summaryrefslogtreecommitdiff
path: root/kernel/sched/rt.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/rt.c')
-rw-r--r--kernel/sched/rt.c322
1 files changed, 284 insertions, 38 deletions
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 0f21b12332df..8025828ff4e0 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -5,10 +5,11 @@
#include "sched.h"
+#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/irq_work.h>
+#include <trace/events/sched.h>
-#include "walt.h"
#include "tune.h"
int sched_rr_timeslice = RR_TIMESLICE;
@@ -256,8 +257,12 @@ static void pull_rt_task(struct rq *this_rq);
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
- /* Try to pull RT tasks here if we lower this rq's prio */
- return rq->rt.highest_prio.curr > prev->prio;
+ /*
+ * Try to pull RT tasks here if we lower this rq's prio and cpu is not
+ * isolated
+ */
+ return rq->rt.highest_prio.curr > prev->prio &&
+ !cpu_isolated(cpu_of(rq));
}
static inline int rt_overloaded(struct rq *rq)
@@ -428,7 +433,7 @@ static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
- return !list_empty(&rt_se->run_list);
+ return rt_se->on_rq;
}
#ifdef CONFIG_RT_GROUP_SCHED
@@ -474,8 +479,8 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
return rt_se->my_q;
}
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
@@ -491,7 +496,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
if (!rt_se)
enqueue_top_rt_rq(rt_rq);
else if (!on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se, false);
+ enqueue_rt_entity(rt_se, 0);
if (rt_rq->highest_prio.curr < curr->prio)
resched_curr(rq);
@@ -508,7 +513,7 @@ static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
if (!rt_se)
dequeue_top_rt_rq(rt_rq);
else if (on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
+ dequeue_rt_entity(rt_se, 0);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
@@ -1176,6 +1181,41 @@ void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
#endif /* CONFIG_RT_GROUP_SCHED */
+#ifdef CONFIG_SCHED_HMP
+
+static void
+inc_hmp_sched_stats_rt(struct rq *rq, struct task_struct *p)
+{
+ inc_cumulative_runnable_avg(&rq->hmp_stats, p);
+}
+
+static void
+dec_hmp_sched_stats_rt(struct rq *rq, struct task_struct *p)
+{
+ dec_cumulative_runnable_avg(&rq->hmp_stats, p);
+}
+
+static void
+fixup_hmp_sched_stats_rt(struct rq *rq, struct task_struct *p,
+ u32 new_task_load, u32 new_pred_demand)
+{
+ s64 task_load_delta = (s64)new_task_load - task_load(p);
+ s64 pred_demand_delta = PRED_DEMAND_DELTA;
+
+ fixup_cumulative_runnable_avg(&rq->hmp_stats, p, task_load_delta,
+ pred_demand_delta);
+}
+
+#else /* CONFIG_SCHED_HMP */
+
+static inline void
+inc_hmp_sched_stats_rt(struct rq *rq, struct task_struct *p) { }
+
+static inline void
+dec_hmp_sched_stats_rt(struct rq *rq, struct task_struct *p) { }
+
+#endif /* CONFIG_SCHED_HMP */
+
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
@@ -1212,7 +1252,30 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
dec_rt_group(rt_se, rt_rq);
}
-static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+/*
+ * Change rt_se->run_list location unless SAVE && !MOVE
+ *
+ * assumes ENQUEUE/DEQUEUE flags match
+ */
+static inline bool move_entity(unsigned int flags)
+{
+ if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
+ return false;
+
+ return true;
+}
+
+static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
+{
+ list_del_init(&rt_se->run_list);
+
+ if (list_empty(array->queue + rt_se_prio(rt_se)))
+ __clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+ rt_se->on_list = 0;
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
@@ -1225,26 +1288,37 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
* get throttled and the current group doesn't have any other
* active members.
*/
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
+ if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
+ if (rt_se->on_list)
+ __delist_rt_entity(rt_se, array);
return;
+ }
- if (head)
- list_add(&rt_se->run_list, queue);
- else
- list_add_tail(&rt_se->run_list, queue);
- __set_bit(rt_se_prio(rt_se), array->bitmap);
+ if (move_entity(flags)) {
+ WARN_ON_ONCE(rt_se->on_list);
+ if (flags & ENQUEUE_HEAD)
+ list_add(&rt_se->run_list, queue);
+ else
+ list_add_tail(&rt_se->run_list, queue);
+
+ __set_bit(rt_se_prio(rt_se), array->bitmap);
+ rt_se->on_list = 1;
+ }
+ rt_se->on_rq = 1;
inc_rt_tasks(rt_se, rt_rq);
}
-static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
+ if (move_entity(flags)) {
+ WARN_ON_ONCE(!rt_se->on_list);
+ __delist_rt_entity(rt_se, array);
+ }
+ rt_se->on_rq = 0;
dec_rt_tasks(rt_se, rt_rq);
}
@@ -1253,7 +1327,7 @@ static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
* Because the prio of an upper entry depends on the lower
* entries, we must remove entries top - down.
*/
-static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct sched_rt_entity *back = NULL;
@@ -1266,31 +1340,31 @@ static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
for (rt_se = back; rt_se; rt_se = rt_se->back) {
if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
+ __dequeue_rt_entity(rt_se, flags);
}
}
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
- dequeue_rt_stack(rt_se);
+ dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se, head);
+ __enqueue_rt_entity(rt_se, flags);
enqueue_top_rt_rq(&rq->rt);
}
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
- dequeue_rt_stack(rt_se);
+ dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se) {
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se, false);
+ __enqueue_rt_entity(rt_se, flags);
}
enqueue_top_rt_rq(&rq->rt);
}
@@ -1306,8 +1380,8 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
if (flags & ENQUEUE_WAKEUP)
rt_se->timeout = 0;
- enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
- walt_inc_cumulative_runnable_avg(rq, p);
+ enqueue_rt_entity(rt_se, flags);
+ inc_hmp_sched_stats_rt(rq, p);
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
@@ -1320,8 +1394,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
- dequeue_rt_entity(rt_se);
- walt_dec_cumulative_runnable_avg(rq, p);
+ dequeue_rt_entity(rt_se, flags);
+ dec_hmp_sched_stats_rt(rq, p);
dequeue_pushable_task(rq, p);
schedtune_dequeue_task(p, cpu_of(rq));
@@ -1364,12 +1438,51 @@ static void yield_task_rt(struct rq *rq)
#ifdef CONFIG_SMP
static int find_lowest_rq(struct task_struct *task);
+#ifdef CONFIG_SCHED_HMP
+static int
+select_task_rq_rt_hmp(struct task_struct *p, int cpu, int sd_flag, int flags)
+{
+ int target;
+
+ rcu_read_lock();
+ target = find_lowest_rq(p);
+ if (target != -1)
+ cpu = target;
+ rcu_read_unlock();
+
+ return cpu;
+}
+#endif
+
+/*
+ * Return whether the task on the given cpu is currently non-preemptible
+ * while handling a potentially long softint, or if the task is likely
+ * to block preemptions soon because it is a ksoftirq thread that is
+ * handling slow softints.
+ */
+bool
+task_may_not_preempt(struct task_struct *task, int cpu)
+{
+ __u32 softirqs = per_cpu(active_softirqs, cpu) |
+ __IRQ_STAT(cpu, __softirq_pending);
+ struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu);
+
+ return ((softirqs & LONG_SOFTIRQ_MASK) &&
+ (task == cpu_ksoftirqd ||
+ task_thread_info(task)->preempt_count & SOFTIRQ_MASK));
+}
+
static int
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
int sibling_count_hint)
{
struct task_struct *curr;
struct rq *rq;
+ bool may_not_preempt;
+
+#ifdef CONFIG_SCHED_HMP
+ return select_task_rq_rt_hmp(p, cpu, sd_flag, flags);
+#endif
/* For anything but wake ups, just return the task_cpu */
if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
@@ -1381,7 +1494,17 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
curr = READ_ONCE(rq->curr); /* unlocked access */
/*
- * If the current task on @p's runqueue is an RT task, then
+ * If the current task on @p's runqueue is a softirq task,
+ * it may run without preemption for a time that is
+ * ill-suited for a waiting RT task. Therefore, try to
+ * wake this RT task on another runqueue.
+ *
+ * Also, if the current task on @p's runqueue is an RT task, then
+ * it may run without preemption for a time that is
+ * ill-suited for a waiting RT task. Therefore, try to
+ * wake this RT task on another runqueue.
+ *
+ * Also, if the current task on @p's runqueue is an RT task, then
* try to see if we can wake this RT task up on another
* runqueue. Otherwise simply start this RT task
* on its current runqueue.
@@ -1402,17 +1525,22 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
* This test is optimistic, if we get it wrong the load-balancer
* will have to sort it out.
*/
- if (curr && unlikely(rt_task(curr)) &&
+ may_not_preempt = task_may_not_preempt(curr, cpu);
+ if (may_not_preempt ||
+ (unlikely(rt_task(curr)) &&
(curr->nr_cpus_allowed < 2 ||
- curr->prio <= p->prio)) {
+ curr->prio <= p->prio))) {
int target = find_lowest_rq(p);
/*
- * Don't bother moving it if the destination CPU is
- * not running a lower priority task.
+ * If cpu is non-preemptible, prefer remote cpu
+ * even if it's running a higher-prio task.
+ * Otherwise: Don't bother moving it if the
+ * destination CPU is not running a lower priority task.
*/
if (target != -1 &&
- p->prio < cpu_rq(target)->rt.highest_prio.curr)
+ (may_not_preempt ||
+ p->prio < cpu_rq(target)->rt.highest_prio.curr))
cpu = target;
}
rcu_read_unlock();
@@ -1608,6 +1736,109 @@ static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
+#ifdef CONFIG_SCHED_HMP
+
+static int find_lowest_rq_hmp(struct task_struct *task)
+{
+ struct cpumask *lowest_mask = *this_cpu_ptr(&local_cpu_mask);
+ struct cpumask candidate_mask = CPU_MASK_NONE;
+ struct sched_cluster *cluster;
+ int best_cpu = -1;
+ int prev_cpu = task_cpu(task);
+ u64 cpu_load, min_load = ULLONG_MAX;
+ int i;
+ int restrict_cluster;
+ int boost_on_big;
+ int pack_task, wakeup_latency, least_wakeup_latency = INT_MAX;
+
+ boost_on_big = sched_boost() == FULL_THROTTLE_BOOST &&
+ sched_boost_policy() == SCHED_BOOST_ON_BIG;
+
+ restrict_cluster = sysctl_sched_restrict_cluster_spill;
+
+ /* Make sure the mask is initialized first */
+ if (unlikely(!lowest_mask))
+ return best_cpu;
+
+ if (task->nr_cpus_allowed == 1)
+ return best_cpu; /* No other targets possible */
+
+ if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+ return best_cpu; /* No targets found */
+
+ pack_task = is_short_burst_task(task);
+
+ /*
+ * At this point we have built a mask of cpus representing the
+ * lowest priority tasks in the system. Now we want to elect
+ * the best one based on our affinity and topology.
+ */
+
+retry:
+ for_each_sched_cluster(cluster) {
+ if (boost_on_big && cluster->capacity != max_possible_capacity)
+ continue;
+
+ cpumask_and(&candidate_mask, &cluster->cpus, lowest_mask);
+ cpumask_andnot(&candidate_mask, &candidate_mask,
+ cpu_isolated_mask);
+ /*
+ * When placement boost is active, if there is no eligible CPU
+ * in the highest capacity cluster, we fallback to the other
+ * clusters. So clear the CPUs of the traversed cluster from
+ * the lowest_mask.
+ */
+ if (unlikely(boost_on_big))
+ cpumask_andnot(lowest_mask, lowest_mask,
+ &cluster->cpus);
+
+ if (cpumask_empty(&candidate_mask))
+ continue;
+
+ for_each_cpu(i, &candidate_mask) {
+ if (sched_cpu_high_irqload(i))
+ continue;
+
+ cpu_load = cpu_rq(i)->hmp_stats.cumulative_runnable_avg;
+ if (!restrict_cluster)
+ cpu_load = scale_load_to_cpu(cpu_load, i);
+
+ if (pack_task) {
+ wakeup_latency = cpu_rq(i)->wakeup_latency;
+
+ if (wakeup_latency > least_wakeup_latency)
+ continue;
+
+ if (wakeup_latency < least_wakeup_latency) {
+ least_wakeup_latency = wakeup_latency;
+ min_load = cpu_load;
+ best_cpu = i;
+ continue;
+ }
+ }
+
+ if (cpu_load < min_load ||
+ (cpu_load == min_load &&
+ (i == prev_cpu || (best_cpu != prev_cpu &&
+ cpus_share_cache(prev_cpu, i))))) {
+ min_load = cpu_load;
+ best_cpu = i;
+ }
+ }
+
+ if (restrict_cluster && best_cpu != -1)
+ break;
+ }
+
+ if (unlikely(boost_on_big && best_cpu == -1)) {
+ boost_on_big = 0;
+ goto retry;
+ }
+
+ return best_cpu;
+}
+#endif /* CONFIG_SCHED_HMP */
+
static int find_lowest_rq(struct task_struct *task)
{
struct sched_domain *sd;
@@ -1615,6 +1846,10 @@ static int find_lowest_rq(struct task_struct *task)
int this_cpu = smp_processor_id();
int cpu = task_cpu(task);
+#ifdef CONFIG_SCHED_HMP
+ return find_lowest_rq_hmp(task);
+#endif
+
/* Make sure the mask is initialized first */
if (unlikely(!lowest_mask))
return -1;
@@ -1831,11 +2066,13 @@ retry:
goto retry;
}
+ next_task->on_rq = TASK_ON_RQ_MIGRATING;
deactivate_task(rq, next_task, 0);
next_task->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(next_task, lowest_rq->cpu);
next_task->on_rq = TASK_ON_RQ_QUEUED;
activate_task(lowest_rq, next_task, 0);
+ next_task->on_rq = TASK_ON_RQ_QUEUED;
ret = 1;
resched_curr(lowest_rq);
@@ -2099,11 +2336,13 @@ static void pull_rt_task(struct rq *this_rq)
resched = true;
+ p->on_rq = TASK_ON_RQ_MIGRATING;
deactivate_task(src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(p, this_cpu);
p->on_rq = TASK_ON_RQ_QUEUED;
activate_task(this_rq, p, 0);
+ p->on_rq = TASK_ON_RQ_QUEUED;
/*
* We continue with the search, just in
* case there's an even higher prio task
@@ -2169,7 +2408,8 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p)
* we may need to handle the pulling of RT tasks
* now.
*/
- if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
+ if (!task_on_rq_queued(p) || rq->rt.rt_nr_running ||
+ cpu_isolated(cpu_of(rq)))
return;
queue_pull_task(rq);
@@ -2184,6 +2424,7 @@ void __init init_sched_rt_class(void)
GFP_KERNEL, cpu_to_node(i));
}
}
+
#endif /* CONFIG_SMP */
/*
@@ -2357,6 +2598,11 @@ const struct sched_class rt_sched_class = {
.switched_to = switched_to_rt,
.update_curr = update_curr_rt,
+#ifdef CONFIG_SCHED_HMP
+ .inc_hmp_sched_stats = inc_hmp_sched_stats_rt,
+ .dec_hmp_sched_stats = dec_hmp_sched_stats_rt,
+ .fixup_hmp_sched_stats = fixup_hmp_sched_stats_rt,
+#endif
};
#ifdef CONFIG_SCHED_DEBUG