summaryrefslogtreecommitdiff
path: root/security/pfe/pfk_kc.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/pfe/pfk_kc.c')
-rw-r--r--security/pfe/pfk_kc.c899
1 files changed, 899 insertions, 0 deletions
diff --git a/security/pfe/pfk_kc.c b/security/pfe/pfk_kc.c
new file mode 100644
index 000000000000..b428e1b8b11c
--- /dev/null
+++ b/security/pfe/pfk_kc.c
@@ -0,0 +1,899 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+/*
+ * PFK Key Cache
+ *
+ * Key Cache used internally in PFK.
+ * The purpose of the cache is to save access time to QSEE when loading keys.
+ * Currently the cache is the same size as the total number of keys that can
+ * be loaded to ICE. Since this number is relatively small, the algorithms for
+ * cache eviction are simple, linear and based on last usage timestamp, i.e
+ * the node that will be evicted is the one with the oldest timestamp.
+ * Empty entries always have the oldest timestamp.
+ */
+
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/spinlock.h>
+#include <crypto/ice.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/jiffies.h>
+#include <linux/slab.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+
+#include "pfk_kc.h"
+#include "pfk_ice.h"
+
+
+/** the first available index in ice engine */
+#define PFK_KC_STARTING_INDEX 2
+
+/** currently the only supported key and salt sizes */
+#define PFK_KC_KEY_SIZE 32
+#define PFK_KC_SALT_SIZE 32
+
+/** Table size */
+/* TODO replace by some constant from ice.h */
+#define PFK_KC_TABLE_SIZE ((32) - (PFK_KC_STARTING_INDEX))
+
+/** The maximum key and salt size */
+#define PFK_MAX_KEY_SIZE PFK_KC_KEY_SIZE
+#define PFK_MAX_SALT_SIZE PFK_KC_SALT_SIZE
+#define PFK_UFS "ufs"
+
+static DEFINE_SPINLOCK(kc_lock);
+static unsigned long flags;
+static bool kc_ready;
+static char *s_type = "sdcc";
+
+/**
+ * enum pfk_kc_entry_state - state of the entry inside kc table
+ *
+ * @FREE: entry is free
+ * @ACTIVE_ICE_PRELOAD: entry is actively used by ICE engine
+ and cannot be used by others. SCM call
+ to load key to ICE is pending to be performed
+ * @ACTIVE_ICE_LOADED: entry is actively used by ICE engine and
+ cannot be used by others. SCM call to load the
+ key to ICE was successfully executed and key is
+ now loaded
+ * @INACTIVE_INVALIDATING: entry is being invalidated during file close
+ and cannot be used by others until invalidation
+ is complete
+ * @INACTIVE: entry's key is already loaded, but is not
+ currently being used. It can be re-used for
+ optimization and to avoid SCM call cost or
+ it can be taken by another key if there are
+ no FREE entries
+ * @SCM_ERROR: error occurred while scm call was performed to
+ load the key to ICE
+ */
+enum pfk_kc_entry_state {
+ FREE,
+ ACTIVE_ICE_PRELOAD,
+ ACTIVE_ICE_LOADED,
+ INACTIVE_INVALIDATING,
+ INACTIVE,
+ SCM_ERROR
+};
+
+struct kc_entry {
+ unsigned char key[PFK_MAX_KEY_SIZE];
+ size_t key_size;
+
+ unsigned char salt[PFK_MAX_SALT_SIZE];
+ size_t salt_size;
+
+ u64 time_stamp;
+ u32 key_index;
+
+ struct task_struct *thread_pending;
+
+ enum pfk_kc_entry_state state;
+
+ /* ref count for the number of requests in the HW queue for this key */
+ int loaded_ref_cnt;
+ int scm_error;
+};
+
+static struct kc_entry kc_table[PFK_KC_TABLE_SIZE];
+
+/**
+ * kc_is_ready() - driver is initialized and ready.
+ *
+ * Return: true if the key cache is ready.
+ */
+static inline bool kc_is_ready(void)
+{
+ return kc_ready;
+}
+
+static inline void kc_spin_lock(void)
+{
+ spin_lock_irqsave(&kc_lock, flags);
+}
+
+static inline void kc_spin_unlock(void)
+{
+ spin_unlock_irqrestore(&kc_lock, flags);
+}
+
+/**
+ * kc_entry_is_available() - checks whether the entry is available
+ *
+ * Return true if it is , false otherwise or if invalid
+ * Should be invoked under spinlock
+ */
+static bool kc_entry_is_available(const struct kc_entry *entry)
+{
+ if (!entry)
+ return false;
+
+ return (entry->state == FREE || entry->state == INACTIVE);
+}
+
+/**
+ * kc_entry_wait_till_available() - waits till entry is available
+ *
+ * Returns 0 in case of success or -ERESTARTSYS if the wait was interrupted
+ * by signal
+ *
+ * Should be invoked under spinlock
+ */
+static int kc_entry_wait_till_available(struct kc_entry *entry)
+{
+ int res = 0;
+
+ while (!kc_entry_is_available(entry)) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (signal_pending(current)) {
+ res = -ERESTARTSYS;
+ break;
+ }
+ /* assuming only one thread can try to invalidate
+ * the same entry
+ */
+ entry->thread_pending = current;
+ kc_spin_unlock();
+ schedule();
+ kc_spin_lock();
+ }
+ set_current_state(TASK_RUNNING);
+
+ return res;
+}
+
+/**
+ * kc_entry_start_invalidating() - moves entry to state
+ * INACTIVE_INVALIDATING
+ * If entry is in use, waits till
+ * it gets available
+ * @entry: pointer to entry
+ *
+ * Return 0 in case of success, otherwise error
+ * Should be invoked under spinlock
+ */
+static int kc_entry_start_invalidating(struct kc_entry *entry)
+{
+ int res;
+
+ res = kc_entry_wait_till_available(entry);
+ if (res)
+ return res;
+
+ entry->state = INACTIVE_INVALIDATING;
+
+ return 0;
+}
+
+/**
+ * kc_entry_finish_invalidating() - moves entry to state FREE
+ * wakes up all the tasks waiting
+ * on it
+ *
+ * @entry: pointer to entry
+ *
+ * Return 0 in case of success, otherwise error
+ * Should be invoked under spinlock
+ */
+static void kc_entry_finish_invalidating(struct kc_entry *entry)
+{
+ if (!entry)
+ return;
+
+ if (entry->state != INACTIVE_INVALIDATING)
+ return;
+
+ entry->state = FREE;
+}
+
+/**
+ * kc_min_entry() - compare two entries to find one with minimal time
+ * @a: ptr to the first entry. If NULL the other entry will be returned
+ * @b: pointer to the second entry
+ *
+ * Return the entry which timestamp is the minimal, or b if a is NULL
+ */
+static inline struct kc_entry *kc_min_entry(struct kc_entry *a,
+ struct kc_entry *b)
+{
+ if (!a)
+ return b;
+
+ if (time_before64(b->time_stamp, a->time_stamp))
+ return b;
+
+ return a;
+}
+
+/**
+ * kc_entry_at_index() - return entry at specific index
+ * @index: index of entry to be accessed
+ *
+ * Return entry
+ * Should be invoked under spinlock
+ */
+static struct kc_entry *kc_entry_at_index(int index)
+{
+ return &(kc_table[index]);
+}
+
+/**
+ * kc_find_key_at_index() - find kc entry starting at specific index
+ * @key: key to look for
+ * @key_size: the key size
+ * @salt: salt to look for
+ * @salt_size: the salt size
+ * @sarting_index: index to start search with, if entry found, updated with
+ * index of that entry
+ *
+ * Return entry or NULL in case of error
+ * Should be invoked under spinlock
+ */
+static struct kc_entry *kc_find_key_at_index(const unsigned char *key,
+ size_t key_size, const unsigned char *salt, size_t salt_size,
+ int *starting_index)
+{
+ struct kc_entry *entry = NULL;
+ int i = 0;
+
+ for (i = *starting_index; i < PFK_KC_TABLE_SIZE; i++) {
+ entry = kc_entry_at_index(i);
+
+ if (NULL != salt) {
+ if (entry->salt_size != salt_size)
+ continue;
+
+ if (0 != memcmp(entry->salt, salt, salt_size))
+ continue;
+ }
+
+ if (entry->key_size != key_size)
+ continue;
+
+ if (0 == memcmp(entry->key, key, key_size)) {
+ *starting_index = i;
+ return entry;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ * kc_find_key() - find kc entry
+ * @key: key to look for
+ * @key_size: the key size
+ * @salt: salt to look for
+ * @salt_size: the salt size
+ *
+ * Return entry or NULL in case of error
+ * Should be invoked under spinlock
+ */
+static struct kc_entry *kc_find_key(const unsigned char *key, size_t key_size,
+ const unsigned char *salt, size_t salt_size)
+{
+ int index = 0;
+
+ return kc_find_key_at_index(key, key_size, salt, salt_size, &index);
+}
+
+/**
+ * kc_find_oldest_entry_non_locked() - finds the entry with minimal timestamp
+ * that is not locked
+ *
+ * Returns entry with minimal timestamp. Empty entries have timestamp
+ * of 0, therefore they are returned first.
+ * If all the entries are locked, will return NULL
+ * Should be invoked under spin lock
+ */
+static struct kc_entry *kc_find_oldest_entry_non_locked(void)
+{
+ struct kc_entry *curr_min_entry = NULL;
+ struct kc_entry *entry = NULL;
+ int i = 0;
+
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
+ entry = kc_entry_at_index(i);
+
+ if (entry->state == FREE)
+ return entry;
+
+ if (entry->state == INACTIVE)
+ curr_min_entry = kc_min_entry(curr_min_entry, entry);
+ }
+
+ return curr_min_entry;
+}
+
+/**
+ * kc_update_timestamp() - updates timestamp of entry to current
+ *
+ * @entry: entry to update
+ *
+ */
+static void kc_update_timestamp(struct kc_entry *entry)
+{
+ if (!entry)
+ return;
+
+ entry->time_stamp = get_jiffies_64();
+}
+
+/**
+ * kc_clear_entry() - clear the key from entry and mark entry not in use
+ *
+ * @entry: pointer to entry
+ *
+ * Should be invoked under spinlock
+ */
+static void kc_clear_entry(struct kc_entry *entry)
+{
+ if (!entry)
+ return;
+
+ memset(entry->key, 0, entry->key_size);
+ memset(entry->salt, 0, entry->salt_size);
+
+ entry->key_size = 0;
+ entry->salt_size = 0;
+
+ entry->time_stamp = 0;
+ entry->scm_error = 0;
+}
+
+/**
+ * kc_update_entry() - replaces the key in given entry and
+ * loads the new key to ICE
+ *
+ * @entry: entry to replace key in
+ * @key: key
+ * @key_size: key_size
+ * @salt: salt
+ * @salt_size: salt_size
+ *
+ * The previous key is securely released and wiped, the new one is loaded
+ * to ICE.
+ * Should be invoked under spinlock
+ */
+static int kc_update_entry(struct kc_entry *entry, const unsigned char *key,
+ size_t key_size, const unsigned char *salt, size_t salt_size)
+{
+ int ret;
+
+ kc_clear_entry(entry);
+
+ memcpy(entry->key, key, key_size);
+ entry->key_size = key_size;
+
+ memcpy(entry->salt, salt, salt_size);
+ entry->salt_size = salt_size;
+
+ /* Mark entry as no longer free before releasing the lock */
+ entry->state = ACTIVE_ICE_PRELOAD;
+ kc_spin_unlock();
+
+ ret = qti_pfk_ice_set_key(entry->key_index, entry->key,
+ entry->salt, s_type);
+
+ kc_spin_lock();
+ return ret;
+}
+
+/**
+ * pfk_kc_init() - init function
+ *
+ * Return 0 in case of success, error otherwise
+ */
+int pfk_kc_init(void)
+{
+ int i = 0;
+ struct kc_entry *entry = NULL;
+
+ kc_spin_lock();
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
+ entry = kc_entry_at_index(i);
+ entry->key_index = PFK_KC_STARTING_INDEX + i;
+ }
+ kc_ready = true;
+ kc_spin_unlock();
+
+ return 0;
+}
+
+/**
+ * pfk_kc_denit() - deinit function
+ *
+ * Return 0 in case of success, error otherwise
+ */
+int pfk_kc_deinit(void)
+{
+ int res = pfk_kc_clear();
+ kc_ready = false;
+
+ return res;
+}
+
+/**
+ * pfk_kc_load_key_start() - retrieve the key from cache or add it if
+ * it's not there and return the ICE hw key index in @key_index.
+ * @key: pointer to the key
+ * @key_size: the size of the key
+ * @salt: pointer to the salt
+ * @salt_size: the size of the salt
+ * @key_index: the pointer to key_index where the output will be stored
+ * @async: whether scm calls are allowed in the caller context
+ *
+ * If key is present in cache, than the key_index will be retrieved from cache.
+ * If it is not present, the oldest entry from kc table will be evicted,
+ * the key will be loaded to ICE via QSEE to the index that is the evicted
+ * entry number and stored in cache.
+ * Entry that is going to be used is marked as being used, it will mark
+ * as not being used when ICE finishes using it and pfk_kc_load_key_end
+ * will be invoked.
+ * As QSEE calls can only be done from a non-atomic context, when @async flag
+ * is set to 'false', it specifies that it is ok to make the calls in the
+ * current context. Otherwise, when @async is set, the caller should retry the
+ * call again from a different context, and -EAGAIN error will be returned.
+ *
+ * Return 0 in case of success, error otherwise
+ */
+int pfk_kc_load_key_start(const unsigned char *key, size_t key_size,
+ const unsigned char *salt, size_t salt_size, u32 *key_index,
+ bool async)
+{
+ int ret = 0;
+ struct kc_entry *entry = NULL;
+ bool entry_exists = false;
+
+ if (!kc_is_ready())
+ return -ENODEV;
+
+ if (!key || !salt || !key_index)
+ return -EINVAL;
+
+ if (key_size != PFK_KC_KEY_SIZE) {
+ pr_err("unsupported key size %zu\n", key_size);
+ return -EINVAL;
+ }
+
+ if (salt_size != PFK_KC_SALT_SIZE) {
+ pr_err("unsupported salt size %zu\n", salt_size);
+ return -EINVAL;
+ }
+
+ kc_spin_lock();
+
+ entry = kc_find_key(key, key_size, salt, salt_size);
+ if (!entry) {
+ if (async) {
+ pr_debug("found empty entry, a separate task will populate it\n");
+ kc_spin_unlock();
+ return -EAGAIN;
+ }
+
+ entry = kc_find_oldest_entry_non_locked();
+ if (!entry) {
+ /* could not find a single non locked entry,
+ * return EBUSY to upper layers so that the
+ * request will be rescheduled
+ */
+ kc_spin_unlock();
+ return -EBUSY;
+ }
+ } else {
+ entry_exists = true;
+ }
+
+ pr_debug("entry with index %d is in state %d\n",
+ entry->key_index, entry->state);
+
+ switch (entry->state) {
+ case (INACTIVE):
+ if (entry_exists) {
+ kc_update_timestamp(entry);
+ entry->state = ACTIVE_ICE_LOADED;
+
+ if (!strcmp(s_type, (char *)PFK_UFS)) {
+ if (async)
+ entry->loaded_ref_cnt++;
+ } else {
+ entry->loaded_ref_cnt++;
+ }
+ break;
+ }
+ case (FREE):
+ ret = kc_update_entry(entry, key, key_size, salt, salt_size);
+ if (ret) {
+ entry->state = SCM_ERROR;
+ entry->scm_error = ret;
+ pr_err("%s: key load error (%d)\n", __func__, ret);
+ } else {
+ kc_update_timestamp(entry);
+ entry->state = ACTIVE_ICE_LOADED;
+
+ /*
+ * In case of UFS only increase ref cnt for async calls,
+ * sync calls from within work thread do not pass
+ * requests further to HW
+ */
+ if (!strcmp(s_type, (char *)PFK_UFS)) {
+ if (async)
+ entry->loaded_ref_cnt++;
+ } else {
+ entry->loaded_ref_cnt++;
+ }
+ }
+ break;
+ case (ACTIVE_ICE_PRELOAD):
+ case (INACTIVE_INVALIDATING):
+ ret = -EAGAIN;
+ break;
+ case (ACTIVE_ICE_LOADED):
+ kc_update_timestamp(entry);
+
+ if (!strcmp(s_type, (char *)PFK_UFS)) {
+ if (async)
+ entry->loaded_ref_cnt++;
+ } else {
+ entry->loaded_ref_cnt++;
+ }
+ break;
+ case(SCM_ERROR):
+ ret = entry->scm_error;
+ kc_clear_entry(entry);
+ entry->state = FREE;
+ break;
+ default:
+ pr_err("invalid state %d for entry with key index %d\n",
+ entry->state, entry->key_index);
+ ret = -EINVAL;
+ }
+
+ *key_index = entry->key_index;
+ kc_spin_unlock();
+
+ return ret;
+}
+
+/**
+ * pfk_kc_load_key_end() - finish the process of key loading that was started
+ * by pfk_kc_load_key_start
+ * by marking the entry as not
+ * being in use
+ * @key: pointer to the key
+ * @key_size: the size of the key
+ * @salt: pointer to the salt
+ * @salt_size: the size of the salt
+ *
+ */
+void pfk_kc_load_key_end(const unsigned char *key, size_t key_size,
+ const unsigned char *salt, size_t salt_size)
+{
+ struct kc_entry *entry = NULL;
+ struct task_struct *tmp_pending = NULL;
+ int ref_cnt = 0;
+
+ if (!kc_is_ready())
+ return;
+
+ if (!key || !salt)
+ return;
+
+ if (key_size != PFK_KC_KEY_SIZE)
+ return;
+
+ if (salt_size != PFK_KC_SALT_SIZE)
+ return;
+
+ kc_spin_lock();
+
+ entry = kc_find_key(key, key_size, salt, salt_size);
+ if (!entry) {
+ kc_spin_unlock();
+ pr_err("internal error, there should an entry to unlock\n");
+
+ return;
+ }
+ ref_cnt = --entry->loaded_ref_cnt;
+
+ if (ref_cnt < 0)
+ pr_err("internal error, ref count should never be negative\n");
+
+ if (!ref_cnt) {
+ entry->state = INACTIVE;
+ /*
+ * wake-up invalidation if it's waiting
+ * for the entry to be released
+ */
+ if (entry->thread_pending) {
+ tmp_pending = entry->thread_pending;
+ entry->thread_pending = NULL;
+
+ kc_spin_unlock();
+ wake_up_process(tmp_pending);
+ return;
+ }
+ }
+
+ kc_spin_unlock();
+}
+
+/**
+ * pfk_kc_remove_key() - remove the key from cache and from ICE engine
+ * @key: pointer to the key
+ * @key_size: the size of the key
+ * @salt: pointer to the key
+ * @salt_size: the size of the key
+ *
+ * Return 0 in case of success, error otherwise (also in case of non
+ * (existing key)
+ */
+int pfk_kc_remove_key_with_salt(const unsigned char *key, size_t key_size,
+ const unsigned char *salt, size_t salt_size)
+{
+ struct kc_entry *entry = NULL;
+ int res = 0;
+
+ if (!kc_is_ready())
+ return -ENODEV;
+
+ if (!key)
+ return -EINVAL;
+
+ if (!salt)
+ return -EINVAL;
+
+ if (key_size != PFK_KC_KEY_SIZE)
+ return -EINVAL;
+
+ if (salt_size != PFK_KC_SALT_SIZE)
+ return -EINVAL;
+
+ kc_spin_lock();
+
+ entry = kc_find_key(key, key_size, salt, salt_size);
+ if (!entry) {
+ pr_debug("%s: key does not exist\n", __func__);
+ kc_spin_unlock();
+ return -EINVAL;
+ }
+
+ res = kc_entry_start_invalidating(entry);
+ if (res != 0) {
+ kc_spin_unlock();
+ return res;
+ }
+ kc_clear_entry(entry);
+
+ kc_spin_unlock();
+
+ qti_pfk_ice_invalidate_key(entry->key_index, s_type);
+
+ kc_spin_lock();
+ kc_entry_finish_invalidating(entry);
+ kc_spin_unlock();
+
+ return 0;
+}
+
+/**
+ * pfk_kc_remove_key() - remove the key from cache and from ICE engine
+ * when no salt is available. Will only search key part, if there are several,
+ * all will be removed
+ *
+ * @key: pointer to the key
+ * @key_size: the size of the key
+ *
+ * Return 0 in case of success, error otherwise (also for non-existing key)
+ */
+int pfk_kc_remove_key(const unsigned char *key, size_t key_size)
+{
+ struct kc_entry *entry = NULL;
+ int index = 0;
+ int temp_indexes[PFK_KC_TABLE_SIZE] = {0};
+ int temp_indexes_size = 0;
+ int i = 0;
+ int res = 0;
+
+ if (!kc_is_ready())
+ return -ENODEV;
+
+ if (!key)
+ return -EINVAL;
+
+ if (key_size != PFK_KC_KEY_SIZE)
+ return -EINVAL;
+
+ memset(temp_indexes, -1, sizeof(temp_indexes));
+
+ kc_spin_lock();
+
+ entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
+ if (!entry) {
+ pr_err("%s: key does not exist\n", __func__);
+ kc_spin_unlock();
+ return -EINVAL;
+ }
+
+ res = kc_entry_start_invalidating(entry);
+ if (res != 0) {
+ kc_spin_unlock();
+ return res;
+ }
+
+ temp_indexes[temp_indexes_size++] = index;
+ kc_clear_entry(entry);
+
+ /* let's clean additional entries with the same key if there are any */
+ do {
+ index++;
+ entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
+ if (!entry)
+ break;
+
+ res = kc_entry_start_invalidating(entry);
+ if (res != 0) {
+ kc_spin_unlock();
+ goto out;
+ }
+
+ temp_indexes[temp_indexes_size++] = index;
+
+ kc_clear_entry(entry);
+
+
+ } while (true);
+
+ kc_spin_unlock();
+
+ temp_indexes_size--;
+ for (i = temp_indexes_size; i >= 0 ; i--)
+ qti_pfk_ice_invalidate_key(
+ kc_entry_at_index(temp_indexes[i])->key_index,
+ s_type);
+
+ /* fall through */
+ res = 0;
+
+out:
+ kc_spin_lock();
+ for (i = temp_indexes_size; i >= 0 ; i--)
+ kc_entry_finish_invalidating(
+ kc_entry_at_index(temp_indexes[i]));
+ kc_spin_unlock();
+
+ return res;
+}
+
+/**
+ * pfk_kc_clear() - clear the table and remove all keys from ICE
+ *
+ * Return 0 on success, error otherwise
+ *
+ */
+int pfk_kc_clear(void)
+{
+ struct kc_entry *entry = NULL;
+ int i = 0;
+ int res = 0;
+
+ if (!kc_is_ready())
+ return -ENODEV;
+
+ kc_spin_lock();
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
+ entry = kc_entry_at_index(i);
+ res = kc_entry_start_invalidating(entry);
+ if (res != 0) {
+ kc_spin_unlock();
+ goto out;
+ }
+ kc_clear_entry(entry);
+ }
+ kc_spin_unlock();
+
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
+ qti_pfk_ice_invalidate_key(kc_entry_at_index(i)->key_index,
+ s_type);
+
+ /* fall through */
+ res = 0;
+out:
+ kc_spin_lock();
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
+ kc_entry_finish_invalidating(kc_entry_at_index(i));
+ kc_spin_unlock();
+
+ return res;
+}
+
+/**
+ * pfk_kc_clear_on_reset() - clear the table and remove all keys from ICE
+ * The assumption is that at this point we don't have any pending transactions
+ * Also, there is no need to clear keys from ICE
+ *
+ * Return 0 on success, error otherwise
+ *
+ */
+void pfk_kc_clear_on_reset(void)
+{
+ struct kc_entry *entry = NULL;
+ int i = 0;
+
+ if (!kc_is_ready())
+ return;
+
+ kc_spin_lock();
+ for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
+ entry = kc_entry_at_index(i);
+ kc_clear_entry(entry);
+ }
+ kc_spin_unlock();
+}
+
+static int pfk_kc_find_storage_type(char **device)
+{
+ char boot[20] = {'\0'};
+ char *match = (char *)strnstr(saved_command_line,
+ "androidboot.bootdevice=",
+ strlen(saved_command_line));
+ if (match) {
+ memcpy(boot, (match + strlen("androidboot.bootdevice=")),
+ sizeof(boot) - 1);
+ if (strnstr(boot, PFK_UFS, strlen(boot)))
+ *device = PFK_UFS;
+
+ return 0;
+ }
+ return -EINVAL;
+}
+
+static int __init pfk_kc_pre_init(void)
+{
+ return pfk_kc_find_storage_type(&s_type);
+}
+
+static void __exit pfk_kc_exit(void)
+{
+ s_type = NULL;
+}
+
+module_init(pfk_kc_pre_init);
+module_exit(pfk_kc_exit);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Per-File-Key-KC driver");