PEN_HAVE_BUTTON) key_value = point_data[3 + 8 * touch_num]; if(key_value || pre_key) { #if GTP_PEN_HAVE_BUTTON if (key_value == 0x40) { GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Down."); input_report_key(ts->pen_dev, BTN_STYLUS, 1); input_report_key(ts->pen_dev, BTN_STYLUS2, 1); pen_active = 1; } else if (key_value == 0x10) { GTP_DEBUG("BTN_STYLUS Down, BTN_STYLUS2 Up."); input_report_key(ts->pen_dev, BTN_STYLUS, 1); input_report_key(ts->pen_dev, BTN_STYLUS2, 0); pen_active = 1; } else if (key_value == 0x20) { GTP_DEBUG("BTN_STYLUS Up, BTN_STYLUS2 Down."); input_report_key(ts->pen_dev, BTN_STYLUS, 0); input_report_key(ts->pen_dev, BTN_STYLUS2, 1); pen_active = 1; } else { GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Up."); input_report_key(ts->pen_dev, BTN_STYLUS, 0); input_report_key(ts->pen_dev, BTN_STYLUS2, 0); if ( (pre_key == 0x40) || (pre_key == 0x20) || (pre_key == 0x10) ) { pen_active = 1; } } if (pen_active) { touch_num = 0; // shield pen point //pre_touch = 0; // clear last pen status } #endif #if GTP_HAVE_TOUCH_KEY if (!pre_touch) { for (i = 0; i < GTP_MAX_KEY_NUM; i++) { #if GTP_DEBUG_ON for (ret = 0; ret < 4; ++ret) { if (key_codes[ret] == touch_key_array[i]) { GTP_DEBUG("Key: %s %s", key_names[ret], (key_value & (0x01 << i)) ? "Down" : "Up"); break; } } #endif input_report_key(ts->input_dev, touch_key_array[i], key_value & (0x01<pen_dev); } else #endif { input_sync(ts->input_dev); } exit_work_func: if(!ts->gtp_rawdiff_mode) { ret = gtp_i2c_write(ts->client, end_cmd, 3); if (ret < 0) { GTP_INFO("I2C write end_cmd error!"); } } if (ts->use_irq) { gtp_irq_enable(ts); } } /******************************************************* Function: Timer interrupt service routine for polling mode. Input: timer: timer struct pointer Output: Timer work mode. HRTIMER_NORESTART: no restart mode *********************************************************/ static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer) { struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer); GTP_DEBUG_FUNC(); queue_work(goodix_wq, &ts->work); hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL); return HRTIMER_NORESTART; } /******************************************************* Function: External interrupt service routine for interrupt mode. Input: irq: interrupt number. dev_id: private data pointer Output: Handle Result. IRQ_HANDLED: interrupt handled successfully *********************************************************/ static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id) { struct goodix_ts_data *ts = dev_id; GTP_DEBUG_FUNC(); gtp_irq_disable(ts); queue_work(goodix_wq, &ts->work); return IRQ_HANDLED; } /******************************************************* Function: Synchronization. Input: ms: synchronization time in millisecond. Output: None. *******************************************************/ void gtp_int_sync(s32 ms) { GTP_GPIO_OUTPUT(gtp_int_gpio, 0); msleep(ms); GTP_GPIO_AS_INT(gtp_int_gpio); } /******************************************************* Function: Reset chip. Input: ms: reset time in millisecond Output: None. *******************************************************/ void gtp_reset_guitar(struct i2c_client *client, s32 ms) { #if GTP_COMPATIBLE_MODE struct goodix_ts_data *ts = i2c_get_clientdata(client); #endif GTP_DEBUG_FUNC(); GTP_INFO("Guitar reset"); GTP_GPIO_OUTPUT(gtp_rst_gpio, 0); // begin select I2C slave addr msleep(ms); // T2: > 10ms // HIGH: 0x28/0x29, LOW: 0xBA/0xBB GTP_GPIO_OUTPUT(gtp_int_gpio, client->addr == 0x14); msleep(2); // T3: > 100us GTP_GPIO_OUTPUT(gtp_rst_gpio, 1); msleep(6); // T4: > 5ms GTP_GPIO_AS_INPUT(gtp_rst_gpio); // end select I2C slave addr #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { return; } #endif gtp_int_sync(50); #if GTP_ESD_PROTECT gtp_init_ext_watchdog(client); #endif } #if GTP_GESTURE_WAKEUP /******************************************************* Function: Enter doze mode for sliding wakeup. Input: ts: goodix tp private data Output: 1: succeed, otherwise failed *******************************************************/ static s8 gtp_enter_doze(struct goodix_ts_data *ts) { s8 ret = -1; s8 retry = 0; u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8}; GTP_DEBUG_FUNC(); GTP_DEBUG("Entering gesture mode."); while(retry++ < 5) { i2c_control_buf[0] = 0x80; i2c_control_buf[1] = 0x46; ret = gtp_i2c_write(ts->client, i2c_control_buf, 3); if (ret < 0) { GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry); continue; } i2c_control_buf[0] = 0x80; i2c_control_buf[1] = 0x40; ret = gtp_i2c_write(ts->client, i2c_control_buf, 3); if (ret > 0) { doze_status = DOZE_ENABLED; GTP_INFO("Gesture mode enabled."); return ret; } msleep(10); } GTP_ERROR("GTP send gesture cmd failed."); return ret; } #endif /******************************************************* Function: Enter sleep mode. Input: ts: private data. Output: Executive outcomes. 1: succeed, otherwise failed. *******************************************************/ static s8 gtp_enter_sleep(struct goodix_ts_data * ts) { s8 ret = -1; s8 retry = 0; u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5}; #if GTP_COMPATIBLE_MODE u8 status_buf[3] = {0x80, 0x44}; #endif GTP_DEBUG_FUNC(); #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { // GT9XXF: host interact with ic ret = gtp_i2c_read(ts->client, status_buf, 3); if (ret < 0) { GTP_ERROR("failed to get backup-reference status"); } if (status_buf[2] & 0x80) { ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE); if (FAIL == ret) { GTP_ERROR("failed to store bak_ref"); } } } #endif GTP_GPIO_OUTPUT(gtp_int_gpio, 0); msleep(5); while(retry++ < 5) { ret = gtp_i2c_write(ts->client, i2c_control_buf, 3); if (ret > 0) { GTP_INFO("GTP enter sleep!"); return ret; } msleep(10); } GTP_ERROR("GTP send sleep cmd failed."); return ret; } /******************************************************* Function: Wakeup from sleep. Input: ts: private data. Output: Executive outcomes. >0: succeed, otherwise: failed. *******************************************************/ static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts) { u8 retry = 0; s8 ret = -1; GTP_DEBUG_FUNC(); #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { u8 opr_buf[3] = {0x41, 0x80}; GTP_GPIO_OUTPUT(gtp_int_gpio, 1); msleep(5); for (retry = 0; retry < 10; ++retry) { // hold ss51 & dsp opr_buf[2] = 0x0C; ret = gtp_i2c_write(ts->client, opr_buf, 3); if (FAIL == ret) { GTP_ERROR("failed to hold ss51 & dsp!"); continue; } opr_buf[2] = 0x00; ret = gtp_i2c_read(ts->client, opr_buf, 3); if (FAIL == ret) { GTP_ERROR("failed to get ss51 & dsp status!"); continue; } if (0x0C != opr_buf[2]) { GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1); continue; } GTP_DEBUG("ss51 & dsp confirmed hold"); ret = gtp_fw_startup(ts->client); if (FAIL == ret) { GTP_ERROR("failed to startup GT9XXF, process recovery"); gtp_esd_recovery(ts->client); } break; } if (retry >= 10) { GTP_ERROR("failed to wakeup, processing esd recovery"); gtp_esd_recovery(ts->client); } else { GTP_INFO("GT9XXF gtp wakeup success"); } return ret; } #endif #if GTP_POWER_CTRL_SLEEP while(retry++ < 5) { gtp_reset_guitar(ts->client, 20); GTP_INFO("GTP wakeup sleep."); return 1; } #else while(retry++ < 10) { #if GTP_GESTURE_WAKEUP if(gesture_enabled){ if (DOZE_WAKEUP != doze_status) { GTP_INFO("Powerkey wakeup."); } else { GTP_INFO("Gesture wakeup."); } doze_status = DOZE_DISABLED; // gtp_irq_disable(ts); gtp_irq_free(ts); gtp_reset_guitar(ts->client, 10); // gtp_irq_enable(ts); }else { while(retry++ < 5) { gtp_reset_guitar(ts->client, 20); GTP_INFO("GTP wakeup sleep."); return 1; } } #else GTP_GPIO_OUTPUT(gtp_int_gpio, 1); gtp_reset_guitar(ts->client, 20); msleep(5); #endif ret = gtp_i2c_test(ts->client); if (ret > 0) { GTP_INFO("GTP wakeup sleep."); #if (!GTP_GESTURE_WAKEUP) { gtp_int_sync(25); #if GTP_ESD_PROTECT gtp_init_ext_watchdog(ts->client); #endif } #endif return ret; } gtp_reset_guitar(ts->client, 20); } #endif GTP_ERROR("GTP wakeup sleep failed."); return ret; } /******************************************************* Function: Initialize gtp. Input: ts: goodix private data Output: Executive outcomes. 0: succeed, otherwise: failed *******************************************************/ static s32 gtp_init_panel(struct goodix_ts_data *ts) { s32 ret = -1; #if GTP_DRIVER_SEND_CFG s32 i = 0; u8 check_sum = 0; u8 opr_buf[16] = {0}; u8 sensor_id = 0; u8 drv_cfg_version; u8 flash_cfg_version; /* if defined CONFIG_OF, parse config data from dtsi * else parse config data form header file. */ #ifndef GTP_CONFIG_OF u8 cfg_info_group0[] = CTP_CFG_GROUP0; u8 cfg_info_group1[] = CTP_CFG_GROUP1; u8 cfg_info_group2[] = CTP_CFG_GROUP2; u8 cfg_info_group3[] = CTP_CFG_GROUP3; u8 cfg_info_group4[] = CTP_CFG_GROUP4; u8 cfg_info_group5[] = CTP_CFG_GROUP5; u8 *send_cfg_buf[] = {cfg_info_group0,cfg_info_group1, cfg_info_group2, cfg_info_group3, cfg_info_group4, cfg_info_group5}; u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group0), CFG_GROUP_LEN(cfg_info_group1), CFG_GROUP_LEN(cfg_info_group2), CFG_GROUP_LEN(cfg_info_group3), CFG_GROUP_LEN(cfg_info_group4), CFG_GROUP_LEN(cfg_info_group5)}; GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d", cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3], cfg_info_len[4], cfg_info_len[5]); #endif #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { ts->fw_error = 0; } else #endif { /* check firmware */ ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1); if (SUCCESS == ret) { if (opr_buf[0] != 0xBE) { ts->fw_error = 1; GTP_ERROR("Firmware error, no config sent!"); } } } /* read sensor id */ #if GTP_COMPATIBLE_MODE msleep(50); #endif ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1); if (SUCCESS == ret) { if (sensor_id >= 0x06) { GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id); ts->pnl_init_error = 1; return -1; } } else { GTP_ERROR("Failed to get sensor_id, No config sent!"); ts->pnl_init_error = 1; return -1; } GTP_INFO("Sensor_ID: %d", sensor_id); /* parse config data*/ #ifdef GTP_CONFIG_OF GTP_DEBUG("Get config data from device tree."); ret = gtp_parse_dt_cfg(&ts->client->dev, &config[GTP_ADDR_LENGTH], &ts->gtp_cfg_len, sensor_id); if (ret < 0) { GTP_ERROR("Failed to parse config data form device tree."); ts->pnl_init_error = 1; return -1; } #else GTP_DEBUG("Get config data from header file."); if ((!cfg_info_len[1]) && (!cfg_info_len[2]) && (!cfg_info_len[3]) && (!cfg_info_len[4]) && (!cfg_info_len[5])) { sensor_id = 0; } ts->gtp_cfg_len = cfg_info_len[sensor_id]; memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH); memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len); #endif GTP_INFO("Config group%d used,length: %d", sensor_id, ts->gtp_cfg_len); if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH) { GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id, ts->gtp_cfg_len); ts->pnl_init_error = 1; return -1; } #if GTP_COMPATIBLE_MODE if (ts->chip_type != CHIP_TYPE_GT9F) #endif { ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1); if (ret == SUCCESS) { GTP_DEBUG("Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X", config[GTP_ADDR_LENGTH], config[GTP_ADDR_LENGTH], opr_buf[0], opr_buf[0]); flash_cfg_version = opr_buf[0]; drv_cfg_version = config[GTP_ADDR_LENGTH]; if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version) { config[GTP_ADDR_LENGTH] = 0x00; } } else { GTP_ERROR("Failed to get ic config version!No config sent!"); return -1; } } #if GTP_CUSTOM_CFG config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH; config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8); config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT; config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8); if (GTP_INT_TRIGGER == 0) //RISING { config[TRIGGER_LOC] &= 0xfe; } else if (GTP_INT_TRIGGER == 1) //FALLING { config[TRIGGER_LOC] |= 0x01; } #endif // GTP_CUSTOM_CFG check_sum = 0; for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++) { check_sum += config[i]; } config[ts->gtp_cfg_len] = (~check_sum) + 1; #else // driver not send config ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH; ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH); if (ret < 0) { GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!"); ts->abs_x_max = GTP_MAX_WIDTH; ts->abs_y_max = GTP_MAX_HEIGHT; ts->int_trigger_type = GTP_INT_TRIGGER; } #endif // GTP_DRIVER_SEND_CFG if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0)) { ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC]; ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2]; ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03; } #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { u8 sensor_num = 0; u8 driver_num = 0; u8 have_key = 0; have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01); if (1 == ts->is_950) { driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2]; sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2]; if (have_key) { driver_num--; } ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6; } else { driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F); if (have_key) { driver_num--; } sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F); ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2; } GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type); return 0; } else #endif { #if GTP_DRIVER_SEND_CFG ret = gtp_send_cfg(ts->client); if (ret < 0) { GTP_ERROR("Send config error."); } #if GTP_COMPATIBLE_MODE if (ts->chip_type != CHIP_TYPE_GT9F) #endif { if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version) { check_sum = 0; config[GTP_ADDR_LENGTH] = drv_cfg_version; for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++) { check_sum += config[i]; } config[ts->gtp_cfg_len] = (~check_sum) + 1; } } #endif GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type); } msleep(10); return 0; } static ssize_t gt91xx_config_read_proc(struct file *file, char __user *page, size_t size, loff_t *ppos) { char *ptr = page; char temp_data[GTP_CONFIG_MAX_LENGTH + 2] = {0x80, 0x47}; int i; if (*ppos) { return 0; } ptr += sprintf(ptr, "==== GT9XX config init value====\n"); for (i = 0 ; i < GTP_CONFIG_MAX_LENGTH ; i++) { ptr += sprintf(ptr, "0x%02X ", config[i + 2]); if (i % 8 == 7) ptr += sprintf(ptr, "\n"); } ptr += sprintf(ptr, "\n"); ptr += sprintf(ptr, "==== GT9XX config real value====\n"); gtp_i2c_read(i2c_connect_client, temp_data, GTP_CONFIG_MAX_LENGTH + 2); for (i = 0 ; i < GTP_CONFIG_MAX_LENGTH ; i++) { ptr += sprintf(ptr, "0x%02X ", temp_data[i+2]); if (i % 8 == 7) ptr += sprintf(ptr, "\n"); } *ppos += ptr - page; return (ptr - page); } static ssize_t gt91xx_config_write_proc(struct file *filp, const char __user *buffer, size_t count, loff_t *off) { s32 ret = 0; if (count > GTP_CONFIG_MAX_LENGTH) { return -EFAULT; } if (copy_from_user(&config[2], buffer, count)) { GTP_ERROR("copy from user fail\n"); return -EFAULT; } ret = gtp_send_cfg(i2c_connect_client); if (ret < 0) { GTP_ERROR("send config failed."); } return count; } /******************************************************* Function: Read chip version. Input: client: i2c device version: buffer to keep ic firmware version Output: read operation return. 2: succeed, otherwise: failed *******************************************************/ s32 gtp_read_version(struct i2c_client *client, u16* version) { s32 ret = -1; u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff}; GTP_DEBUG_FUNC(); ret = gtp_i2c_read(client, buf, sizeof(buf)); if (ret < 0) { GTP_ERROR("GTP read version failed"); return ret; } if (version) { *version = (buf[7] << 8) | buf[6]; } if (buf[5] == 0x00) { GTP_INFO("IC Version: %c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7], buf[6]); } else { GTP_INFO("IC Version: %c%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]); } return ret; } /******************************************************* Function: I2c test Function. Input: client:i2c client. Output: Executive outcomes. 2: succeed, otherwise failed. *******************************************************/ static s8 gtp_i2c_test(struct i2c_client *client) { u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff}; u8 retry = 0; s8 ret = -1; GTP_DEBUG_FUNC(); while(retry++ < 5) { ret = gtp_i2c_read(client, test, 3); if (ret > 0) { return ret; } GTP_ERROR("GTP i2c test failed time %d.",retry); msleep(10); } return ret; } /******************************************************* Function: Request gpio(INT & RST) ports. Input: ts: private data. Output: Executive outcomes. >= 0: succeed, < 0: failed *******************************************************/ static s8 gtp_request_io_port(struct goodix_ts_data *ts) { s32 ret = 0; struct i2c_client *client = ts->client; ts->ts_pinctrl = devm_pinctrl_get(&client->dev); ts->pinctrl_state_active = pinctrl_lookup_state(ts->ts_pinctrl, "ts_active"); ret = pinctrl_select_state(ts->ts_pinctrl, ts->pinctrl_state_active); GTP_DEBUG_FUNC(); ret = GTP_GPIO_REQUEST(gtp_int_gpio, "GTP INT IRQ"); if (ret < 0) { GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d", (s32)gtp_int_gpio, ret); ret = -ENODEV; } else { GTP_GPIO_AS_INT(gtp_int_gpio); ts->client->irq = gpio_to_irq(gtp_int_gpio); } ret = GTP_GPIO_REQUEST(gtp_rst_gpio, "GTP RST PORT"); if (ret < 0) { GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d",(s32)gtp_rst_gpio,ret); ret = -ENODEV; } GTP_GPIO_AS_INPUT(gtp_rst_gpio); gtp_reset_guitar(ts->client, 20); if(ret < 0) { GTP_GPIO_FREE(gtp_rst_gpio); GTP_GPIO_FREE(gtp_int_gpio); } return ret; } /******************************************************* Function: Request interrupt. Input: ts: private data. Output: Executive outcomes. 0: succeed, -1: failed. *******************************************************/ static s8 gtp_request_irq(struct goodix_ts_data *ts) { s32 ret = -1; const u8 irq_table[] = GTP_IRQ_TAB; GTP_DEBUG_FUNC(); GTP_DEBUG("INT trigger type:%x", ts->int_trigger_type); ret = request_irq(ts->client->irq, goodix_ts_irq_handler, irq_table[ts->int_trigger_type], ts->client->name, ts); if (ret) { GTP_ERROR("Request IRQ failed!ERRNO:%d.", ret); GTP_GPIO_AS_INPUT(gtp_int_gpio); GTP_GPIO_FREE(gtp_int_gpio); hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ts->timer.function = goodix_ts_timer_handler; hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL); return -1; } else { ts->irq_is_free = 0; ts->irq_is_disable = 0; gtp_irq_disable(ts); ts->use_irq = 1; return 0; } } /******************************************************* Function: Request input device Function. Input: ts:private data. Output: Executive outcomes. 0: succeed, otherwise: failed. *******************************************************/ static s8 gtp_request_input_dev(struct goodix_ts_data *ts) { s8 ret = -1; #if GTP_HAVE_TOUCH_KEY u8 index = 0; #endif GTP_DEBUG_FUNC(); ts->input_dev = input_allocate_device(); if (ts->input_dev == NULL) { GTP_ERROR("Failed to allocate input device."); return -ENOMEM; } ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ; #if GTP_ICS_SLOT_REPORT input_mt_init_slots(ts->input_dev, 16, 0); // in case of "out of memory" #else ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit); #if GTP_HAVE_TOUCH_KEY for (index = 0; index < GTP_MAX_KEY_NUM; index++) { input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]); } #endif #if GTP_GESTURE_WAKEUP input_set_capability(ts->input_dev, EV_KEY, KEY_GESTURE_DT); #endif #if GTP_CHANGE_X2Y GTP_SWAP(ts->abs_x_max, ts->abs_y_max); #endif input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0); input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0); input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0); input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0); ts->input_dev->name = goodix_ts_name; ts->input_dev->phys = goodix_input_phys; ts->input_dev->id.bustype = BUS_I2C; ts->input_dev->id.vendor = 0xDEAD; ts->input_dev->id.product = 0xBEEF; ts->input_dev->id.version = 10427; ret = input_register_device(ts->input_dev); if (ret) { GTP_ERROR("Register %s input device failed", ts->input_dev->name); return -ENODEV; } #if GTP_WITH_PEN gtp_pen_init(ts); #endif return 0; } //************** For GT9XXF Start *************// #if GTP_COMPATIBLE_MODE s32 gtp_fw_startup(struct i2c_client *client) { u8 opr_buf[4]; s32 ret = 0; //init sw WDT opr_buf[0] = 0xAA; ret = i2c_write_bytes(client, 0x8041, opr_buf, 1); if (ret < 0) { return FAIL; } //release SS51 & DSP opr_buf[0] = 0x00; ret = i2c_write_bytes(client, 0x4180, opr_buf, 1); if (ret < 0) { return FAIL; } //int sync gtp_int_sync(25); //check fw run status ret = i2c_read_bytes(client, 0x8041, opr_buf, 1); if (ret < 0) { return FAIL; } if(0xAA == opr_buf[0]) { GTP_ERROR("IC works abnormally,startup failed."); return FAIL; } else { GTP_INFO("IC works normally, Startup success."); opr_buf[0] = 0xAA; i2c_write_bytes(client, 0x8041, opr_buf, 1); return SUCCESS; } } static s32 gtp_esd_recovery(struct i2c_client *client) { s32 retry = 0; s32 ret = 0; struct goodix_ts_data *ts; ts = i2c_get_clientdata(client); gtp_irq_disable(ts); GTP_INFO("GT9XXF esd recovery mode"); for (retry = 0; retry < 5; retry++) { ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY); if (FAIL == ret) { GTP_ERROR("esd recovery failed %d", retry+1); continue; } ret = gtp_fw_startup(ts->client); if (FAIL == ret) { GTP_ERROR("GT9XXF start up failed %d", retry+1); continue; } break; } gtp_irq_enable(ts); if (retry >= 5) { GTP_ERROR("failed to esd recovery"); return FAIL; } GTP_INFO("Esd recovery successful"); return SUCCESS; } void gtp_recovery_reset(struct i2c_client *client) { #if GTP_ESD_PROTECT gtp_esd_switch(client, SWITCH_OFF); #endif GTP_DEBUG_FUNC(); gtp_esd_recovery(client); #if GTP_ESD_PROTECT gtp_esd_switch(client, SWITCH_ON); #endif } static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode) { s32 ret = 0; s32 i = 0; s32 j = 0; u16 ref_sum = 0; u16 learn_cnt = 0; u16 chksum = 0; s32 ref_seg_len = 0; s32 ref_grps = 0; struct file *ref_filp = NULL; u8 *p_bak_ref; ret = gup_check_fs_mounted("/data"); if (FAIL == ret) { ts->ref_chk_fs_times++; GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX); if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX) { msleep(50); GTP_INFO("/data not mounted."); return FAIL; } GTP_INFO("check /data mount timeout..."); } else { GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX); } p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL); if (NULL == p_bak_ref) { GTP_ERROR("Allocate memory for p_bak_ref failed!"); return FAIL; } if (ts->is_950) { ref_seg_len = ts->bak_ref_len / 6; ref_grps = 6; } else { ref_seg_len = ts->bak_ref_len; ref_grps = 1; } ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666); if (IS_ERR(ref_filp)) { GTP_ERROR("Failed to open/create %s.", GTP_BAK_REF_PATH); if (GTP_BAK_REF_SEND == mode) { goto bak_ref_default; } else { goto bak_ref_exit; } } switch (mode) { case GTP_BAK_REF_SEND: GTP_INFO("Send backup-reference"); ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET); ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos); if (ret < 0) { GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref"); goto bak_ref_default; } for (j = 0; j < ref_grps; ++j) { ref_sum = 0; for (i = 0; i < (ref_seg_len); i += 2) { ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len]; } learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]); chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]); GTP_DEBUG("learn count = %d", learn_cnt); GTP_DEBUG("chksum = %d", chksum); GTP_DEBUG("ref_sum = 0x%04X", ref_sum & 0xFFFF); // Sum(1~ref_seg_len) == 1 if (1 != ref_sum) { GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref"); memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len); p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01; } else { if (j == (ref_grps - 1)) { GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH); } } } ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len); if (FAIL == ret) { GTP_ERROR("failed to send bak_ref because of iic comm error"); goto bak_ref_exit; } break; case GTP_BAK_REF_STORE: GTP_INFO("Store backup-reference"); ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len); if (ret < 0) { GTP_ERROR("failed to read bak_ref info, sending default back-reference"); goto bak_ref_default; } ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET); ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos); break; default: GTP_ERROR("invalid backup-reference request"); break; } ret = SUCCESS; goto bak_ref_exit; bak_ref_default: for (j = 0; j < ref_grps; ++j) { memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len); p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01; // checksum = 1 } ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len); if (!IS_ERR(ref_filp)) { GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH); ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET); ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos); } if (ret == FAIL) { GTP_ERROR("failed to load the default backup reference"); } bak_ref_exit: if (p_bak_ref) { kfree(p_bak_ref); } if (ref_filp && !IS_ERR(ref_filp)) { filp_close(ref_filp, NULL); } return ret; } static s32 gtp_verify_main_clk(u8 *p_main_clk) { u8 chksum = 0; u8 main_clock = p_main_clk[0]; s32 i = 0; if (main_clock < 50 || main_clock > 120) { return FAIL; } for (i = 0; i < 5; ++i) { if (main_clock != p_main_clk[i]) { return FAIL; } chksum += p_main_clk[i]; } chksum += p_main_clk[5]; if ( (chksum) == 0) { return SUCCESS; } else { return FAIL; } } static s32 gtp_main_clk_proc(struct goodix_ts_data *ts) { s32 ret = 0; s32 i = 0; s32 clk_chksum = 0; struct file *clk_filp = NULL; u8 p_main_clk[6] = {0}; ret = gup_check_fs_mounted("/data"); if (FAIL == ret) { ts->clk_chk_fs_times++; GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX); if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX) { msleep(50); GTP_INFO("/data not mounted."); return FAIL; } GTP_INFO("Check /data mount timeout!"); } else { GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX); } clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666); if (IS_ERR(clk_filp)) { GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH); } else { clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET); clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos); ret = gtp_verify_main_clk(p_main_clk); if (FAIL == ret) { // recalculate main clock & rewrite main clock data to file GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH); } else { GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]); filp_close(clk_filp, NULL); goto update_main_clk; } } #if GTP_ESD_PROTECT gtp_esd_switch(ts->client, SWITCH_OFF); #endif ret = gup_clk_calibration(); gtp_esd_recovery(ts->client); #if GTP_ESD_PROTECT gtp_esd_switch(ts->client, SWITCH_ON); #endif GTP_INFO("calibrate main clock: %d", ret); if (ret < 50 || ret > 120) { GTP_ERROR("wrong main clock: %d", ret); goto exit_main_clk; } // Sum{0x8020~0x8025} = 0 for (i = 0; i < 5; ++i) { p_main_clk[i] = ret; clk_chksum += p_main_clk[i]; } p_main_clk[5] = 0 - clk_chksum; if (!IS_ERR(clk_filp)) { GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH); clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET); clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos); filp_close(clk_filp, NULL); } update_main_clk: ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6); if (FAIL == ret) { GTP_ERROR("update main clock failed!"); return FAIL; } return SUCCESS; exit_main_clk: if (!IS_ERR(clk_filp)) { filp_close(clk_filp, NULL); } return FAIL; } s32 gtp_gt9xxf_init(struct i2c_client *client) { s32 ret = 0; ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN); if (FAIL == ret) { return FAIL; } ret = gtp_fw_startup(client); if (FAIL == ret) { return FAIL; } return SUCCESS; } void gtp_get_chip_type(struct goodix_ts_data *ts) { u8 opr_buf[10] = {0x00}; s32 ret = 0; msleep(10); ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10); if (FAIL == ret) { GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9"); ts->chip_type = CHIP_TYPE_GT9; return; } if (!memcmp(opr_buf, "GOODIX_GT9", 10)) { ts->chip_type = CHIP_TYPE_GT9; } else // GT9XXF { ts->chip_type = CHIP_TYPE_GT9F; } GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F"); } #endif //For GT9XXF End// /* * Devices Tree support, */ #ifdef GTP_CONFIG_OF /** * gtp_parse_dt - parse platform infomation form devices tree. */ static void gtp_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; gtp_int_gpio = of_get_named_gpio(np, "goodix,irq-gpio", 0); gtp_rst_gpio = of_get_named_gpio(np, "goodix,rst-gpio", 0); } /** * gtp_parse_dt_cfg - parse config data from devices tree. * @dev: device that this driver attached. * @cfg: pointer of the config array. * @cfg_len: pointer of the config length. * @sid: sensor id. * Return: 0-succeed, -1-faileds */ int gtp_parse_dt_cfg(struct device *dev, u8 *cfg, int *cfg_len, u8 sid) { struct device_node *np = dev->of_node; struct property *prop; char cfg_name[18]; snprintf(cfg_name, sizeof(cfg_name), "goodix,cfg-group%d", sid); prop = of_find_property(np, cfg_name, cfg_len); if (!prop || !prop->value || *cfg_len == 0 || *cfg_len > GTP_CONFIG_MAX_LENGTH) { return -1;/* failed */ } else { memcpy(cfg, prop->value, *cfg_len); return 0; } } /** * gtp_power_switch - power switch . * @on: 1-switch on, 0-switch off. * return: 0-succeed, -1-faileds */ static int gtp_power_switch(struct i2c_client *client, int on) { static struct regulator *vdd_ana; static struct regulator *vcc_i2c; int ret; if (!vdd_ana) { vdd_ana = regulator_get(&client->dev, "vdd_ana"); if (IS_ERR(vdd_ana)) { GTP_ERROR("regulator get of vdd_ana failed"); ret = PTR_ERR(vdd_ana); vdd_ana = NULL; return ret; } } if (!vcc_i2c) { vcc_i2c = regulator_get(&client->dev, "vcc_i2c"); if (IS_ERR(vcc_i2c)) { GTP_ERROR("regulator get of vcc_i2c failed"); ret = PTR_ERR(vcc_i2c); vcc_i2c = NULL; goto ERR_GET_VCC; } } if (on) { GTP_DEBUG("GTP power on."); ret = regulator_enable(vdd_ana); udelay(2); ret = regulator_enable(vcc_i2c); } else { GTP_DEBUG("GTP power off."); ret = regulator_disable(vcc_i2c); udelay(2); ret = regulator_disable(vdd_ana); } return ret; ERR_GET_VCC: regulator_put(vdd_ana); return ret; } #endif /************************************************** sys/devices/virtual/touch/tp_dev/ ***************************************************/ #ifdef TOUCH_SYS #if GTP_GESTURE_WAKEUP static ssize_t gtp_gesture_wakeup_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n",gesture_enabled); } static ssize_t gtp_gesture_wakeup_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int val; sscanf(buf, "%d", &val); if(!!val) gesture_enabled = 1; else gesture_enabled = 0; return count; } #endif static struct device_attribute attrs[] = { #if GTP_GESTURE_WAKEUP __ATTR(gesture_on, 0664, gtp_gesture_wakeup_show, gtp_gesture_wakeup_store), #endif }; #endif /******************************************************* Function: I2c probe. Input: client: i2c device struct. id: device id. Output: Executive outcomes. 0: succeed. *******************************************************/ static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { s32 ret = -1; struct goodix_ts_data *ts; u16 version_info; #if TOUCH_SYS int attr_count = 0; #endif GTP_DEBUG_FUNC(); //do NOT remove these logs GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION); GTP_INFO("GTP I2C Address: 0x%02x", client->addr); i2c_connect_client = client; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { GTP_ERROR("I2C check functionality failed."); return -ENODEV; } ts = kzalloc(sizeof(*ts), GFP_KERNEL); if (ts == NULL) { GTP_ERROR("Alloc GFP_KERNEL memory failed."); return -ENOMEM; } #ifdef GTP_CONFIG_OF /* device tree support */ if (client->dev.of_node) { gtp_parse_dt(&client->dev); } ret = gtp_power_switch(client, 1); if (ret) { GTP_ERROR("GTP power on failed."); return -EINVAL; } #else /* use gpio defined in gt9xx.h */ gtp_rst_gpio = GTP_RST_PORT; gtp_int_gpio = GTP_INT_PORT; #endif INIT_WORK(&ts->work, goodix_ts_work_func); ts->client = client; spin_lock_init(&ts->irq_lock); // 2.6.39 later // ts->irq_lock = SPIN_LOCK_UNLOCKED; // 2.6.39 & before #if GTP_ESD_PROTECT ts->clk_tick_cnt = 2 * HZ; // HZ: clock ticks in 1 second generated by system GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt); spin_lock_init(&ts->esd_lock); // ts->esd_lock = SPIN_LOCK_UNLOCKED; #endif i2c_set_clientdata(client, ts); ts->gtp_rawdiff_mode = 0; ret = gtp_request_io_port(ts); if (ret < 0) { GTP_ERROR("GTP request IO port failed."); kfree(ts); return ret; } #if GTP_COMPATIBLE_MODE gtp_get_chip_type(ts); if (CHIP_TYPE_GT9F == ts->chip_type) { ret = gtp_gt9xxf_init(ts->client); if (FAIL == ret) { GTP_INFO("Failed to init GT9XXF."); } } #endif ret = gtp_i2c_test(client); if (ret < 0) { GTP_ERROR("I2C communication ERROR!"); } ret = gtp_read_version(client, &version_info); if (ret < 0) { GTP_ERROR("Read version failed."); } ret = gtp_init_panel(ts); if (ret < 0) { GTP_ERROR("GTP init panel failed."); ts->abs_x_max = GTP_MAX_WIDTH; ts->abs_y_max = GTP_MAX_HEIGHT; ts->int_trigger_type = GTP_INT_TRIGGER; } #if TOUCH_SYS //add tp class to show tp info ts->tp_class = class_create(THIS_MODULE, "touch"); if (IS_ERR(ts->tp_class)) { GTP_DEBUG("create tp class err!"); return ret; } else atomic_set(>_device_count, 0); ts->index = atomic_inc_return(>_device_count); ts->dev = device_create(ts->tp_class, NULL, MKDEV(0, ts->index), NULL, "tp_dev"); if (IS_ERR(ts->dev)) { GTP_DEBUG("create device err!"); return ret; } for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) { ret = sysfs_create_file(&ts->dev->kobj, &attrs[attr_count].attr); if (ret < 0) { dev_err(&client->dev, "%s: Failed to create sysfs attributes\n", __func__); return ret; } } dev_set_drvdata(ts->dev,ts); //end tp class to show tp info #endif // Create proc file system gt91xx_config_proc = proc_create(GT91XX_CONFIG_PROC_FILE, 0666, NULL, &config_proc_ops); if (gt91xx_config_proc == NULL) { GTP_ERROR("create_proc_entry %s failed\n", GT91XX_CONFIG_PROC_FILE); } else { GTP_INFO("create proc entry %s success", GT91XX_CONFIG_PROC_FILE); } #if GTP_ESD_PROTECT gtp_esd_switch(client, SWITCH_ON); #endif #if GTP_AUTO_UPDATE ret = gup_init_update_proc(ts); if (ret < 0) { GTP_ERROR("Create update thread error."); } #endif ret = gtp_request_input_dev(ts); if (ret < 0) { GTP_ERROR("GTP request input dev failed"); } ret = gtp_request_irq(ts); if (ret < 0) { GTP_INFO("GTP works in polling mode."); } else { GTP_INFO("GTP works in interrupt mode."); } if (ts->use_irq) { gtp_irq_enable(ts); #if GTP_GESTURE_WAKEUP enable_irq_wake(client->irq); #endif } /* register suspend and resume fucntion*/ gtp_register_powermanger(ts); ts->gtp_is_suspend = 0; #if GTP_CREATE_WR_NODE init_wr_node(client); #endif return 0; } /******************************************************* Function: Goodix touchscreen driver release function. Input: client: i2c device struct. Output: Executive outcomes. 0---succeed. *******************************************************/ static int goodix_ts_remove(struct i2c_client *client) { struct goodix_ts_data *ts = i2c_get_clientdata(client); GTP_DEBUG_FUNC(); gtp_unregister_powermanger(ts); #if GTP_CREATE_WR_NODE uninit_wr_node(); #endif #if GTP_ESD_PROTECT destroy_workqueue(gtp_esd_check_workqueue); #endif if (ts) { if (ts->use_irq) { GTP_GPIO_AS_INPUT(gtp_int_gpio); GTP_GPIO_FREE(gtp_int_gpio); free_irq(client->irq, ts); ts->irq_is_free = 1; } else { hrtimer_cancel(&ts->timer); } } GTP_INFO("GTP driver removing..."); i2c_set_clientdata(client, NULL); input_unregister_device(ts->input_dev); kfree(ts); return 0; } /******************************************************* Function: Early suspend function. Input: h: early_suspend struct. Output: None. *******************************************************/ static void goodix_ts_suspend(struct goodix_ts_data *ts) { s8 ret = -1; GTP_DEBUG_FUNC(); if(ts->gtp_is_suspend) return; if (ts->enter_update) { return; } GTP_INFO("System suspend."); ts->gtp_is_suspend = 1; #if GTP_ESD_PROTECT gtp_esd_switch(ts->client, SWITCH_OFF); #endif #if GTP_GESTURE_WAKEUP if(gesture_enabled){ ret = gtp_enter_doze(ts); }else{ if (ts->use_irq) { gtp_irq_disable(ts); gtp_irq_free(ts); } else { hrtimer_cancel(&ts->timer); } ret = gtp_enter_sleep(ts); gtp_power_switch(ts->client, 0); ts->ts_pinctrl = devm_pinctrl_get(&ts->client->dev); ts->pinctrl_state_suspend = pinctrl_lookup_state(ts->ts_pinctrl, "ts_suspend"); ret = pinctrl_select_state(ts->ts_pinctrl, ts->pinctrl_state_suspend); } #else if (ts->use_irq) { gtp_irq_disable(ts); gtp_irq_free(ts); } else { hrtimer_cancel(&ts->timer); } ret = gtp_enter_sleep(ts); gtp_power_switch(ts->client, 0); ts->ts_pinctrl = devm_pinctrl_get(&ts->client->dev); ts->pinctrl_state_suspend = pinctrl_lookup_state(ts->ts_pinctrl, "ts_suspend"); ret = pinctrl_select_state(ts->ts_pinctrl, ts->pinctrl_state_suspend); #endif if (ret < 0) { GTP_ERROR("GTP early suspend failed."); } // to avoid waking up while not sleeping // delay 48 + 10ms to ensure reliability msleep(58); } /******************************************************* Function: Late resume function. Input: h: early_suspend struct. Output: None. *******************************************************/ static void goodix_ts_resume(struct goodix_ts_data *ts) { s8 ret = -1; GTP_DEBUG_FUNC(); if(!ts->gtp_is_suspend) return; if (ts->enter_update) { return; } GTP_INFO("System resume."); #if GTP_GESTURE_WAKEUP if(gesture_enabled){ ret = gtp_wakeup_sleep(ts); doze_status = DOZE_DISABLED; } #endif if(!gesture_enabled){ gtp_power_switch(ts->client, 1); ts->ts_pinctrl = devm_pinctrl_get(&ts->client->dev); ts->pinctrl_state_active = pinctrl_lookup_state(ts->ts_pinctrl, "ts_active"); ret = pinctrl_select_state(ts->ts_pinctrl, ts->pinctrl_state_active); ret = gtp_wakeup_sleep(ts); } if (ret < 0) { GTP_ERROR("GTP later resume failed."); } #if (GTP_COMPATIBLE_MODE) if (CHIP_TYPE_GT9F == ts->chip_type) { // do nothing } else #endif { gtp_send_cfg(ts->client); } if (ts->use_irq) { gtp_irq_request(ts); } else { hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL); } ts->gtp_is_suspend = 0; #if GTP_ESD_PROTECT gtp_esd_switch(ts->client, SWITCH_ON); #endif } #if defined(CONFIG_FB) /* frame buffer notifier block control the suspend/resume procedure */ static int gtp_fb_notifier_callback(struct notifier_block *noti, unsigned long event, void *data) { struct fb_event *ev_data = data; struct goodix_ts_data *ts = container_of(noti, struct goodix_ts_data, notifier); int *blank; if (ev_data && ev_data->data && event == FB_EVENT_BLANK && ts) { blank = ev_data->data; if (*blank == FB_BLANK_UNBLANK) { GTP_DEBUG("Resume by fb notifier."); goodix_ts_resume(ts); } else if (*blank == FB_BLANK_POWERDOWN) { GTP_DEBUG("Suspend by fb notifier."); goodix_ts_suspend(ts); } } return 0; } #elif defined(CONFIG_PM) /* bus control the suspend/resume procedure */ static int gtp_pm_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct goodix_ts_data *ts = i2c_get_clientdata(client); if (ts) { GTP_DEBUG("Suspend by i2c pm."); goodix_ts_suspend(ts); } return 0; } static int gtp_pm_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct goodix_ts_data *ts = i2c_get_clientdata(client); if (ts) { GTP_DEBUG("Resume by i2c pm."); goodix_ts_resume(ts); } return 0; } static struct dev_pm_ops gtp_pm_ops = { .suspend = gtp_pm_suspend, .resume = gtp_pm_resume, }; #elif defined(CONFIG_HAS_EARLYSUSPEND) /* earlysuspend module the suspend/resume procedure */ static void gtp_early_suspend(struct early_suspend *h) { struct goodix_ts_data *ts = container_of(h, struct goodix_ts_data, early_suspend); if (ts) { GTP_DEBUG("Suspend by earlysuspend module."); goodix_ts_suspend(ts); } } static void gtp_early_resume(struct early_suspend *h) { struct goodix_ts_data *ts = container_of(h, struct goodix_ts_data, early_suspend); if (ts) { GTP_DEBUG("Resume by earlysuspend module."); goodix_ts_resume(ts); } } #endif static int gtp_register_powermanger(struct goodix_ts_data *ts) { #if defined(CONFIG_FB) ts->notifier.notifier_call = gtp_fb_notifier_callback; fb_register_client(&ts->notifier); #elif defined(CONFIG_HAS_EARLYSUSPEND) ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; ts->early_suspend.suspend = goodix_ts_early_suspend; ts->early_suspend.resume = goodix_ts_late_resume; register_early_suspend(&ts->early_suspend); #endif return 0; } static int gtp_unregister_powermanger(struct goodix_ts_data *ts) { #if defined(CONFIG_FB) fb_unregister_client(&ts->notifier); #elif defined(CONFIG_HAS_EARLYSUSPEND) unregister_early_suspend(&ts->early_suspend); #endif return 0; } /* end */ #if GTP_ESD_PROTECT s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len) { struct i2c_msg msgs[2]; s32 ret=-1; s32 retries = 0; GTP_DEBUG_FUNC(); msgs[0].flags = !I2C_M_RD; msgs[0].addr = client->addr; msgs[0].len = GTP_ADDR_LENGTH; msgs[0].buf = &buf[0]; //msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc. msgs[1].flags = I2C_M_RD; msgs[1].addr = client->addr; msgs[1].len = len - GTP_ADDR_LENGTH; msgs[1].buf = &buf[GTP_ADDR_LENGTH]; //msgs[1].scl_rate = 300 * 1000; while(retries < 5) { ret = i2c_transfer(client->adapter, msgs, 2); if(ret == 2)break; retries++; } if ((retries >= 5)) { GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret); } return ret; } s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len) { struct i2c_msg msg; s32 ret = -1; s32 retries = 0; GTP_DEBUG_FUNC(); msg.flags = !I2C_M_RD; msg.addr = client->addr; msg.len = len; msg.buf = buf; //msg.scl_rate = 300 * 1000; // for Rockchip, etc while(retries < 5) { ret = i2c_transfer(client->adapter, &msg, 1); if (ret == 1)break; retries++; } if((retries >= 5)) { GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret); } return ret; } /******************************************************* Function: switch on & off esd delayed work Input: client: i2c device on: SWITCH_ON / SWITCH_OFF Output: void *********************************************************/ void gtp_esd_switch(struct i2c_client *client, s32 on) { struct goodix_ts_data *ts; ts = i2c_get_clientdata(client); spin_lock(&ts->esd_lock); if (SWITCH_ON == on) // switch on esd { if (!ts->esd_running) { ts->esd_running = 1; spin_unlock(&ts->esd_lock); GTP_INFO("Esd started"); queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt); } else { spin_unlock(&ts->esd_lock); } } else // switch off esd { if (ts->esd_running) { ts->esd_running = 0; spin_unlock(&ts->esd_lock); GTP_INFO("Esd cancelled"); cancel_delayed_work_sync(>p_esd_check_work); } else { spin_unlock(&ts->esd_lock); } } } /******************************************************* Function: Initialize external watchdog for esd protect Input: client: i2c device. Output: result of i2c write operation. 1: succeed, otherwise: failed *********************************************************/ static s32 gtp_init_ext_watchdog(struct i2c_client *client) { u8 opr_buffer[3] = {0x80, 0x41, 0xAA}; GTP_DEBUG("[Esd]Init external watchdog"); return gtp_i2c_write_no_rst(client, opr_buffer, 3); } /******************************************************* Function: Esd protect function. External watchdog added by meta, 2013/03/07 Input: work: delayed work Output: None. *******************************************************/ static void gtp_esd_check_func(struct work_struct *work) { s32 i; s32 ret = -1; struct goodix_ts_data *ts = NULL; u8 esd_buf[5] = {0x80, 0x40}; GTP_DEBUG_FUNC(); ts = i2c_get_clientdata(i2c_connect_client); if (ts->gtp_is_suspend || ts->enter_update) { GTP_INFO("Esd suspended!"); return; } for (i = 0; i < 3; i++) { ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4); GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8041 = 0x%02X", esd_buf[2], esd_buf[3]); if ((ret < 0)){ continue; } else { if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA)) { // IC works abnormally.. u8 chk_buf[4] = {0x80, 0x40}; gtp_i2c_read_no_rst(ts->client, chk_buf, 4); GTP_DEBUG("[Check]0x8040 = 0x%02X, 0x8041 = 0x%02X", chk_buf[2], chk_buf[3]); if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA)) { i = 3; break; } else { continue; } } else { // IC works normally, Write 0x8040 0xAA, feed the dog esd_buf[2] = 0xAA; gtp_i2c_write_no_rst(ts->client, esd_buf, 3); break; } } } if (i >= 3) { #if GTP_COMPATIBLE_MODE if (CHIP_TYPE_GT9F == ts->chip_type) { if (ts->rqst_processing) { GTP_INFO("Request processing, no esd recovery"); } else { GTP_ERROR("IC working abnormally! Process esd recovery."); esd_buf[0] = 0x42; esd_buf[1] = 0x26; esd_buf[2] = 0x01; esd_buf[3] = 0x01; esd_buf[4] = 0x01; gtp_i2c_write_no_rst(ts->client, esd_buf, 5); msleep(50); #ifdef GTP_CONFIG_OF gtp_power_switch(ts->client, 0); msleep(20); gtp_power_switch(ts->client, 1); msleep(20); #endif gtp_esd_recovery(ts->client); } } else #endif { GTP_ERROR("IC working abnormally! Process reset guitar."); esd_buf[0] = 0x42; esd_buf[1] = 0x26; esd_buf[2] = 0x01; esd_buf[3] = 0x01; esd_buf[4] = 0x01; gtp_i2c_write_no_rst(ts->client, esd_buf, 5); msleep(50); gtp_irq_free(ts); #ifdef GTP_CONFIG_OF gtp_power_switch(ts->client, 0); msleep(20); gtp_power_switch(ts->client, 1); msleep(20); #endif gtp_reset_guitar(ts->client, 50); msleep(50); gtp_send_cfg(ts->client); gtp_irq_request(ts); } } if(!ts->gtp_is_suspend) { queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt); } else { GTP_INFO("Esd suspended!"); } return; } #endif #ifdef GTP_CONFIG_OF static const struct of_device_id goodix_match_table[] = { {.compatible = "goodix,gt9xx",}, { }, }; #endif static const struct i2c_device_id goodix_ts_id[] = { { GTP_I2C_NAME, 0 }, { }, }; static struct i2c_driver goodix_ts_driver = { .probe = goodix_ts_probe, .remove = goodix_ts_remove, .id_table = goodix_ts_id, .driver = { .name = GTP_I2C_NAME, .owner = THIS_MODULE, #ifdef GTP_CONFIG_OF .of_match_table = goodix_match_table, #endif #if !defined(CONFIG_FB) && defined(CONFIG_PM) .pm = >p_pm_ops, #endif }, }; /******************************************************* Function: Driver Install function. Input: None. Output: Executive Outcomes. 0---succeed. ********************************************************/ static int __init goodix_ts_init(void) { s32 ret; GTP_DEBUG_FUNC(); GTP_INFO("GTP driver installing..."); goodix_wq = create_singlethread_workqueue("goodix_wq"); if (!goodix_wq) { GTP_ERROR("Creat workqueue failed."); return -ENOMEM; } #if GTP_ESD_PROTECT INIT_DELAYED_WORK(>p_esd_check_work, gtp_esd_check_func); gtp_esd_check_workqueue = create_workqueue("gtp_esd_check"); #endif ret = i2c_add_driver(&goodix_ts_driver); return ret; } /******************************************************* Function: Driver uninstall function. Input: None. Output: Executive Outcomes. 0---succeed. ********************************************************/ static void __exit goodix_ts_exit(void) { GTP_DEBUG_FUNC(); GTP_INFO("GTP driver exited."); i2c_del_driver(&goodix_ts_driver); if (goodix_wq) { destroy_workqueue(goodix_wq); } } module_init(goodix_ts_init); module_exit(goodix_ts_exit); MODULE_DESCRIPTION("GTP Series Driver"); MODULE_LICENSE("GPL");