| Commit message (Collapse) | Author |
|
Change-Id: I126075a330f305c85f8fe1b8c9d408f368be95d1
|
|
joshuous: Adapted to work with CAF's "softirq: defer softirq processing
to ksoftirqd if CPU is busy with RT" commit.
ajaivasudeve: adapted for the commit "softirq: Don't defer all softirq during RT task"
We're finding audio glitches caused by audio-producing RT tasks
that are either interrupted to handle softirq's or that are
scheduled onto cpu's that are handling softirq's.
In a previous patch, we attempted to catch many cases of the
latter problem, but it's clear that we are still losing
significant numbers of races in some apps.
This patch attempts to address both problems:
1. It prohibits handling softirq's when interrupting
an RT task, by delaying the softirq to the ksoftirqd
thread.
2. It attempts to reduce the most common windows in which
we lose the race between scheduling an RT task on a remote
core and starting to handle softirq's on that core.
We still lose some races, but we lose significantly fewer.
(And we don't want to introduce any heavyweight forms
of synchronization on these paths.)
Bug: 64912585
Change-Id: Ida89a903be0f1965552dd0e84e67ef1d3158c7d8
Signed-off-by: John Dias <joaodias@google.com>
Signed-off-by: joshuous <joshuous@gmail.com>
Signed-off-by: ajaivasudeve <ajaivasudeve@gmail.com>
|
|
For effective interplay between RT and fair tasks. Enables sched_fifo
for UI and Render tasks. Critical for improving user experience.
bug: 24503801
bug: 30377696
Change-Id: I2a210c567c3f5c7edbdd7674244822f848e6d0cf
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
(cherry picked from commit dfe0f16b6fd3a694173c5c62cf825643eef184a3)
|
|
CPU rq util updates happen when rq signals are updated as part of
enqueue and dequeue operations. Doing these updates triggers a call to
the registered util update handler, which takes schedtune boosting
into account. Enqueueing the task in the correct schedtune group after
this happens means that we will potentially not see the boost for an
entire throttle period.
Move the enqueue/dequeue operations for schedtune before the signal
updates which can trigger OPP changes.
Change-Id: I4236e6b194bc5daad32ff33067d4be1987996780
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
|
|
Change-Id: Ieb1067c5e276f872ed4c722b7d1fabecbdad87e7
|
|
milliseconds
[ Upstream commit 975e155ed8732cb81f55c021c441ae662dd040b5 ]
We added the 'sched_rr_timeslice_ms' SCHED_RR tuning knob in this commit:
ce0dbbbb30ae ("sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice")
... which name suggests to users that it's in milliseconds, while in reality
it's being set in milliseconds but the result is shown in jiffies.
This is obviously confusing when HZ is not 1000, it makes it appear like the
value set failed, such as HZ=100:
root# echo 100 > /proc/sys/kernel/sched_rr_timeslice_ms
root# cat /proc/sys/kernel/sched_rr_timeslice_ms
10
Fix this to be milliseconds all around.
Signed-off-by: Shile Zhang <shile.zhang@nokia.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1485612049-20923-1-git-send-email-shile.zhang@nokia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d29a20645d5e929aa7e8616f28e5d8e1c49263ec ]
While running rt-tests' pi_stress program I got the following splat:
rq->clock_update_flags < RQCF_ACT_SKIP
WARNING: CPU: 27 PID: 0 at kernel/sched/sched.h:960 assert_clock_updated.isra.38.part.39+0x13/0x20
[...]
<IRQ>
enqueue_top_rt_rq+0xf4/0x150
? cpufreq_dbs_governor_start+0x170/0x170
sched_rt_rq_enqueue+0x65/0x80
sched_rt_period_timer+0x156/0x360
? sched_rt_rq_enqueue+0x80/0x80
__hrtimer_run_queues+0xfa/0x260
hrtimer_interrupt+0xcb/0x220
smp_apic_timer_interrupt+0x62/0x120
apic_timer_interrupt+0xf/0x20
</IRQ>
[...]
do_idle+0x183/0x1e0
cpu_startup_entry+0x5f/0x70
start_secondary+0x192/0x1d0
secondary_startup_64+0xa5/0xb0
We can get rid of it be the "traditional" means of adding an
update_rq_clock() call after acquiring the rq->lock in
do_sched_rt_period_timer().
The case for the RT task throttling (which this workload also hits)
can be ignored in that the skip_update call is actually bogus and
quite the contrary (the request bits are removed/reverted).
By setting RQCF_UPDATED we really don't care if the skip is happening
or not and will therefore make the assert_clock_updated() check happy.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: linux-kernel@vger.kernel.org
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180402164954.16255-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2fe2582649aa2355f79acddb86bd4d6c5363eb63 ]
The rcutorture test suite occasionally provokes a splat due to invoking
rt_mutex_lock() which needs to boost the priority of a task currently
sitting on a runqueue that belongs to an offline CPU:
WARNING: CPU: 0 PID: 12 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 0 PID: 12 Comm: rcub/7 Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff9ed3de5f8cc0 task.stack: ffffbbf80012c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffffbbf80012fd10 EFLAGS: 00010082
RAX: 000000000000002f RBX: ffff9ed3dd9cb300 RCX: 0000000000000004
RDX: 0000000080000004 RSI: 0000000000000086 RDI: 00000000ffffffff
RBP: ffffbbf80012fd10 R08: 000000000009da7a R09: 0000000000007b9d
R10: 0000000000000001 R11: ffffffffbb57c2cd R12: 000000000000000d
R13: ffff9ed3de5f8cc0 R14: 0000000000000061 R15: ffff9ed3ded59200
FS: 0000000000000000(0000) GS:ffff9ed3dea00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000080686f0 CR3: 000000001b9e0000 CR4: 00000000000006f0
Call Trace:
resched_curr+0x61/0xd0
switched_to_rt+0x8f/0xa0
rt_mutex_setprio+0x25c/0x410
task_blocks_on_rt_mutex+0x1b3/0x1f0
rt_mutex_slowlock+0xa9/0x1e0
rt_mutex_lock+0x29/0x30
rcu_boost_kthread+0x127/0x3c0
kthread+0x104/0x140
? rcu_report_unblock_qs_rnp+0x90/0x90
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x22/0x30
Code: f0 00 0f 92 c0 84 c0 74 14 48 8b 05 34 74 c5 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 a0 c6 fc b9 e8 d5 b5 06 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 a2 d1 13 02 85 c0 75 38 55 48
But the target task's priority has already been adjusted, so the only
purpose of switched_to_rt() invoking resched_curr() is to wake up the
CPU running some task that needs to be preempted by the boosted task.
But the CPU is offline, which presumably means that the task must be
migrated to some other CPU, and that this other CPU will undertake any
needed preemption at the time of migration. Because the runqueue lock
is held when resched_curr() is invoked, we know that the boosted task
cannot go anywhere, so it is not necessary to invoke resched_curr()
in this particular case.
This commit therefore makes switched_to_rt() refrain from invoking
resched_curr() when the target CPU is offline.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 364f56653708ba8bcdefd4f0da2a42904baa8eeb upstream.
When issuing an IPI RT push, where an IPI is sent to each CPU that has more
than one RT task scheduled on it, it references the root domain's rto_mask,
that contains all the CPUs within the root domain that has more than one RT
task in the runable state. The problem is, after the IPIs are initiated, the
rq->lock is released. This means that the root domain that is associated to
the run queue could be freed while the IPIs are going around.
Add a sched_get_rd() and a sched_put_rd() that will increment and decrement
the root domain's ref count respectively. This way when initiating the IPIs,
the scheduler will up the root domain's ref count before releasing the
rq->lock, ensuring that the root domain does not go away until the IPI round
is complete.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad0f1d9d65938aec72a698116cd73a980916895e upstream.
When the rto_push_irq_work_func() is called, it looks at the RT overloaded
bitmask in the root domain via the runqueue (rq->rd). The problem is that
during CPU up and down, nothing here stops rq->rd from changing between
taking the rq->rd->rto_lock and releasing it. That means the lock that is
released is not the same lock that was taken.
Instead of using this_rq()->rd to get the root domain, as the irq work is
part of the root domain, we can simply get the root domain from the irq work
that is passed to the routine:
container_of(work, struct root_domain, rto_push_work)
This keeps the root domain consistent.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Boosted RT tasks can be deboosted quickly, this makes boost usless
for RT tasks and causes lots of glitching. Use timers to prevent
de-boost too soon and wait for long enough such that next enqueue
happens after a threshold.
While this can be solved in the governor, there are following
advantages:
- The approach used is governor-independent
- Reduces boost group lock contention for frequently sleepers/wakers
Note:
Fixed build breakage due to schedfreq dependency which isn't used
for RT anymore.
Bug: 30210506
Change-Id: I428a2695cac06cc3458cdde0dea72315e4e66c00
Signed-off-by: Joel Fernandes <joelaf@google.com>
|
|
commit f73c52a5bcd1710994e53fbccc378c42b97a06b6 upstream.
Daniel Wagner reported a crash on the BeagleBone Black SoC.
This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.
As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.
Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.
Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.
Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.
Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4bdced5c9a2922521e325896a7bbbf0132c94e56 upstream.
When a CPU lowers its priority (schedules out a high priority task for a
lower priority one), a check is made to see if any other CPU has overloaded
RT tasks (more than one). It checks the rto_mask to determine this and if so
it will request to pull one of those tasks to itself if the non running RT
task is of higher priority than the new priority of the next task to run on
the current CPU.
When we deal with large number of CPUs, the original pull logic suffered
from large lock contention on a single CPU run queue, which caused a huge
latency across all CPUs. This was caused by only having one CPU having
overloaded RT tasks and a bunch of other CPUs lowering their priority. To
solve this issue, commit:
b6366f048e0c ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")
changed the way to request a pull. Instead of grabbing the lock of the
overloaded CPU's runqueue, it simply sent an IPI to that CPU to do the work.
Although the IPI logic worked very well in removing the large latency build
up, it still could suffer from a large number of IPIs being sent to a single
CPU. On a 80 CPU box, I measured over 200us of processing IPIs. Worse yet,
when I tested this on a 120 CPU box, with a stress test that had lots of
RT tasks scheduling on all CPUs, it actually triggered the hard lockup
detector! One CPU had so many IPIs sent to it, and due to the restart
mechanism that is triggered when the source run queue has a priority status
change, the CPU spent minutes! processing the IPIs.
Thinking about this further, I realized there's no reason for each run queue
to send its own IPI. As all CPUs with overloaded tasks must be scanned
regardless if there's one or many CPUs lowering their priority, because
there's no current way to find the CPU with the highest priority task that
can schedule to one of these CPUs, there really only needs to be one IPI
being sent around at a time.
This greatly simplifies the code!
The new approach is to have each root domain have its own irq work, as the
rto_mask is per root domain. The root domain has the following fields
attached to it:
rto_push_work - the irq work to process each CPU set in rto_mask
rto_lock - the lock to protect some of the other rto fields
rto_loop_start - an atomic that keeps contention down on rto_lock
the first CPU scheduling in a lower priority task
is the one to kick off the process.
rto_loop_next - an atomic that gets incremented for each CPU that
schedules in a lower priority task.
rto_loop - a variable protected by rto_lock that is used to
compare against rto_loop_next
rto_cpu - The cpu to send the next IPI to, also protected by
the rto_lock.
When a CPU schedules in a lower priority task and wants to make sure
overloaded CPUs know about it. It increments the rto_loop_next. Then it
atomically sets rto_loop_start with a cmpxchg. If the old value is not "0",
then it is done, as another CPU is kicking off the IPI loop. If the old
value is "0", then it will take the rto_lock to synchronize with a possible
IPI being sent around to the overloaded CPUs.
If rto_cpu is greater than or equal to nr_cpu_ids, then there's either no
IPI being sent around, or one is about to finish. Then rto_cpu is set to the
first CPU in rto_mask and an IPI is sent to that CPU. If there's no CPUs set
in rto_mask, then there's nothing to be done.
When the CPU receives the IPI, it will first try to push any RT tasks that is
queued on the CPU but can't run because a higher priority RT task is
currently running on that CPU.
Then it takes the rto_lock and looks for the next CPU in the rto_mask. If it
finds one, it simply sends an IPI to that CPU and the process continues.
If there's no more CPUs in the rto_mask, then rto_loop is compared with
rto_loop_next. If they match, everything is done and the process is over. If
they do not match, then a CPU scheduled in a lower priority task as the IPI
was being passed around, and the process needs to start again. The first CPU
in rto_mask is sent the IPI.
This change removes this duplication of work in the IPI logic, and greatly
lowers the latency caused by the IPIs. This removed the lockup happening on
the 120 CPU machine. It also simplifies the code tremendously. What else
could anyone ask for?
Thanks to Peter Zijlstra for simplifying the rto_loop_start atomic logic and
supplying me with the rto_start_trylock() and rto_start_unlock() helper
functions.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170424114732.1aac6dc4@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit d194ba5d712f051ff6c025f3484bb72f219764e3.
Reason for revert: Broke some builds. Will fix and resubmit.
Change-Id: I4e6fa1562346eda1bbf058f1d5ace5ba6256ce07
|
|
We all should be using (and improving) the schedutil governor now. Get
rid of the non-upstream governor.
Tested on Hikey.
Change-Id: Ic660756536e5da51952738c3c18b94e31f58cd57
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
Boosted RT tasks can be deboosted quickly, this makes boost usless
for RT tasks and causes lots of glitching. Use timers to prevent
de-boost too soon and wait for long enough such that next enqueue
happens after a threshold.
While this can be solved in the governor, there are following
advantages:
- The approach used is governor-independent
- Reduces boost group lock contention for frequently sleepers/wakers
- Works with schedfreq without any other schedfreq hacks.
Bug: 30210506
Change-Id: I41788b235586988be446505deb7c0529758a9898
Signed-off-by: Joel Fernandes <joelaf@google.com>
|
|
This patch adds schedtune enqueue/dequeue to RT scheduling class.
Change-Id: If416e64319d62191f3aedd675d3e9a21fe2102fb
Signed-off-by: Joel Fernandes <joelaf@google.com>
|
|
(from https://patchwork.kernel.org/patch/9895261/)
This patch adds a parameter to select_task_rq, sibling_count_hint
allowing the caller, where it has this information, to inform the
sched_class the number of tasks that are being woken up as part of
the same event.
The wake_q mechanism is one case where this information is available.
select_task_rq_fair can then use the information to detect that it
needs to widen the search space for task placement in order to avoid
overloading the last-level cache domain's CPUs.
* * *
The reason I am investigating this change is the following use case
on ARM big.LITTLE (asymmetrical CPU capacity): 1 task per CPU, which
all repeatedly do X amount of work then
pthread_barrier_wait (i.e. sleep until the last task finishes its X
and hits the barrier). On big.LITTLE, the tasks which get a "big" CPU
finish faster, and then those CPUs pull over the tasks that are still
running:
v CPU v ->time->
-------------
0 (big) 11111 /333
-------------
1 (big) 22222 /444|
-------------
2 (LITTLE) 333333/
-------------
3 (LITTLE) 444444/
-------------
Now when task 4 hits the barrier (at |) and wakes the others up,
there are 4 tasks with prev_cpu=<big> and 0 tasks with
prev_cpu=<little>. want_affine therefore means that we'll only look
in CPUs 0 and 1 (sd_llc), so tasks will be unnecessarily coscheduled
on the bigs until the next load balance, something like this:
v CPU v ->time->
------------------------
0 (big) 11111 /333 31313\33333
------------------------
1 (big) 22222 /444|424\4444444
------------------------
2 (LITTLE) 333333/ \222222
------------------------
3 (LITTLE) 444444/ \1111
------------------------
^^^
underutilization
So, I'm trying to get want_affine = 0 for these tasks.
I don't _think_ any incarnation of the wakee_flips mechanism can help
us here because which task is waker and which tasks are wakees
generally changes with each iteration.
However pthread_barrier_wait (or more accurately FUTEX_WAKE) has the
nice property that we know exactly how many tasks are being woken, so
we can cheat.
It might be a disadvantage that we "widen" _every_ task that's woken in
an event, while select_idle_sibling would work fine for the first
sd_llc_size - 1 tasks.
IIUC, if wake_affine() behaves correctly this trick wouldn't be
necessary on SMP systems, so it might be best guarded by the presence
of SD_ASYM_CPUCAPACITY?
* * *
Final note..
In order to observe "perfect" behaviour for this use case, I also had
to disable the TTWU_QUEUE sched feature. Suppose during the wakeup
above we are working through the work queue and have placed tasks 3
and 2, and are about to place task 1:
v CPU v ->time->
--------------
0 (big) 11111 /333 3
--------------
1 (big) 22222 /444|4
--------------
2 (LITTLE) 333333/ 2
--------------
3 (LITTLE) 444444/ <- Task 1 should go here
--------------
If TTWU_QUEUE is enabled, we will not yet have enqueued task
2 (having instead sent a reschedule IPI) or attached its load to CPU
2. So we are likely to also place task 1 on cpu 2. Disabling
TTWU_QUEUE means that we enqueue task 2 before placing task 1,
solving this issue. TTWU_QUEUE is there to minimise rq lock
contention, and I guess that this contention is less of an issue on
big.LITTLE systems since they have relatively few CPUs, which
suggests the trade-off makes sense here.
Change-Id: I2080302839a263e0841a89efea8589ea53bbda9c
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Task->on_rq has three states:
0 - Task is not on runqueue (rq)
1 (TASK_ON_RQ_QUEUED) - Task is on rq
2 (TASK_ON_RQ_MIGRATING) - Task is on rq but in the
process of being migrated to another rq
When a task is moving between rqs task->on_rq state should be
TASK_ON_RQ_MIGRATING in order for WALT to account rq's cumulative
runnable average correctly. Without such state marking for all the
classes, WALT's update_history() would try to fixup task's demand
which was never contributed to any of CPUs during migration.
Change-Id: Iced3428f3924fe8ab5d0075698273ead04f12d5b
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
[joonwoop: Reinforced changelog to explain why this is needed by WALT.
Fixed conflicts in deadline.c]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
When placement boost is active, we are currently considering
only the highest capacity cluster. If all of the active CPUs
in this cluster are busy with RT tasks, the waking task is
placed on it's previous CPU, which may be running a RT task.
This results in suboptimal performance. Fix this by expanding
the search to the other clusters, when there is no eligible CPU
found in the highest capacity cluster.
Change-Id: Iaab2e397b994c2b219dc086c7a6fa91ca26a5128
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
The scheduling change (bug 31501544) to avoid putting RT threads on cores that
are handling softint's was catching cases where there was no reason
to believe the softint would take a long time, resulting in unnecessary
migration overhead. This patch reduces the migration to cases where
the core has a softint that is actually likely to take a long time,
as opposed to the RCU, SCHED, and TIMER softints that are rather quick.
Bug: 31752786
Change-Id: Ib4e179f1e15c736b2fdba31070494e357e9fbbe2
Git-commit: ce05770bd37b8065b61ef650108ecef2b97b148b
Git-repo: https://android.googlesource.com/kernel/msm
[pkondeti@codeaurora.org: resolved minor merge conflicts]
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
Bug: 31501544
Change-Id: I99dd7aaa12c11270b28dbabea484bcc8fb8ba0c1
Git-commit: 080ea011fd9f47315e1fc53185872ef813b59d00
Git-repo: https://android.googlesource.com/kernel/msm
[pkondeti@codeaurora.org: resolved minor merge conflicts and fixed
checkpatch warnings]
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
The scheduler cpufreq hooks are required by the schedutil cpufreq
governor.
Change-Id: Ied6c46262bb33b7e81bbb3d3d2761124e0c676b7
Signed-off-by: Steve Muckle <smuckle@linaro.org>
[trivial cherry-picking fixes]
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
|
|
Changes in 4.4.59:
xfrm: policy: init locks early
xfrm_user: validate XFRM_MSG_NEWAE XFRMA_REPLAY_ESN_VAL replay_window
xfrm_user: validate XFRM_MSG_NEWAE incoming ESN size harder
virtio_balloon: init 1st buffer in stats vq
pinctrl: qcom: Don't clear status bit on irq_unmask
c6x/ptrace: Remove useless PTRACE_SETREGSET implementation
h8300/ptrace: Fix incorrect register transfer count
mips/ptrace: Preserve previous registers for short regset write
sparc/ptrace: Preserve previous registers for short regset write
metag/ptrace: Preserve previous registers for short regset write
metag/ptrace: Provide default TXSTATUS for short NT_PRSTATUS
metag/ptrace: Reject partial NT_METAG_RPIPE writes
fscrypt: remove broken support for detecting keyring key revocation
sched/rt: Add a missing rescheduling point
Linux 4.4.59
Change-Id: Ifa35307b133cbf29d0a0084bb78a7b0436182b53
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
|
|
commit 619bd4a71874a8fd78eb6ccf9f272c5e98bcc7b7 upstream.
Since the change in commit:
fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks")
... we don't reschedule a task under certain circumstances:
Lets say task-A, SCHED_OTHER, is running on CPU0 (and it may run only on
CPU0) and holds a PI lock. This task is removed from the CPU because it
used up its time slice and another SCHED_OTHER task is running. Task-B on
CPU1 runs at RT priority and asks for the lock owned by task-A. This
results in a priority boost for task-A. Task-B goes to sleep until the
lock has been made available. Task-A is already runnable (but not active),
so it receives no wake up.
The reality now is that task-A gets on the CPU once the scheduler decides
to remove the current task despite the fact that a high priority task is
enqueued and waiting. This may take a long time.
The desired behaviour is that CPU0 immediately reschedules after the
priority boost which made task-A the task with the lowest priority.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() prio_changed_rt() to balance callbacks")
Link: http://lkml.kernel.org/r/20170124144006.29821-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Andrea Parri reported:
> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
> T1 (prio = 20)
> lock(rtmutex);
>
> T2 (prio = 20)
> blocks on rtmutex (rt_nr_boosted = 0 on T1's rq)
>
> T1 (prio = 20)
> sys_set_scheduler(prio = 0)
> [new_effective_prio == oldprio]
> T1 prio = 20 (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
> T1 (prio = 20)
> unlock(rtmutex)
> wakeup(T2)
> adjust_prio(T1)
> [prio != rt_mutex_getprio(T1)]
> dequeue(T1)
> rt_nr_boosted = (unsigned long)(-1)
> ...
> T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
> WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.
So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.
So this was introduced at around v3.14, by:
c365c292d059 ("sched: Consider pi boosting in setscheduler()")
which fixed another problem exactly because that dequeue/enqueue, joy.
Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.
In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.
Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).
Change-Id: I1450923252f55dba19f450008db813113eb06c76
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[pkondeti@codeaurora.org: Fix trivial merge conflict]
Git-commit: ff77e468535987b3d21b7bd4da15608ea3ce7d0b
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
Clean up the code and make it more maintainable by removing dependency
on the sched_enable_hmp flag. We do not support HMP scheduler without
recompiling. Enabling the HMP scheduler is done through enabling the
CONFIG_SCHED_HMP config.
Change-Id: I246c1b1889f8dcbc8f0a0805077c0ce5d4f083b0
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
|
|
Introduce sched_short_burst tunable to classify "short-burst" tasks.
These tasks are eligible for packing to avoid overhead associated with
waking up an idle CPU. select_best_cpu() ignores power-cost and selects
the CPU with least wakeup latency which is not loaded with IRQs and
can accommodate this task without exceeding spill limits. The ties are
broken with load followed by previous CPU.
This policy does not affect cluster selection but only CPU selection
in the selected cluster. The tasks eligible for "wakeup-up-idle" and
"boost" are not considered for packing. This policy is applied for
both "fair" and "rt" scheduling class tasks.
Change-Id: I2a05493fde93f58636725f18d0ce8dbce4418a30
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
migrate_tasks() migrates all tasks of a CPU by using pick_next_task().
This works in the hotplug case as we force migrate every single task
allowing pick_next_task() to return a new task on every loop iteration.
In the case of isolation, however, task migration is not guaranteed
which causes pick_next_task() to keep returning the same task over and
over again until we terminate the loop without having migrated all the
tasks that were supposed to migrated.
Fix the above problem by temporarily dequeuing tasks that are pinned
and marking them with TASK_ON_RQ_MIGRATING. This not only allows
pick_next_task() to properly walk the runqueue but also prevents any
migrations or changes in affinity for the dequeued tasks. Once we are
done with migrating all possible tasks, we re-enqueue all the dequeued
tasks.
While at it, ensure consistent ordering between task de-activation and
setting the TASK_ON_RQ_MIGRATING flag across all scheduling classes.
Change-Id: Id06151a8e34edab49ac76b4bffd50c132f0b792f
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
|
|
The recent introduction of the schedtune cgroup controller has provided
the scheduler with added flexibility in terms of some of it's placement
features. In particular each cgroup under the schedtune controller can
now specify:
1) Whether it needs co-location along with other cgroups
2) Whether it is eligible for scheduler boost (sched_boost_enabled)
3) Whether the kernel can override the boost eligibility when necessary
(sched_boost_no_override)
The scheduler now creates a reserved co-location group at boot. This
group is used to co-locate all tasks that form part of any one of the
cgroups that have co-location enabled. This reserved group can neither
be destroyed nor reused for other purposes. Furthermore, cgroups are
only allowed to indicate their co-location preference once at boot.
Further updates are disallowed.
Since we are now creating co-location groups for an extended period of
time, there are a few other factors to consider when determining the
preferred cluster for the group. We first exclude any tasks in the
group that have not been observed to be running for a significant
amount of time. Secondly we introduce the notion of group up and down
migrate tunables to allow different migration policies than individual
tasks. Lastly we break co-location if a single task in a group exceeds
up-migrate but the total load of the group does not exceed group
up-migrate.
In terms of sched_boost, the scheduler now supports multiple types of
boost. These are:
1) FULL_THROTTLE : Force up-migrate tasks belonging any cgroup that
has the sched_boost_enabled flag turned on. Little
CPUs will only be used when big CPUs can no longer
accommodate tasks. Also up-migrate all RT tasks.
2) CONSERVATIVE : Override the sched_boost_enabled flag for all cgroups
except those that have the sched_boost_no_override
flag set. Force up-migrate all tasks belonging to only
those cgroups that still remain eligible for boost.
RT tasks do not get force up migrated.
3) RESTRAINED : Start frequency aggregation for co-located tasks. This
type of boost does not force up-migrate any task.
Finally the boost API removes ref-counting. This means that there can
only be a single entity using boost at any given time. If multiple
entities are managing boost, they are required to be well behaved so
that they don't interfere with one another. Even for a single client,
it is not possible to switch directly from one boost type to another.
Boost must be first turned off before switching over to a new type.
Change-Id: I8d224a70cbef162f27078b62b73acaa22670861d
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
|
|
This adds cpu isolation APIs to the scheduler to isolate and unisolate
CPUs. Isolating and unisolating a CPU can be used in place of hotplug.
Isolating and unisolating a CPU is faster than hotplug and can thus be
used to optimize the performance and power of multi-core CPUs.
Isolating works by migrating non-pinned IRQs and tasks to other CPUS and
marking the CPU as not available to the scheduler and load balancer.
Pinned tasks and IRQs are still allowed to run but it is expected that
this would be minimal.
Unisolation works by just marking the CPU available for scheduler and
load balancer.
Change-Id: I0bbddb56238c2958c5987877c5bfc3e79afa67cc
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
|
|
This may be useful for detecting and debugging RT throttling issues.
Change-Id: I5807a897d11997d76421c1fcaa2918aad988c6c9
Signed-off-by: Matt Wagantall <mattw@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[jstultz: forwardported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Existing debug prints do not provide any clues about which tasks
may have triggered RT throttling. Print the names and PIDs of
all tasks on the throttled rt_rq to help narrow down the source
of the problem.
Change-Id: I180534c8a647254ed38e89d0c981a8f8bccd741c
Signed-off-by: Matt Wagantall <mattw@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
|
|
use a window based view of time in order to track task
demand and CPU utilization in the scheduler.
Window Assisted Load Tracking (WALT) implementation credits:
Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
Pavan Kumar Kondeti, Olav Haugan
2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
and Todd Kjos
Change-Id: I21408236836625d4e7d7de1843d20ed5ff36c708
Includes fixes for issues:
eas/walt: Use walt_ktime_clock() instead of ktime_get_ns() to avoid a
race resulting in watchdog resets
BUG: 29353986
Change-Id: Ic1820e22a136f7c7ebd6f42e15f14d470f6bbbdb
Handle walt accounting anomoly during resume
During resume, there is a corner case where on wakeup, a task's
prev_runnable_sum can go negative. This is a workaround that
fixes the condition and warns (instead of crashing).
BUG: 29464099
Change-Id: I173e7874324b31a3584435530281708145773508
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
[jstultz: fwdported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
RT tasks don't provide any running constraints like deadline ones
except their running priority. The only current usable input to
estimate the capacity needed by RT tasks is the rt_avg metric. We use
it to estimate the CPU capacity needed for the RT scheduler class.
In order to monitor the evolution for RT task load, we must
peridiocally check it during the tick.
Then, we use the estimated capacity of the last activity to estimate
the next one which can not be that accurate but is a good starting
point without any impact on the wake up path of RT tasks.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
|
|
This may be useful for detecting and debugging RT throttling issues.
Change-Id: I5807a897d11997d76421c1fcaa2918aad988c6c9
Signed-off-by: Matt Wagantall <mattw@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[jstultz: forwardported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Existing debug prints do not provide any clues about which tasks
may have triggered RT throttling. Print the names and PIDs of
all tasks on the throttled rt_rq to help narrow down the source
of the problem.
Change-Id: I180534c8a647254ed38e89d0c981a8f8bccd741c
Signed-off-by: Matt Wagantall <mattw@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
|
|
use a window based view of time in order to track task
demand and CPU utilization in the scheduler.
Window Assisted Load Tracking (WALT) implementation credits:
Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
Pavan Kumar Kondeti, Olav Haugan
2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
and Todd Kjos
Change-Id: I21408236836625d4e7d7de1843d20ed5ff36c708
Includes fixes for issues:
eas/walt: Use walt_ktime_clock() instead of ktime_get_ns() to avoid a
race resulting in watchdog resets
BUG: 29353986
Change-Id: Ic1820e22a136f7c7ebd6f42e15f14d470f6bbbdb
Handle walt accounting anomoly during resume
During resume, there is a corner case where on wakeup, a task's
prev_runnable_sum can go negative. This is a workaround that
fixes the condition and warns (instead of crashing).
BUG: 29464099
Change-Id: I173e7874324b31a3584435530281708145773508
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
[jstultz: fwdported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
RT tasks don't provide any running constraints like deadline ones
except their running priority. The only current usable input to
estimate the capacity needed by RT tasks is the rt_avg metric. We use
it to estimate the CPU capacity needed for the RT scheduler class.
In order to monitor the evolution for RT task load, we must
peridiocally check it during the tick.
Then, we use the estimated capacity of the last activity to estimate
the next one which can not be that accurate but is a good starting
point without any impact on the wake up path of RT tasks.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
|
|
When sched_restrict_cluster_spill knob is enabled, RT tasks are restricted
to lower power cluster. This knob also restricts inter cluster no-hz kicks.
Ignore this knob setting when sched_boost is enabled so that tasks are
placed on CPUs with highest spare capacity.
CRs-Fixed: 968852
Change-Id: I01b3fc10b39dc834a733d64c2ee29c308d7ff730
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
Current window based load tracking only saves history for five
windows. A historically heavy task's heavy load will be completely
forgotten after five windows of light load. Even before the five
window expires, a heavy task wakes up on same CPU it used to run won't
trigger any frequency change until end of the window. It would starve
for the entire window. It also adds one "small" load window to
history because it's accumulating load at a low frequency, further
reducing the tracked load for this heavy task.
Ideally, scheduler should be able to identify such tasks and notify
governor to increase frequency immediately after it wakes up.
Add a histogram for each task to track a much longer load history. A
prediction will be made based on runtime of previous or current
window, histogram data and load tracked in recent windows. Prediction
of all tasks that is currently running or runnable on a CPU is
aggregated and reported to CPUFreq governor in sched_get_cpus_busy().
sched_get_cpus_busy() now returns predicted busy time in addition
to previous window busy time and new task busy time, scaled to
the CPU maximum possible frequency.
Tunables:
- /proc/sys/kernel/sched_gov_alert_freq (KHz)
This tunable can be used to further filter the notifications.
Frequency alert notification is sent only when the predicted
load exceeds previous window load by sched_gov_alert_freq converted to
load.
Change-Id: If29098cd2c5499163ceaff18668639db76ee8504
Suggested-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Junjie Wu <junjiew@codeaurora.org>
[joonwoop@codeaurora.org: fixed merge conflicts around __migrate_task()
and removed changes for CONFIG_SCHED_QHMP.]
|
|
The current CPU selection algorithm for RT tasks looks for the
least loaded CPU in all clusters. Stop the search at the lowest
possible power cluster based on "sched_restrict_cluster_spill"
sysctl tunable.
Change-Id: I34fdaefea56e0d1b7e7178d800f1bb86aa0ec01c
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
|
|
Make use of clusters in the fair and rt scheduling classes. This is
needed as the freq domain mask can no longer be used to do correct
task placement. The freq domain mask was being used to demarcate
clusters.
Change-Id: I57f74147c7006f22d6760256926c10fd0bf50cbd
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed merge conflicts due to omitted changes
for CONFIG_SCHED_QHMP.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
Scheduler ftrace events currently generate a lot of data when turned
on. The excessive log messages often end up overflowing trace buffers
for long use cases or crowding out other events. Optimize scheduler
events so that the log spew is less and more manageable. To that end
change the variable type for some event fields; introduce variants
of sched_cpu_load that can be turned on/off for separate code paths
and remove unused fields from various events.
Change-Id: I2b313542b39ad5e09a01ad1303b5dfe2c4883b8a
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in rt.c due to
CONFIG_SCHED_QHMP.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
Add a bias towards the RT task's previous CPU and sibling CPUs in order
to avoid cache bouncing and migrations.
CRs-fixed: 927903
Change-Id: I45d79d774e65efcb38282130b6692b4c3b03c2f0
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
At present in order to estimate power cost of CPU load, HMP scheduler
converts CPU load to coresponding frequency on the fly which can be
avoided.
Optimize and reduce execution time of select_best_cpu() by precomputing
CPU load to frequency conversion. This optimization reduces about ~20% of
execution time of select_best_cpu() on average.
Change-Id: I385c57f2ea9a50883b76ba6ca3deb673b827217f
[joonwoop@codeaurora.org: fixed minior conflict in kernel/sched/sched.h.
stripped out codes for CONFIG_SCHED_QHMP.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
The commit 392edf4969d20 ("sched: avoid stale cumulative_runnable_avg
HMP statistics) introduced the callback function fixup_hmp_sched_stats()
so update_history() can avoid decrement and increment pair of HMP stat.
However the commit also made fixup function to do obscure p->ravg.demand
update which isn't the cleanest way.
Revise the function fixup_hmp_sched_stats() so the caller can update
p->ravg.demand directly.
Change-Id: Id54667d306495d2109c26362813f80f08a1385ad
[joonwoop@codeaurora.org: stripped out CONFIG_SCHED_QHMP.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
Task->on_rq has three states:
0 - Task is not on runqueue (rq)
1 (TASK_ON_RQ_QUEUED) - Task is on rq
2 (TASK_ON_RQ_MIGRATING) - Task is on rq but in the
process of being migrated to another rq
When a task is moving between rqs task->on_rq state should be
TASK_ON_RQ_MIGRATING
CRs-fixed: 884720
Change-Id: I1572aba00a0273d4ad5bc9a3dd60fb68e2f0b895
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
|
|
For the fair sched class, update the select_best_cpu() policy to do
power based placement. The hope is to minimize the voltage at which
the CPU runs.
While RT tasks already do power based placement, their placement
preference has to now take into account the power cost of all tasks
on a given CPU. Also remove the check for sched_boost since
sched_boost no longer intends to elevate all tasks to the highest
capacity cluster.
Change-Id: Ic6a7625c97d567254d93b94cec3174a91727cb87
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
|
|
When a new window starts for a task and the task is on a rq, scheduler
decreases rq's cumulative_runnable_avg momentarily, re-account task's
demand and increases rq's cumulative_runnable_avg with newly accounted
task's demand. Therefore there is short time period that rq's
cumulative_runnable_avg is less than what it's supposed to be.
Meanwhile, there is chance that other CPU is in search of best CPU to place
a task and makes suboptimal decision with momentarily stale
cumulative_runnable_avg.
Fix such issue by adding or subtracting of delta between task's old
and new demand instead of decrementing and incrementing of entire task's
load.
Change-Id: I3c9329961e6f96e269fa13359e7d1c39c4973ff2
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|