/* * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "[drm:%s] " fmt, __func__ #include "sde_kms.h" #include "sde_hw_lm.h" #include "sde_hw_ctl.h" #include "sde_hw_cdm.h" #include "sde_hw_dspp.h" #include "sde_hw_pingpong.h" #include "sde_hw_intf.h" #include "sde_hw_wb.h" #include "sde_encoder.h" #include "sde_connector.h" #include "sde_hw_sspp.h" #include "sde_splash.h" #include "dsi_display.h" #include "sde_hdmi.h" #define RESERVED_BY_OTHER(h, r) \ ((h)->rsvp && ((h)->rsvp->enc_id != (r)->enc_id)) #define RM_RQ_LOCK(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_LOCK)) #define RM_RQ_CLEAR(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_CLEAR)) #define RM_RQ_DSPP(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_DSPP)) #define RM_RQ_PPSPLIT(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_PPSPLIT)) #define RM_RQ_FORCE_TILING(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_FORCE_TILING)) #define RM_RQ_FORCE_MIXER(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_FORCE_MIXER)) /** * struct sde_rm_requirements - Reservation requirements parameter bundle * @top_name: DRM<->HW topology use case user is trying to enable * @dspp: Whether the user requires a DSPP * @num_lm: Number of layer mixers needed in the use case * @hw_res: Hardware resources required as reported by the encoders * @disp_id: Current display ID, lm/ctl may have prefer display */ struct sde_rm_requirements { enum sde_rm_topology_name top_name; uint64_t top_ctrl; int num_lm; int num_ctl; bool needs_split_display; struct sde_encoder_hw_resources hw_res; uint32_t disp_id; }; /** * struct sde_rm_rsvp - Use Case Reservation tagging structure * Used to tag HW blocks as reserved by a CRTC->Encoder->Connector chain * By using as a tag, rather than lists of pointers to HW blocks used * we can avoid some list management since we don't know how many blocks * of each type a given use case may require. * @list: List head for list of all reservations * @seq: Global RSVP sequence number for debugging, especially for * differentiating differenct allocations for same encoder. * @enc_id: Reservations are tracked by Encoder DRM object ID. * CRTCs may be connected to multiple Encoders. * An encoder or connector id identifies the display path. * @topology DRM<->HW topology use case */ struct sde_rm_rsvp { struct list_head list; uint32_t seq; uint32_t enc_id; enum sde_rm_topology_name topology; }; /** * struct sde_rm_hw_blk - hardware block tracking list member * @list: List head for list of all hardware blocks tracking items * @rsvp: Pointer to use case reservation if reserved by a client * @rsvp_nxt: Temporary pointer used during reservation to the incoming * request. Will be swapped into rsvp if proposal is accepted * @type: Type of hardware block this structure tracks * @id: Hardware ID number, within it's own space, ie. LM_X * @catalog: Pointer to the hardware catalog entry for this block * @hw: Pointer to the hardware register access object for this block */ struct sde_rm_hw_blk { struct list_head list; struct sde_rm_rsvp *rsvp; struct sde_rm_rsvp *rsvp_nxt; enum sde_hw_blk_type type; const char *type_name; uint32_t id; void *catalog; void *hw; }; /** * sde_rm_dbg_rsvp_stage - enum of steps in making reservation for event logging */ enum sde_rm_dbg_rsvp_stage { SDE_RM_STAGE_BEGIN, SDE_RM_STAGE_AFTER_CLEAR, SDE_RM_STAGE_AFTER_RSVPNEXT, SDE_RM_STAGE_FINAL }; static void _sde_rm_print_rsvps( struct sde_rm *rm, enum sde_rm_dbg_rsvp_stage stage) { struct sde_rm_rsvp *rsvp; struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; SDE_DEBUG("%d\n", stage); list_for_each_entry(rsvp, &rm->rsvps, list) { SDE_DEBUG("%d rsvp[s%ue%u] topology %d\n", stage, rsvp->seq, rsvp->enc_id, rsvp->topology); SDE_EVT32(stage, rsvp->seq, rsvp->enc_id, rsvp->topology); } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (!blk->rsvp && !blk->rsvp_nxt) continue; SDE_DEBUG("%d rsvp[s%ue%u->s%ue%u] %s %d\n", stage, (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type_name, blk->id); SDE_EVT32(stage, (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); } } } struct sde_hw_mdp *sde_rm_get_mdp(struct sde_rm *rm) { return rm->hw_mdp; } void sde_rm_init_hw_iter( struct sde_rm_hw_iter *iter, uint32_t enc_id, enum sde_hw_blk_type type) { memset(iter, 0, sizeof(*iter)); iter->enc_id = enc_id; iter->type = type; } static bool _sde_rm_get_hw_locked(struct sde_rm *rm, struct sde_rm_hw_iter *i) { struct list_head *blk_list; if (!rm || !i || i->type >= SDE_HW_BLK_MAX) { SDE_ERROR("invalid rm\n"); return false; } i->hw = NULL; blk_list = &rm->hw_blks[i->type]; if (i->blk && (&i->blk->list == blk_list)) { SDE_ERROR("attempt resume iteration past last\n"); return false; } i->blk = list_prepare_entry(i->blk, blk_list, list); list_for_each_entry_continue(i->blk, blk_list, list) { struct sde_rm_rsvp *rsvp = i->blk->rsvp; if (i->blk->type != i->type) { SDE_ERROR("found incorrect block type %d on %d list\n", i->blk->type, i->type); return false; } if ((i->enc_id == 0) || (rsvp && rsvp->enc_id == i->enc_id)) { i->hw = i->blk->hw; SDE_DEBUG("found type %d %s id %d for enc %d\n", i->type, i->blk->type_name, i->blk->id, i->enc_id); return true; } } SDE_DEBUG("no match, type %d for enc %d\n", i->type, i->enc_id); return false; } bool sde_rm_get_hw(struct sde_rm *rm, struct sde_rm_hw_iter *i) { bool ret; mutex_lock(&rm->rm_lock); ret = _sde_rm_get_hw_locked(rm, i); mutex_unlock(&rm->rm_lock); return ret; } static void *_sde_rm_get_hw_by_id_locked( struct sde_rm *rm, enum sde_hw_blk_type type, int id) { struct list_head *blk_list; struct sde_rm_hw_blk *blk; void *hw = NULL; if (!rm || type >= SDE_HW_BLK_MAX) { SDE_ERROR("invalid rm\n"); return hw; } blk_list = &rm->hw_blks[type]; list_for_each_entry(blk, blk_list, list) { if (blk->id == id) { hw = blk->hw; SDE_DEBUG("found type %d %s id %d\n", type, blk->type_name, blk->id); return hw; } } SDE_DEBUG("no match, type %d id=%d\n", type, id); return hw; } void *sde_rm_get_hw_by_id(struct sde_rm *rm, enum sde_hw_blk_type type, int id) { void *ret = NULL; mutex_lock(&rm->rm_lock); ret = _sde_rm_get_hw_by_id_locked(rm, type, id); mutex_unlock(&rm->rm_lock); return ret; } static void _sde_rm_hw_destroy(enum sde_hw_blk_type type, void *hw) { switch (type) { case SDE_HW_BLK_LM: sde_hw_lm_destroy(hw); break; case SDE_HW_BLK_DSPP: sde_hw_dspp_destroy(hw); break; case SDE_HW_BLK_CTL: sde_hw_ctl_destroy(hw); break; case SDE_HW_BLK_CDM: sde_hw_cdm_destroy(hw); break; case SDE_HW_BLK_PINGPONG: sde_hw_pingpong_destroy(hw); break; case SDE_HW_BLK_INTF: sde_hw_intf_destroy(hw); break; case SDE_HW_BLK_WB: sde_hw_wb_destroy(hw); break; case SDE_HW_BLK_SSPP: sde_hw_sspp_destroy(hw); break; case SDE_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case SDE_HW_BLK_MAX: default: SDE_ERROR("unsupported block type %d\n", type); break; } } int sde_rm_destroy(struct sde_rm *rm) { struct sde_rm_rsvp *rsvp_cur, *rsvp_nxt; struct sde_rm_hw_blk *hw_cur, *hw_nxt; enum sde_hw_blk_type type; if (!rm) { SDE_ERROR("invalid rm\n"); return -EINVAL; } list_for_each_entry_safe(rsvp_cur, rsvp_nxt, &rm->rsvps, list) { list_del(&rsvp_cur->list); kfree(rsvp_cur); } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry_safe(hw_cur, hw_nxt, &rm->hw_blks[type], list) { list_del(&hw_cur->list); _sde_rm_hw_destroy(hw_cur->type, hw_cur->hw); kfree(hw_cur); } } sde_hw_mdp_destroy(rm->hw_mdp); rm->hw_mdp = NULL; mutex_destroy(&rm->rm_lock); return 0; } static int _sde_rm_hw_blk_create( struct sde_rm *rm, struct sde_mdss_cfg *cat, void *mmio, enum sde_hw_blk_type type, uint32_t id, void *hw_catalog_info) { struct sde_rm_hw_blk *blk; struct sde_hw_mdp *hw_mdp; const char *name; void *hw; hw_mdp = rm->hw_mdp; switch (type) { case SDE_HW_BLK_LM: hw = sde_hw_lm_init(id, mmio, cat); name = "lm"; break; case SDE_HW_BLK_DSPP: hw = sde_hw_dspp_init(id, mmio, cat); name = "dspp"; break; case SDE_HW_BLK_CTL: hw = sde_hw_ctl_init(id, mmio, cat); name = "ctl"; break; case SDE_HW_BLK_CDM: hw = sde_hw_cdm_init(id, mmio, cat, hw_mdp); name = "cdm"; break; case SDE_HW_BLK_PINGPONG: hw = sde_hw_pingpong_init(id, mmio, cat); name = "pp"; break; case SDE_HW_BLK_INTF: hw = sde_hw_intf_init(id, mmio, cat); name = "intf"; break; case SDE_HW_BLK_WB: hw = sde_hw_wb_init(id, mmio, cat, hw_mdp); name = "wb"; break; case SDE_HW_BLK_SSPP: hw = sde_hw_sspp_init(id, (void __iomem *)mmio, cat); name = "sspp"; break; case SDE_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case SDE_HW_BLK_MAX: default: SDE_ERROR("unsupported block type %d\n", type); return -EINVAL; } if (IS_ERR_OR_NULL(hw)) { SDE_ERROR("failed hw object creation: type %d, err %ld\n", type, PTR_ERR(hw)); return -EFAULT; } blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) { _sde_rm_hw_destroy(type, hw); return -ENOMEM; } blk->type_name = name; blk->type = type; blk->id = id; blk->catalog = hw_catalog_info; blk->hw = hw; list_add_tail(&blk->list, &rm->hw_blks[type]); return 0; } int sde_rm_init(struct sde_rm *rm, struct sde_mdss_cfg *cat, void *mmio, struct drm_device *dev) { int rc, i; enum sde_hw_blk_type type; if (!rm || !cat || !mmio || !dev) { SDE_ERROR("invalid kms\n"); return -EINVAL; } /* Clear, setup lists */ memset(rm, 0, sizeof(*rm)); mutex_init(&rm->rm_lock); rm->dev = dev; INIT_LIST_HEAD(&rm->rsvps); for (type = 0; type < SDE_HW_BLK_MAX; type++) INIT_LIST_HEAD(&rm->hw_blks[type]); /* Some of the sub-blocks require an mdptop to be created */ rm->hw_mdp = sde_hw_mdptop_init(MDP_TOP, mmio, cat); if (IS_ERR_OR_NULL(rm->hw_mdp)) { rc = PTR_ERR(rm->hw_mdp); rm->hw_mdp = NULL; SDE_ERROR("failed: mdp hw not available\n"); goto fail; } for (i = 0; i < cat->sspp_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_SSPP, cat->sspp[i].id, &cat->sspp[i]); if (rc) goto fail; } /* Interrogate HW catalog and create tracking items for hw blocks */ for (i = 0; i < cat->mixer_count; i++) { struct sde_lm_cfg *lm = &cat->mixer[i]; if (lm->pingpong == PINGPONG_MAX) { SDE_DEBUG("skip mixer %d without pingpong\n", lm->id); continue; } rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_LM, cat->mixer[i].id, &cat->mixer[i]); if (rc) { SDE_ERROR("failed: lm hw not available\n"); goto fail; } if (!rm->lm_max_width) { rm->lm_max_width = lm->sblk->maxwidth; } else if (rm->lm_max_width != lm->sblk->maxwidth) { /* * Don't expect to have hw where lm max widths differ. * If found, take the min. */ SDE_ERROR("unsupported: lm maxwidth differs\n"); if (rm->lm_max_width > lm->sblk->maxwidth) rm->lm_max_width = lm->sblk->maxwidth; } } for (i = 0; i < cat->dspp_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_DSPP, cat->dspp[i].id, &cat->dspp[i]); if (rc) { SDE_ERROR("failed: dspp hw not available\n"); goto fail; } } for (i = 0; i < cat->pingpong_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_PINGPONG, cat->pingpong[i].id, &cat->pingpong[i]); if (rc) { SDE_ERROR("failed: pp hw not available\n"); goto fail; } } for (i = 0; i < cat->intf_count; i++) { if (cat->intf[i].type == INTF_NONE) { SDE_DEBUG("skip intf %d with type none\n", i); continue; } rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_INTF, cat->intf[i].id, &cat->intf[i]); if (rc) { SDE_ERROR("failed: intf hw not available\n"); goto fail; } } for (i = 0; i < cat->wb_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_WB, cat->wb[i].id, &cat->wb[i]); if (rc) { SDE_ERROR("failed: wb hw not available\n"); goto fail; } } for (i = 0; i < cat->ctl_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_CTL, cat->ctl[i].id, &cat->ctl[i]); if (rc) { SDE_ERROR("failed: ctl hw not available\n"); goto fail; } } for (i = 0; i < cat->cdm_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_CDM, cat->cdm[i].id, &cat->cdm[i]); if (rc) { SDE_ERROR("failed: cdm hw not available\n"); goto fail; } } return 0; fail: sde_rm_destroy(rm); return rc; } /** * _sde_rm_check_lm_and_get_connected_blks - check if proposed layer mixer meets * proposed use case requirements, incl. hardwired dependent blocks like * pingpong, and dspp. * @rm: sde resource manager handle * @rsvp: reservation currently being created * @reqs: proposed use case requirements * @lm: proposed layer mixer, function checks if lm, and all other hardwired * blocks connected to the lm (pp, dspp) are available and appropriate * @dspp: output parameter, dspp block attached to the layer mixer. * NULL if dspp was not available, or not matching requirements. * @pp: output parameter, pingpong block attached to the layer mixer. * NULL if dspp was not available, or not matching requirements. * @primary_lm: if non-null, this function check if lm is compatible primary_lm * as well as satisfying all other requirements * @Return: true if lm matches all requirements, false otherwise */ static bool _sde_rm_check_lm_and_get_connected_blks( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **dspp, struct sde_rm_hw_blk **pp, struct sde_rm_hw_blk *primary_lm) { struct sde_lm_cfg *lm_cfg = (struct sde_lm_cfg *)lm->catalog; struct sde_pingpong_cfg *pp_cfg; struct sde_rm_hw_iter iter; unsigned long caps = ((struct sde_lm_cfg *)lm->catalog)->features; unsigned int preferred_disp_id = 0; bool preferred_disp_match = false; *dspp = NULL; *pp = NULL; SDE_DEBUG("check lm %d: dspp %d pp %d\n", lm_cfg->id, lm_cfg->dspp, lm_cfg->pingpong); /* Check if this layer mixer is a peer of the proposed primary LM */ if (primary_lm) { struct sde_lm_cfg *prim_lm_cfg = (struct sde_lm_cfg *)primary_lm->catalog; if (!test_bit(lm_cfg->id, &prim_lm_cfg->lm_pair_mask)) { SDE_DEBUG("lm %d not peer of lm %d\n", lm_cfg->id, prim_lm_cfg->id); return false; } } /* bypass rest of the checks if preferred display is found */ if (BIT(SDE_DISP_PRIMARY_PREF) & caps) preferred_disp_id = 1; else if (BIT(SDE_DISP_SECONDARY_PREF) & caps) preferred_disp_id = 2; else if (BIT(SDE_DISP_TERTIARY_PREF) & caps) preferred_disp_id = 3; if (reqs->disp_id == preferred_disp_id) preferred_disp_match = true; /* Matches user requirements? */ if (!preferred_disp_match && ((RM_RQ_DSPP(reqs) && lm_cfg->dspp == DSPP_MAX) || (!RM_RQ_DSPP(reqs) && lm_cfg->dspp != DSPP_MAX))) { SDE_DEBUG("dspp req mismatch lm %d reqdspp %d, lm->dspp %d\n", lm_cfg->id, (bool)(RM_RQ_DSPP(reqs)), lm_cfg->dspp); return false; } /* Already reserved? */ if (RESERVED_BY_OTHER(lm, rsvp)) { SDE_DEBUG("lm %d already reserved\n", lm_cfg->id); return false; } if (lm_cfg->dspp != DSPP_MAX) { sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_DSPP); while (_sde_rm_get_hw_locked(rm, &iter)) { if (iter.blk->id == lm_cfg->dspp) { *dspp = iter.blk; break; } } if (!*dspp) { SDE_DEBUG("lm %d failed to retrieve dspp %d\n", lm->id, lm_cfg->dspp); return false; } if (RESERVED_BY_OTHER(*dspp, rsvp)) { SDE_DEBUG("lm %d dspp %d already reserved\n", lm->id, (*dspp)->id); return false; } } sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_PINGPONG); while (_sde_rm_get_hw_locked(rm, &iter)) { if (iter.blk->id == lm_cfg->pingpong) { *pp = iter.blk; break; } } if (!*pp) { SDE_ERROR("failed to get pp on lm %d\n", lm_cfg->pingpong); return false; } if (RESERVED_BY_OTHER(*pp, rsvp)) { SDE_DEBUG("lm %d pp %d already reserved\n", lm->id, (*pp)->id); *dspp = NULL; return false; } pp_cfg = (struct sde_pingpong_cfg *)((*pp)->catalog); if ((reqs->top_name == SDE_RM_TOPOLOGY_PPSPLIT) && !(test_bit(SDE_PINGPONG_SPLIT, &pp_cfg->features))) { SDE_DEBUG("pp %d doesn't support ppsplit\n", pp_cfg->id); *dspp = NULL; return false; } return true; } static int _sde_rm_reserve_lms( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, uint32_t prefer_lm_id) { struct sde_rm_hw_blk *lm[MAX_BLOCKS]; struct sde_rm_hw_blk *dspp[MAX_BLOCKS]; struct sde_rm_hw_blk *pp[MAX_BLOCKS]; struct sde_rm_hw_iter iter_i, iter_j; int lm_count = 0; int i, rc = 0; if (!reqs->num_lm) { SDE_DEBUG("invalid no of lm %d\n", reqs->num_lm); return -EINVAL; } /* Find a primary mixer */ sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_LM); while (lm_count != reqs->num_lm && _sde_rm_get_hw_locked(rm, &iter_i)) { memset(&lm, 0, sizeof(lm)); memset(&dspp, 0, sizeof(dspp)); memset(&pp, 0, sizeof(pp)); lm_count = 0; lm[lm_count] = iter_i.blk; /* find the matched lm id */ if ((prefer_lm_id > 0) && (iter_i.blk->id != prefer_lm_id)) continue; if (!_sde_rm_check_lm_and_get_connected_blks(rm, rsvp, reqs, lm[lm_count], &dspp[lm_count], &pp[lm_count], NULL)) continue; ++lm_count; /* Valid primary mixer found, find matching peers */ sde_rm_init_hw_iter(&iter_j, 0, SDE_HW_BLK_LM); while (lm_count != reqs->num_lm && _sde_rm_get_hw_locked(rm, &iter_j)) { if (iter_i.blk == iter_j.blk) continue; if (!_sde_rm_check_lm_and_get_connected_blks(rm, rsvp, reqs, iter_j.blk, &dspp[lm_count], &pp[lm_count], iter_i.blk)) continue; lm[lm_count] = iter_j.blk; ++lm_count; } } if (lm_count != reqs->num_lm) { SDE_DEBUG("unable to find appropriate mixers\n"); return -ENAVAIL; } for (i = 0; i < ARRAY_SIZE(lm); i++) { if (!lm[i]) break; lm[i]->rsvp_nxt = rsvp; pp[i]->rsvp_nxt = rsvp; if (dspp[i]) dspp[i]->rsvp_nxt = rsvp; SDE_EVT32(lm[i]->type, rsvp->enc_id, lm[i]->id, pp[i]->id, dspp[i] ? dspp[i]->id : 0); } if (reqs->top_name == SDE_RM_TOPOLOGY_PPSPLIT) { /* reserve a free PINGPONG_SLAVE block */ rc = -ENAVAIL; sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_PINGPONG); while (_sde_rm_get_hw_locked(rm, &iter_i)) { struct sde_pingpong_cfg *pp_cfg = (struct sde_pingpong_cfg *) (iter_i.blk->catalog); if (!(test_bit(SDE_PINGPONG_SLAVE, &pp_cfg->features))) continue; if (RESERVED_BY_OTHER(iter_i.blk, rsvp)) continue; iter_i.blk->rsvp_nxt = rsvp; rc = 0; break; } } return rc; } static int _sde_rm_reserve_ctls( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, uint32_t prefer_ctl_id) { struct sde_rm_hw_blk *ctls[MAX_BLOCKS]; struct sde_rm_hw_iter iter; int i = 0; memset(&ctls, 0, sizeof(ctls)); sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &iter)) { unsigned long caps; bool has_split_display, has_ppsplit; bool ctl_found = false; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; caps = ((struct sde_ctl_cfg *)iter.blk->catalog)->features; has_split_display = BIT(SDE_CTL_SPLIT_DISPLAY) & caps; has_ppsplit = BIT(SDE_CTL_PINGPONG_SPLIT) & caps; SDE_DEBUG("ctl %d caps 0x%lX\n", iter.blk->id, caps); /* early return when finding the matched ctl id */ if ((prefer_ctl_id > 0) && (iter.blk->id == prefer_ctl_id)) ctl_found = true; switch (reqs->disp_id) { case 1: if (BIT(SDE_CTL_PRIMARY_PREF) & caps) ctl_found = true; break; case 2: if (BIT(SDE_CTL_SECONDARY_PREF) & caps) ctl_found = true; break; case 3: if (BIT(SDE_CTL_TERTIARY_PREF) & caps) ctl_found = true; break; default: break; } if (ctl_found) { ctls[i] = iter.blk; prefer_ctl_id = 0; if (++i == reqs->num_ctl) break; else continue; } if (reqs->needs_split_display != has_split_display) continue; if (reqs->top_name == SDE_RM_TOPOLOGY_PPSPLIT && !has_ppsplit) continue; ctls[i] = iter.blk; SDE_DEBUG("ctl %d match\n", iter.blk->id); if (++i == reqs->num_ctl) break; } if (i != reqs->num_ctl) return -ENAVAIL; for (i = 0; i < ARRAY_SIZE(ctls) && i < reqs->num_ctl; i++) { ctls[i]->rsvp_nxt = rsvp; SDE_EVT32(ctls[i]->type, rsvp->enc_id, ctls[i]->id); } return 0; } static int _sde_rm_reserve_cdm( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, uint32_t id, enum sde_hw_blk_type type) { struct sde_rm_hw_iter iter; struct sde_cdm_cfg *cdm; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CDM); while (_sde_rm_get_hw_locked(rm, &iter)) { bool match = false; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; cdm = (struct sde_cdm_cfg *)(iter.blk->catalog); if (type == SDE_HW_BLK_INTF && id != INTF_MAX) match = test_bit(id, &cdm->intf_connect); else if (type == SDE_HW_BLK_WB && id != WB_MAX) match = test_bit(id, &cdm->wb_connect); SDE_DEBUG("type %d id %d, cdm intfs %lu wbs %lu match %d\n", type, id, cdm->intf_connect, cdm->wb_connect, match); if (!match) continue; iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); break; } if (!iter.hw) { SDE_ERROR("couldn't reserve cdm for type %d id %d\n", type, id); return -ENAVAIL; } return 0; } static int _sde_rm_reserve_intf_or_wb( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, uint32_t id, enum sde_hw_blk_type type, bool needs_cdm) { struct sde_rm_hw_iter iter; int ret = 0; /* Find the block entry in the rm, and note the reservation */ sde_rm_init_hw_iter(&iter, 0, type); while (_sde_rm_get_hw_locked(rm, &iter)) { if (iter.blk->id != id) continue; if (RESERVED_BY_OTHER(iter.blk, rsvp)) { SDE_ERROR("type %d id %d already reserved\n", type, id); return -ENAVAIL; } iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); break; } /* Shouldn't happen since wbs / intfs are fixed at probe */ if (!iter.hw) { SDE_ERROR("couldn't find type %d id %d\n", type, id); return -EINVAL; } /* Expected only one intf or wb will request cdm */ if (needs_cdm) ret = _sde_rm_reserve_cdm(rm, rsvp, id, type); return ret; } static int _sde_rm_reserve_intf_related_hw( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_encoder_hw_resources *hw_res) { int i, ret = 0; u32 id; for (i = 0; i < ARRAY_SIZE(hw_res->intfs); i++) { if (hw_res->intfs[i] == INTF_MODE_NONE) continue; id = i + INTF_0; ret = _sde_rm_reserve_intf_or_wb(rm, rsvp, id, SDE_HW_BLK_INTF, hw_res->needs_cdm); if (ret) return ret; } for (i = 0; i < ARRAY_SIZE(hw_res->wbs); i++) { if (hw_res->wbs[i] == INTF_MODE_NONE) continue; id = i + WB_0; ret = _sde_rm_reserve_intf_or_wb(rm, rsvp, id, SDE_HW_BLK_WB, hw_res->needs_cdm); if (ret) return ret; } return ret; } static int _sde_rm_make_next_rsvp( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs) { int ret; struct sde_connector *sde_conn = to_sde_connector(conn_state->connector); struct dsi_display *dsi; struct sde_hdmi *hdmi; const char *display_type; if (sde_conn->connector_type == DRM_MODE_CONNECTOR_DSI) { dsi = (struct dsi_display *)sde_conn->display; display_type = dsi->display_type; } else if (sde_conn->connector_type == DRM_MODE_CONNECTOR_HDMIA) { hdmi = (struct sde_hdmi *)sde_conn->display; display_type = hdmi->display_type; } else { /* virtual display does not have display type */ display_type = "none"; } if (!strcmp("primary", display_type)) reqs->disp_id = 1; else if (!strcmp("secondary", display_type)) reqs->disp_id = 2; else if (!strcmp("tertiary", display_type)) reqs->disp_id = 3; else /* No display type set in dtsi */ reqs->disp_id = 0; /* Create reservation info, tag reserved blocks with it as we go */ rsvp->seq = ++rm->rsvp_next_seq; rsvp->enc_id = enc->base.id; rsvp->topology = reqs->top_name; list_add_tail(&rsvp->list, &rm->rsvps); /* * Assign LMs and blocks whose usage is tied to them: DSPP & Pingpong. * Do assignment preferring to give away low-resource mixers first: * - Check mixers without DSPPs * - Only then allow to grab from mixers with DSPP capability */ ret = _sde_rm_reserve_lms(rm, rsvp, reqs, 0); if (ret && !RM_RQ_DSPP(reqs)) { reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_DSPP); ret = _sde_rm_reserve_lms(rm, rsvp, reqs, 0); } if (ret) { SDE_ERROR("unable to find appropriate mixers\n"); return ret; } /* * Do assignment preferring to give away low-resource CTLs first: * - Check mixers without Split Display * - Only then allow to grab from CTLs with split display capability */ _sde_rm_reserve_ctls(rm, rsvp, reqs, 0); if (ret && !reqs->needs_split_display) { reqs->needs_split_display = true; _sde_rm_reserve_ctls(rm, rsvp, reqs, 0); } if (ret) { SDE_ERROR("unable to find appropriate CTL\n"); return ret; } /* Assign INTFs, WBs, and blks whose usage is tied to them: CTL & CDM */ ret = _sde_rm_reserve_intf_related_hw(rm, rsvp, &reqs->hw_res); if (ret) return ret; return ret; } static int _sde_rm_make_next_rsvp_for_splash( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs) { int ret; struct msm_drm_private *priv; struct sde_kms *sde_kms; struct sde_splash_info *sinfo; int i; int intf_id = INTF_0; u32 prefer_lm_id = 0; u32 prefer_ctl_id = 0; if (!enc->dev || !enc->dev->dev_private) { SDE_ERROR("drm device invalid\n"); return -EINVAL; } priv = enc->dev->dev_private; if (!priv->kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(priv->kms); sinfo = &sde_kms->splash_info; /* Get the intf id first, and reserve the same lk and ctl * in bootloader for kernel resource manager */ for (i = 0; i < ARRAY_SIZE(reqs->hw_res.intfs); i++) { if (reqs->hw_res.intfs[i] == INTF_MODE_NONE) continue; intf_id = i + INTF_0; break; } /* get preferred lm id and ctl id */ for (i = 0; i < CTL_MAX - 1; i++) { if (sinfo->res.top[i].intf_sel != intf_id) continue; prefer_lm_id = sinfo->res.top[i].lm[0].lm_id; prefer_ctl_id = sinfo->res.top[i].lm[0].ctl_id; break; } SDE_DEBUG("intf_id %d, prefer lm_id %d, ctl_id %d\n", intf_id, prefer_lm_id, prefer_ctl_id); /* Create reservation info, tag reserved blocks with it as we go */ rsvp->seq = ++rm->rsvp_next_seq; rsvp->enc_id = enc->base.id; rsvp->topology = reqs->top_name; list_add_tail(&rsvp->list, &rm->rsvps); /* * Assign LMs and blocks whose usage is tied to them: DSPP & Pingpong. * Do assignment preferring to give away low-resource mixers first: * - Check mixers without DSPPs * - Only then allow to grab from mixers with DSPP capability */ ret = _sde_rm_reserve_lms(rm, rsvp, reqs, prefer_lm_id); if (ret && !RM_RQ_DSPP(reqs)) { reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_DSPP); ret = _sde_rm_reserve_lms(rm, rsvp, reqs, prefer_lm_id); } if (ret) { SDE_ERROR("unable to find appropriate mixers\n"); return ret; } /* * Do assignment preferring to give away low-resource CTLs first: * - Check mixers without Split Display * - Only then allow to grab from CTLs with split display capability */ for (i = 0; i < sinfo->res.ctl_top_cnt; i++) SDE_DEBUG("splash_info ctl_ids[%d] = %d\n", i, sinfo->res.ctl_ids[i]); ret = _sde_rm_reserve_ctls(rm, rsvp, reqs, prefer_ctl_id); if (ret && !reqs->needs_split_display) { reqs->needs_split_display = true; _sde_rm_reserve_ctls(rm, rsvp, reqs, prefer_ctl_id); } if (ret) { SDE_ERROR("unable to find appropriate CTL\n"); return ret; } /* Assign INTFs, WBs, and blks whose usage is tied to them: CTL & CDM */ ret = _sde_rm_reserve_intf_related_hw(rm, rsvp, &reqs->hw_res); return ret; } static int _sde_rm_populate_requirements( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_rm_requirements *reqs) { const struct drm_display_mode *mode = &crtc_state->mode; /** * DRM<->HW Topologies * * Name: SINGLEPIPE * Description: 1 LM, 1 PP, 1 INTF * Condition: 1 DRM Encoder w/ 1 Display Tiles (Default) * * Name: DUALPIPE * Description: 2 LM, 2 PP, 2 INTF * Condition: 1 DRM Encoder w/ 2 Display Tiles * * Name: PPSPLIT * Description: 1 LM, 1 PP + 1 Slave PP, 2 INTF * Condition: * 1 DRM Encoder w/ 2 Display Tiles * topology_control & SDE_TOPREQ_PPSPLIT * * Name: DUALPIPEMERGE * Description: 2 LM, 2 PP, 3DMux, 1 INTF * Condition: * 1 DRM Encoder w/ 1 Display Tiles * display_info.max_width >= layer_mixer.max_width * * Name: DUALPIPEMERGE * Description: 2 LM, 2 PP, 3DMux, 1 INTF * Condition: * 1 DRM Encoder w/ 1 Display Tiles * display_info.max_width <= layer_mixer.max_width * topology_control & SDE_TOPREQ_FORCE_TILING */ memset(reqs, 0, sizeof(*reqs)); reqs->top_ctrl = sde_connector_get_property(conn_state, CONNECTOR_PROP_TOPOLOGY_CONTROL); SDE_DEBUG("%s reqs->top_ctrl = %llu\n", __func__, reqs->top_ctrl); sde_encoder_get_hw_resources(enc, &reqs->hw_res, conn_state); /* Base assumption is LMs = h_tiles, conditions below may override */ reqs->num_lm = reqs->hw_res.display_num_of_h_tiles; if (reqs->num_lm == 2) { if (RM_RQ_PPSPLIT(reqs)) { /* user requests serving dual display with 1 lm */ reqs->top_name = SDE_RM_TOPOLOGY_PPSPLIT; reqs->num_lm = 1; reqs->num_ctl = 1; reqs->needs_split_display = true; } else { /* dual display, serve with 2 lms */ reqs->top_name = SDE_RM_TOPOLOGY_DUALPIPE; reqs->num_ctl = 2; reqs->needs_split_display = true; } } else if (reqs->num_lm == 1) { if (RM_RQ_FORCE_MIXER(reqs)) { /* user request serving wide display with 1 lm */ reqs->top_name = SDE_RM_TOPOLOGY_SINGLEPIPE; reqs->num_ctl = 1; reqs->needs_split_display = false; } else if (mode->hdisplay > rm->lm_max_width) { /* wide display, must split across 2 lm and merge */ reqs->top_name = SDE_RM_TOPOLOGY_DUALPIPEMERGE; reqs->num_lm = 2; reqs->num_ctl = 1; reqs->needs_split_display = false; } else if (RM_RQ_FORCE_TILING(reqs)) { /* thin display, but user requests 2 lm and merge */ reqs->top_name = SDE_RM_TOPOLOGY_DUALPIPEMERGE; reqs->num_lm = 2; reqs->num_ctl = 1; reqs->needs_split_display = false; } else { /* thin display, serve with only 1 lm */ reqs->top_name = SDE_RM_TOPOLOGY_SINGLEPIPE; reqs->num_ctl = 1; reqs->needs_split_display = false; } } else { /* Currently no configurations with # LM > 2 */ SDE_ERROR("unsupported # of mixers %d\n", reqs->num_lm); return -EINVAL; } SDE_DEBUG("top_ctrl 0x%llX num_h_tiles %d\n", reqs->top_ctrl, reqs->hw_res.display_num_of_h_tiles); SDE_DEBUG("display_max_width %d rm->lm_max_width %d\n", mode->hdisplay, rm->lm_max_width); SDE_DEBUG("num_lm %d num_ctl %d topology_name %d\n", reqs->num_lm, reqs->num_ctl, reqs->top_name); SDE_DEBUG("num_lm %d topology_name %d\n", reqs->num_lm, reqs->top_name); SDE_EVT32(mode->hdisplay, rm->lm_max_width, reqs->num_lm, reqs->top_ctrl, reqs->top_name, reqs->num_ctl); return 0; } static struct sde_rm_rsvp *_sde_rm_get_rsvp( struct sde_rm *rm, struct drm_encoder *enc) { struct sde_rm_rsvp *i; if (!rm || !enc) { SDE_ERROR("invalid params\n"); return NULL; } if (list_empty(&rm->rsvps)) return NULL; list_for_each_entry(i, &rm->rsvps, list) if (i->enc_id == enc->base.id) return i; return NULL; } static struct drm_connector *_sde_rm_get_connector( struct drm_encoder *enc) { struct drm_connector *conn = NULL; struct list_head *connector_list = &enc->dev->mode_config.connector_list; list_for_each_entry(conn, connector_list, head) if (conn->encoder == enc) return conn; return NULL; } /** * _sde_rm_release_rsvp - release resources and release a reservation * @rm: KMS handle * @rsvp: RSVP pointer to release and release resources for */ static void _sde_rm_release_rsvp( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct drm_connector *conn) { struct sde_rm_rsvp *rsvp_c, *rsvp_n; struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; if (!rsvp) return; SDE_DEBUG("rel rsvp %d enc %d\n", rsvp->seq, rsvp->enc_id); list_for_each_entry_safe(rsvp_c, rsvp_n, &rm->rsvps, list) { if (rsvp == rsvp_c) { list_del(&rsvp_c->list); break; } } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp == rsvp) { blk->rsvp = NULL; SDE_DEBUG("rel rsvp %d enc %d %s %d\n", rsvp->seq, rsvp->enc_id, blk->type_name, blk->id); } if (blk->rsvp_nxt == rsvp) { blk->rsvp_nxt = NULL; SDE_DEBUG("rel rsvp_nxt %d enc %d %s %d\n", rsvp->seq, rsvp->enc_id, blk->type_name, blk->id); } } } kfree(rsvp); } void sde_rm_release(struct sde_rm *rm, struct drm_encoder *enc) { struct sde_rm_rsvp *rsvp; struct drm_connector *conn; uint64_t top_ctrl; if (!rm || !enc) { SDE_ERROR("invalid params\n"); return; } mutex_lock(&rm->rm_lock); rsvp = _sde_rm_get_rsvp(rm, enc); if (!rsvp) { SDE_ERROR("failed to find rsvp for enc %d\n", enc->base.id); goto end; } conn = _sde_rm_get_connector(enc); if (!conn) { SDE_ERROR("failed to get connector for enc %d\n", enc->base.id); goto end; } top_ctrl = sde_connector_get_property(conn->state, CONNECTOR_PROP_TOPOLOGY_CONTROL); if (top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_LOCK)) { SDE_DEBUG("rsvp[s%de%d] not releasing locked resources\n", rsvp->seq, rsvp->enc_id); } else { SDE_DEBUG("release rsvp[s%de%d]\n", rsvp->seq, rsvp->enc_id); _sde_rm_release_rsvp(rm, rsvp, conn); (void) msm_property_set_property( sde_connector_get_propinfo(conn), sde_connector_get_property_values(conn->state), CONNECTOR_PROP_TOPOLOGY_NAME, SDE_RM_TOPOLOGY_UNKNOWN); } end: mutex_unlock(&rm->rm_lock); } static int _sde_rm_commit_rsvp( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct drm_connector_state *conn_state) { struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; int ret = 0; ret = msm_property_set_property( sde_connector_get_propinfo(conn_state->connector), sde_connector_get_property_values(conn_state), CONNECTOR_PROP_TOPOLOGY_NAME, rsvp->topology); if (ret) { SDE_ERROR("failed to set topology name property, ret %d\n", ret); _sde_rm_release_rsvp(rm, rsvp, conn_state->connector); return ret; } /* Swap next rsvp to be the active */ for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp_nxt) { blk->rsvp = blk->rsvp_nxt; blk->rsvp_nxt = NULL; } } } if (!ret) { SDE_DEBUG("rsrv enc %d topology %d\n", rsvp->enc_id, rsvp->topology); SDE_EVT32(rsvp->enc_id, rsvp->topology); } return ret; } int sde_rm_check_property_topctl(uint64_t val) { if ((BIT(SDE_RM_TOPCTL_FORCE_TILING) & val) && (BIT(SDE_RM_TOPCTL_PPSPLIT) & val)) { SDE_ERROR("ppsplit & force_tiling are incompatible\n"); return -EINVAL; } return 0; } int sde_rm_reserve( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, bool test_only) { struct sde_rm_rsvp *rsvp_cur, *rsvp_nxt; struct sde_rm_requirements reqs; struct msm_drm_private *priv; struct sde_kms *sde_kms; struct sde_connector *sde_conn; int ret; if (!rm || !enc || !crtc_state || !conn_state) { SDE_ERROR("invalid arguments\n"); return -EINVAL; } if (!enc->dev || !enc->dev->dev_private) { SDE_ERROR("invalid drm device\n"); return -EINVAL; } priv = enc->dev->dev_private; if (!priv->kms) { SDE_ERROR("invald kms\n"); return -EINVAL; } sde_kms = to_sde_kms(priv->kms); /* Check if this is just a page-flip */ if (!drm_atomic_crtc_needs_modeset(crtc_state)) return 0; sde_conn = to_sde_connector(conn_state->connector); if (sde_conn->is_shared) return 0; SDE_DEBUG("reserving hw for conn %d enc %d crtc %d test_only %d\n", conn_state->connector->base.id, enc->base.id, crtc_state->crtc->base.id, test_only); SDE_EVT32(enc->base.id, conn_state->connector->base.id); mutex_lock(&rm->rm_lock); _sde_rm_print_rsvps(rm, SDE_RM_STAGE_BEGIN); ret = _sde_rm_populate_requirements(rm, enc, crtc_state, conn_state, &reqs); if (ret) { SDE_ERROR("failed to populate hw requirements\n"); goto end; } /* * We only support one active reservation per-hw-block. But to implement * transactional semantics for test-only, and for allowing failure while * modifying your existing reservation, over the course of this * function we can have two reservations: * Current: Existing reservation * Next: Proposed reservation. The proposed reservation may fail, or may * be discarded if in test-only mode. * If reservation is successful, and we're not in test-only, then we * replace the current with the next. */ rsvp_nxt = kzalloc(sizeof(*rsvp_nxt), GFP_KERNEL); if (!rsvp_nxt) { ret = -ENOMEM; goto end; } rsvp_cur = _sde_rm_get_rsvp(rm, enc); /* * User can request that we clear out any reservation during the * atomic_check phase by using this CLEAR bit */ if (rsvp_cur && test_only && RM_RQ_CLEAR(&reqs)) { SDE_DEBUG("test_only & CLEAR: clear rsvp[s%de%d]\n", rsvp_cur->seq, rsvp_cur->enc_id); _sde_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); rsvp_cur = NULL; _sde_rm_print_rsvps(rm, SDE_RM_STAGE_AFTER_CLEAR); (void) msm_property_set_property( sde_connector_get_propinfo( conn_state->connector), sde_connector_get_property_values(conn_state), CONNECTOR_PROP_TOPOLOGY_NAME, SDE_RM_TOPOLOGY_UNKNOWN); } /* Check the proposed reservation, store it in hw's "next" field */ if (sde_kms->splash_info.handoff) { SDE_DEBUG("Reserve resource for splash\n"); ret = _sde_rm_make_next_rsvp_for_splash (rm, enc, crtc_state, conn_state, rsvp_nxt, &reqs); } else ret = _sde_rm_make_next_rsvp(rm, enc, crtc_state, conn_state, rsvp_nxt, &reqs); _sde_rm_print_rsvps(rm, SDE_RM_STAGE_AFTER_RSVPNEXT); if (ret) { SDE_ERROR("failed to reserve hw resources: %d\n", ret); _sde_rm_release_rsvp(rm, rsvp_nxt, conn_state->connector); } else if (test_only && !RM_RQ_LOCK(&reqs)) { /* * Normally, if test_only, test the reservation and then undo * However, if the user requests LOCK, then keep the reservation * made during the atomic_check phase. */ SDE_DEBUG("test_only: discard test rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); _sde_rm_release_rsvp(rm, rsvp_nxt, conn_state->connector); } else { if (test_only && RM_RQ_LOCK(&reqs)) SDE_DEBUG("test_only & LOCK: lock rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); _sde_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); ret = _sde_rm_commit_rsvp(rm, rsvp_nxt, conn_state); } _sde_rm_print_rsvps(rm, SDE_RM_STAGE_FINAL); end: mutex_unlock(&rm->rm_lock); return ret; } int sde_rm_ext_blk_create_reserve(struct sde_rm *rm, enum sde_hw_blk_type type, uint32_t id, void *hw, struct drm_encoder *enc) { struct sde_rm_hw_blk *blk; struct sde_rm_rsvp *rsvp; int ret = 0; if (!rm || !hw || !enc) { SDE_ERROR("invalid parameters\n"); return -EINVAL; } if (type >= SDE_HW_BLK_MAX) { SDE_ERROR("invalid HW type\n"); return -EINVAL; } blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) { _sde_rm_hw_destroy(type, hw); return -ENOMEM; } mutex_lock(&rm->rm_lock); rsvp = _sde_rm_get_rsvp(rm, enc); if (!rsvp) { rsvp = kzalloc(sizeof(*rsvp), GFP_KERNEL); if (!rsvp) { ret = -ENOMEM; kfree(blk); goto end; } rsvp->seq = ++rm->rsvp_next_seq; rsvp->enc_id = enc->base.id; list_add_tail(&rsvp->list, &rm->rsvps); SDE_DEBUG("create rsvp %d for enc %d\n", rsvp->seq, rsvp->enc_id); } blk->type = type; blk->id = id; blk->hw = hw; blk->rsvp = rsvp; list_add_tail(&blk->list, &rm->hw_blks[type]); SDE_DEBUG("create blk %d %d for rsvp %d enc %d\n", blk->type, blk->id, rsvp->seq, rsvp->enc_id); end: mutex_unlock(&rm->rm_lock); return ret; } int sde_rm_ext_blk_destroy(struct sde_rm *rm, struct drm_encoder *enc) { struct sde_rm_hw_blk *blk = NULL, *p; struct sde_rm_rsvp *rsvp; enum sde_hw_blk_type type; int ret = 0; if (!rm || !enc) { SDE_ERROR("invalid parameters\n"); return -EINVAL; } mutex_lock(&rm->rm_lock); rsvp = _sde_rm_get_rsvp(rm, enc); if (!rsvp) { ret = -ENOENT; SDE_ERROR("failed to find rsvp for enc %d\n", enc->base.id); goto end; } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry_safe(blk, p, &rm->hw_blks[type], list) { if (blk->rsvp == rsvp) { list_del(&blk->list); SDE_DEBUG("del blk %d %d from rsvp %d enc %d\n", blk->type, blk->id, rsvp->seq, rsvp->enc_id); kfree(blk); } } } SDE_DEBUG("del rsvp %d\n", rsvp->seq); list_del(&rsvp->list); kfree(rsvp); end: mutex_unlock(&rm->rm_lock); return ret; } static int _sde_rm_get_ctl_lm_for_splash(struct sde_hw_ctl *ctl, int max_lm_cnt, u8 lm_cnt, u8 *lm_ids, struct splash_ctl_top *top, int index) { int j; struct splash_lm_hw *lm; if (!ctl || !top) { SDE_ERROR("invalid parameters\n"); return 0; } lm = top->lm; for (j = 0; j < max_lm_cnt; j++) { lm[top->ctl_lm_cnt].lm_reg_value = ctl->ops.read_ctl_layers_for_splash(ctl, j + LM_0); if (lm[top->ctl_lm_cnt].lm_reg_value) { lm[top->ctl_lm_cnt].ctl_id = index + CTL_0; lm_ids[lm_cnt++] = j + LM_0; lm[top->ctl_lm_cnt].lm_id = j + LM_0; top->ctl_lm_cnt++; } } return top->ctl_lm_cnt; } static void _sde_rm_get_ctl_top_for_splash(struct sde_hw_ctl *ctl, struct splash_ctl_top *top) { if (!ctl || !top) { SDE_ERROR("invalid ctl or top\n"); return; } if (!ctl->ops.read_ctl_top_for_splash) { SDE_ERROR("read_ctl_top not initialized\n"); return; } top->value = ctl->ops.read_ctl_top_for_splash(ctl); top->intf_sel = (top->value >> 4) & 0xf; } int sde_rm_read_resource_for_splash(struct sde_rm *rm, void *splash_info, struct sde_mdss_cfg *cat) { struct sde_rm_hw_iter ctl_iter; int index = 0; struct sde_splash_info *sinfo; struct sde_hw_ctl *ctl; if (!rm || !splash_info || !cat) return -EINVAL; sinfo = (struct sde_splash_info *)splash_info; sde_rm_init_hw_iter(&ctl_iter, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &ctl_iter)) { ctl = (struct sde_hw_ctl *)ctl_iter.hw; _sde_rm_get_ctl_top_for_splash(ctl, &sinfo->res.top[index]); if (sinfo->res.top[index].intf_sel) { sinfo->res.lm_cnt += _sde_rm_get_ctl_lm_for_splash(ctl, cat->mixer_count, sinfo->res.lm_cnt, sinfo->res.lm_ids, &sinfo->res.top[index], index); sinfo->res.ctl_ids[sinfo->res.ctl_top_cnt] = index + CTL_0; sinfo->res.ctl_top_cnt++; } index++; } SDE_DEBUG("%s: ctl_top_cnt=%d, lm_cnt=%d\n", __func__, sinfo->res.ctl_top_cnt, sinfo->res.lm_cnt); return 0; }