diff options
Diffstat (limited to 'drivers/thermal/msm_thermal.c')
-rw-r--r-- | drivers/thermal/msm_thermal.c | 7364 |
1 files changed, 7364 insertions, 0 deletions
diff --git a/drivers/thermal/msm_thermal.c b/drivers/thermal/msm_thermal.c new file mode 100644 index 000000000000..7158fb1239df --- /dev/null +++ b/drivers/thermal/msm_thermal.c @@ -0,0 +1,7364 @@ +/* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 and + * only version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#define pr_fmt(fmt) "%s:%s " fmt, KBUILD_MODNAME, __func__ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/kthread.h> +#include <linux/mutex.h> +#include <linux/msm_tsens.h> +#include <linux/workqueue.h> +#include <linux/completion.h> +#include <linux/cpu.h> +#include <linux/cpufreq.h> +#include <linux/msm_tsens.h> +#include <linux/msm_thermal.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/sysfs.h> +#include <linux/types.h> +#include <linux/thermal.h> +#include <linux/regulator/rpm-smd-regulator.h> +#include <linux/regulator/consumer.h> +#include <linux/regulator/driver.h> +#include <linux/msm_thermal_ioctl.h> +#include <soc/qcom/rpm-smd.h> +#include <soc/qcom/scm.h> +#include <linux/debugfs.h> +#include <linux/pm_opp.h> +#include <linux/sched/rt.h> +#include <linux/notifier.h> +#include <linux/reboot.h> +#include <soc/qcom/msm-core.h> +#include <linux/cpumask.h> +#include <linux/suspend.h> +#include <linux/uaccess.h> +#include <linux/uio_driver.h> + +#include <asm/cacheflush.h> + +#define CREATE_TRACE_POINTS +#define TRACE_MSM_THERMAL +#include <trace/trace_thermal.h> + +#define MSM_LIMITS_DCVSH 0x10 +#define MSM_LIMITS_NODE_DCVS 0x44435653 +#define MSM_LIMITS_SUB_FN_GENERAL 0x47454E00 +#define MSM_LIMITS_SUB_FN_CRNT 0x43524E54 +#define MSM_LIMITS_SUB_FN_REL 0x52454C00 +#define MSM_LIMITS_DOMAIN_MAX 0x444D4158 +#define MSM_LIMITS_DOMAIN_MIN 0x444D494E +#define MSM_LIMITS_CLUSTER_0 0x6370302D +#define MSM_LIMITS_CLUSTER_1 0x6370312D +#define MSM_LIMITS_ALGO_MODE_ENABLE 0x454E424C + +#define MAX_CURRENT_UA 100000 +#define MAX_RAILS 5 +#define TSENS_NAME_FORMAT "tsens_tz_sensor%d" +#define THERM_SECURE_BITE_CMD 8 +#define SENSOR_SCALING_FACTOR 1 +#define MSM_THERMAL_NAME "msm_thermal" +#define MSM_TSENS_PRINT "log_tsens_temperature" +#define CPU_BUF_SIZE 64 +#define CPU_DEVICE "cpu%d" +#define MAX_DEBUGFS_CONFIG_LEN 32 +#define MSM_THERMAL_CONFIG "config" +#define MSM_CONFIG_DATA "data" +#define DEBUGFS_DISABLE_ALL_MIT "disable" +#define DEBUGFS_CONFIG_UPDATE "update" +#define MSM_THERMAL_THRESH "thresh_degc" +#define MSM_THERMAL_THRESH_CLR "thresh_clr_degc" +#define MSM_THERMAL_THRESH_UPDATE "update" +#define DEVM_NAME_MAX 30 +#define HOTPLUG_RETRY_INTERVAL_MS 100 +#define UIO_VERSION "1.0" + +#define VALIDATE_AND_SET_MASK(_node, _key, _mask, _cpu) \ + do { \ + if (of_property_read_bool(_node, _key)) \ + _mask |= BIT(_cpu); \ + } while (0) + +#define THERM_CREATE_DEBUGFS_DIR(_node, _name, _parent, _ret) \ + do { \ + _node = debugfs_create_dir(_name, _parent); \ + if (IS_ERR(_node)) { \ + _ret = PTR_ERR(_node); \ + pr_err("Error creating debugfs dir:%s. err:%d\n", \ + _name, _ret); \ + } \ + } while (0) + +#define UPDATE_THRESHOLD_SET(_val, _trip) do { \ + if (_trip == THERMAL_TRIP_CONFIGURABLE_HI) \ + _val |= 1; \ + else if (_trip == THERMAL_TRIP_CONFIGURABLE_LOW)\ + _val |= 2; \ +} while (0) + +#define UPDATE_CPU_CONFIG_THRESHOLD(_mask, _id, _high, _low) \ + do { \ + int cpu; \ + for_each_possible_cpu(cpu) { \ + if (!(_mask & BIT(cpus[cpu].cpu))) \ + continue; \ + cpus[cpu].threshold[_id].temp = _high \ + * tsens_scaling_factor; \ + cpus[cpu].threshold[_id + 1].temp = _low \ + * tsens_scaling_factor; \ + set_and_activate_threshold( \ + cpus[cpu].sensor_id, \ + &cpus[cpu].threshold[_id]); \ + set_and_activate_threshold( \ + cpus[cpu].sensor_id, \ + &cpus[cpu].threshold[_id + 1]); \ + } \ + } while (0) + +static struct msm_thermal_data msm_thermal_info; +static struct delayed_work check_temp_work, retry_hotplug_work; +static bool core_control_enabled; +static uint32_t cpus_offlined; +static cpumask_var_t cpus_previously_online; +static DEFINE_MUTEX(core_control_mutex); +static struct kobject *cc_kobj; +static struct kobject *mx_kobj; +static struct task_struct *hotplug_task; +static struct task_struct *freq_mitigation_task; +static struct task_struct *thermal_monitor_task; +static struct completion hotplug_notify_complete; +static struct completion freq_mitigation_complete; +static struct completion thermal_monitor_complete; + +static int enabled; +static int polling_enabled; +static int rails_cnt; +static int sensor_cnt; +static int psm_rails_cnt; +static int ocr_rail_cnt; +static int limit_idx; +static int limit_idx_low; +static int limit_idx_high; +static int max_tsens_num; +static struct cpufreq_frequency_table *table; +static uint32_t usefreq; +static int freq_table_get; +static bool vdd_rstr_enabled; +static bool vdd_rstr_nodes_called; +static bool vdd_rstr_probed; +static bool sensor_info_nodes_called; +static bool sensor_info_probed; +static bool psm_enabled; +static bool psm_nodes_called; +static bool psm_probed; +static bool freq_mitigation_enabled; +static bool boot_freq_mitig_enabled; +static bool ocr_enabled; +static bool ocr_nodes_called; +static bool ocr_probed; +static bool ocr_reg_init_defer; +static bool hotplug_enabled; +static bool msm_thermal_probed; +static bool gfx_crit_phase_ctrl_enabled; +static bool gfx_warm_phase_ctrl_enabled; +static bool cx_phase_ctrl_enabled; +static bool vdd_mx_enabled; +static bool therm_reset_enabled; +static bool online_core; +static bool cluster_info_probed; +static bool cluster_info_nodes_called; +static bool in_suspend, retry_in_progress; +static bool lmh_dcvs_available; +static int *tsens_id_map; +static int *zone_id_tsens_map; +static DEFINE_MUTEX(vdd_rstr_mutex); +static DEFINE_MUTEX(psm_mutex); +static DEFINE_MUTEX(cx_mutex); +static DEFINE_MUTEX(gfx_mutex); +static DEFINE_MUTEX(ocr_mutex); +static DEFINE_MUTEX(vdd_mx_mutex); +static DEFINE_MUTEX(threshold_mutex); +static uint32_t curr_gfx_band; +static uint32_t curr_cx_band; +static struct kobj_attribute cx_mode_attr; +static struct kobj_attribute gfx_mode_attr; +static struct kobj_attribute mx_enabled_attr; +static struct attribute_group cx_attr_gp; +static struct attribute_group gfx_attr_gp; +static struct attribute_group mx_attr_group; +static struct regulator *vdd_mx, *vdd_cx; +static int *tsens_temp_at_panic; +static bool tsens_temp_print; +static uint32_t bucket; +static cpumask_t throttling_mask; +static int tsens_scaling_factor = SENSOR_SCALING_FACTOR; + +static LIST_HEAD(devices_list); +static LIST_HEAD(thresholds_list); +static int mitigation = 1; + +enum thermal_threshold { + HOTPLUG_THRESHOLD_HIGH, + HOTPLUG_THRESHOLD_LOW, + FREQ_THRESHOLD_HIGH, + FREQ_THRESHOLD_LOW, + THRESHOLD_MAX_NR, +}; + +struct cluster_info { + int cluster_id; + uint32_t entity_count; + struct cluster_info *child_entity_ptr; + struct cluster_info *parent_ptr; + struct cpufreq_frequency_table *freq_table; + int freq_idx; + int freq_idx_low; + int freq_idx_high; + struct cpumask cluster_cores; + uint32_t limited_max_freq; + uint32_t limited_min_freq; +}; + +struct cpu_info { + uint32_t cpu; + const char *sensor_type; + enum sensor_id_type id_type; + uint32_t sensor_id; + bool offline; + bool user_offline; + bool hotplug_thresh_clear; + struct sensor_threshold threshold[THRESHOLD_MAX_NR]; + bool max_freq; + uint32_t user_max_freq; + uint32_t shutdown_max_freq; + uint32_t suspend_max_freq; + uint32_t vdd_max_freq; + uint32_t user_min_freq; + uint32_t limited_max_freq; + uint32_t limited_min_freq; + bool freq_thresh_clear; + struct cluster_info *parent_ptr; +}; + +struct rail { + const char *name; + uint32_t freq_req; + uint32_t min_level; + uint32_t num_levels; + int32_t curr_level; + uint32_t levels[3]; + struct kobj_attribute value_attr; + struct kobj_attribute level_attr; + struct regulator *reg; + struct attribute_group attr_gp; + uint32_t max_frequency_limit; + struct device_clnt_data *device_handle[NR_CPUS]; + union device_request request[NR_CPUS]; +}; + +struct msm_sensor_info { + const char *name; + const char *alias; + const char *type; + uint32_t scaling_factor; +}; + +struct psm_rail { + const char *name; + uint8_t init; + uint8_t mode; + struct kobj_attribute mode_attr; + struct rpm_regulator *reg; + struct regulator *phase_reg; + struct attribute_group attr_gp; +}; + +struct devmgr_devices { + struct device_manager_data *hotplug_dev; + struct device_manager_data *cpufreq_dev[NR_CPUS]; +}; + +enum msm_thresh_list { + MSM_THERM_RESET, + MSM_VDD_RESTRICTION, + MSM_CX_PHASE_CTRL_HOT, + MSM_GFX_PHASE_CTRL_WARM, + MSM_GFX_PHASE_CTRL_HOT, + MSM_OCR, + MSM_VDD_MX_RESTRICTION, + MSM_LIST_MAX_NR, +}; + +enum msm_thermal_phase_ctrl { + MSM_CX_PHASE_CTRL, + MSM_GFX_PHASE_CTRL, + MSM_PHASE_CTRL_NR, +}; + +enum msm_temp_band { + MSM_COLD_CRITICAL = 1, + MSM_COLD, + MSM_COOL, + MSM_NORMAL, + MSM_WARM, + MSM_HOT, + MSM_HOT_CRITICAL, + MSM_TEMP_MAX_NR, +}; + +enum cpu_mit_type { + CPU_FREQ_MITIGATION = 0x1, + CPU_HOTPLUG_MITIGATION = 0x2, +}; + +enum cpu_config { + HOTPLUG_CONFIG, + CPUFREQ_CONFIG, + MAX_CPU_CONFIG +}; + +enum freq_limits { + FREQ_LIMIT_MIN = 0x1, + FREQ_LIMIT_MAX = 0x2, + FREQ_LIMIT_ALL = 0x3, +}; + +struct msm_thermal_debugfs_thresh_config { + char config_name[MAX_DEBUGFS_CONFIG_LEN]; + long thresh; + long thresh_clr; + bool update; + void (*disable_config)(void); + struct dentry *dbg_config; + struct dentry *dbg_thresh; + struct dentry *dbg_thresh_clr; + struct dentry *dbg_thresh_update; +}; + +struct msm_thermal_debugfs_entry { + struct dentry *parent; + struct dentry *tsens_print; + struct dentry *config; + struct dentry *config_data; +}; + +static struct psm_rail *psm_rails; +static struct psm_rail *ocr_rails; +static struct rail *rails; +static struct msm_sensor_info *sensors; +static struct cpu_info cpus[NR_CPUS]; +static struct threshold_info *thresh; +static bool mx_restr_applied; +static struct cluster_info *core_ptr; +static struct msm_thermal_debugfs_entry *msm_therm_debugfs; +static struct devmgr_devices *devices; +static struct msm_thermal_debugfs_thresh_config *mit_config; + +struct vdd_rstr_enable { + struct kobj_attribute ko_attr; + uint32_t enabled; +}; + +/* For SMPS only*/ +enum PMIC_SW_MODE { + PMIC_AUTO_MODE = RPM_REGULATOR_MODE_AUTO, + PMIC_IPEAK_MODE = RPM_REGULATOR_MODE_IPEAK, + PMIC_PWM_MODE = RPM_REGULATOR_MODE_HPM, +}; + +enum ocr_request { + OPTIMUM_CURRENT_MIN, + OPTIMUM_CURRENT_MAX, + OPTIMUM_CURRENT_NR, +}; + +static int thermal_config_debugfs_read(struct seq_file *m, void *data); +static ssize_t thermal_config_debugfs_write(struct file *file, + const char __user *buffer, + size_t count, loff_t *ppos); + +#define VDD_RES_RO_ATTRIB(_rail, ko_attr, j, _name) \ + ko_attr.attr.name = __stringify(_name); \ + ko_attr.attr.mode = 0444; \ + ko_attr.show = vdd_rstr_reg_##_name##_show; \ + ko_attr.store = NULL; \ + sysfs_attr_init(&ko_attr.attr); \ + _rail.attr_gp.attrs[j] = &ko_attr.attr; + +#define VDD_RES_RW_ATTRIB(_rail, ko_attr, j, _name) \ + ko_attr.attr.name = __stringify(_name); \ + ko_attr.attr.mode = 0644; \ + ko_attr.show = vdd_rstr_reg_##_name##_show; \ + ko_attr.store = vdd_rstr_reg_##_name##_store; \ + sysfs_attr_init(&ko_attr.attr); \ + _rail.attr_gp.attrs[j] = &ko_attr.attr; + +#define VDD_RSTR_ENABLE_FROM_ATTRIBS(attr) \ + (container_of(attr, struct vdd_rstr_enable, ko_attr)); + +#define VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr) \ + (container_of(attr, struct rail, value_attr)); + +#define VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr) \ + (container_of(attr, struct rail, level_attr)); + +#define OCR_RW_ATTRIB(_rail, ko_attr, j, _name) \ + ko_attr.attr.name = __stringify(_name); \ + ko_attr.attr.mode = 0644; \ + ko_attr.show = ocr_reg_##_name##_show; \ + ko_attr.store = ocr_reg_##_name##_store; \ + sysfs_attr_init(&ko_attr.attr); \ + _rail.attr_gp.attrs[j] = &ko_attr.attr; + +#define PSM_RW_ATTRIB(_rail, ko_attr, j, _name) \ + ko_attr.attr.name = __stringify(_name); \ + ko_attr.attr.mode = 0644; \ + ko_attr.show = psm_reg_##_name##_show; \ + ko_attr.store = psm_reg_##_name##_store; \ + sysfs_attr_init(&ko_attr.attr); \ + _rail.attr_gp.attrs[j] = &ko_attr.attr; + +#define PSM_REG_MODE_FROM_ATTRIBS(attr) \ + (container_of(attr, struct psm_rail, mode_attr)); + +#define PHASE_RW_ATTR(_phase, _name, _attr, j, _attr_gr) \ + _attr.attr.name = __stringify(_name); \ + _attr.attr.mode = 0644; \ + _attr.show = _phase##_phase_show; \ + _attr.store = _phase##_phase_store; \ + sysfs_attr_init(&_attr.attr); \ + _attr_gr.attrs[j] = &_attr.attr; + +#define MX_RW_ATTR(ko_attr, _name, _attr_gp) \ + ko_attr.attr.name = __stringify(_name); \ + ko_attr.attr.mode = 0644; \ + ko_attr.show = show_mx_##_name; \ + ko_attr.store = store_mx_##_name; \ + sysfs_attr_init(&ko_attr.attr); \ + _attr_gp.attrs[0] = &ko_attr.attr; + +#define THERM_MITIGATION_DISABLE(_flag, _id) \ + do { \ + if (!_flag) \ + return; \ + if (_id >= 0) \ + sensor_mgr_disable_threshold( \ + &thresh[_id]); \ + _flag = 0; \ + } while (0) + +#define APPLY_VDD_RESTRICTION(vdd, level, name, ret) \ + do { \ + ret = regulator_set_voltage(vdd, level, INT_MAX); \ + if (ret) { \ + pr_err("Failed to vote %s to level %d, err %d\n", \ + #name, level, ret); \ + } else { \ + ret = regulator_enable(vdd); \ + if (ret) \ + pr_err("Failed to enable %s, err %d\n", \ + #name, ret); \ + else \ + pr_debug("Vote %s with level %d\n", \ + #name, level); \ + } \ + } while (0) + +#define REMOVE_VDD_RESTRICTION(vdd, name, ret) \ + do { \ + ret = regulator_disable(vdd); \ + if (ret) { \ + pr_err("Failed to disable %s, error %d\n", \ + #name, ret); \ + } else { \ + ret = regulator_set_voltage(vdd, 0, INT_MAX); \ + if (ret) \ + pr_err("Failed to remove %s vote, error %d\n",\ + #name, ret); \ + else \ + pr_debug("Remove voting to %s\n", #name); \ + } \ + } while (0) + +static void uio_init(struct platform_device *pdev) +{ + int ret = 0; + struct uio_info *uio_reg_info = NULL; + struct resource *clnt_res = NULL; + u32 mem_size = 0; + phys_addr_t mem_pyhsical = 0; + + clnt_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!clnt_res) { + pr_debug("resource not found\n"); + goto exit; + } + mem_size = resource_size(clnt_res); + if (mem_size == 0) { + pr_err("resource memory size is zero\n"); + goto exit; + } + + uio_reg_info = devm_kzalloc(&pdev->dev, sizeof(struct uio_info), + GFP_KERNEL); + if (!uio_reg_info) + goto exit; + + mem_pyhsical = clnt_res->start; + + /* Setup device */ + uio_reg_info->name = clnt_res->name; + uio_reg_info->version = UIO_VERSION; + uio_reg_info->mem[0].addr = mem_pyhsical; + uio_reg_info->mem[0].size = mem_size; + uio_reg_info->mem[0].memtype = UIO_MEM_PHYS; + + ret = uio_register_device(&pdev->dev, uio_reg_info); + if (ret) { + devm_kfree(&pdev->dev, uio_reg_info); + pr_err("uio register failed ret=%d\n", ret); + goto exit; + } + dev_set_drvdata(&pdev->dev, uio_reg_info); + +exit: + return; +} + +static void get_cluster_mask(uint32_t cpu, cpumask_t *mask) +{ + int i; + + cpumask_set_cpu(cpu, mask); + if (core_ptr) { + for (i = 0; i < core_ptr->entity_count; i++) { + struct cluster_info *cluster_ptr = + &core_ptr->child_entity_ptr[i]; + if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) { + cpumask_copy(mask, + &cluster_ptr->cluster_cores); + break; + } + } + } +} + +static uint32_t get_core_max_freq(uint32_t cpu) +{ + int i; + uint32_t max_freq = 0; + + if (core_ptr) { + for (i = 0; i < core_ptr->entity_count; i++) { + struct cluster_info *cluster_ptr = + &core_ptr->child_entity_ptr[i]; + if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) { + if (cluster_ptr->freq_table) + max_freq = + cluster_ptr->freq_table + [cluster_ptr->freq_idx_high].frequency; + break; + } + } + } else { + if (table) + max_freq = table[limit_idx_high].frequency; + } + + return max_freq; +} + +static void cpus_previously_online_update(void) +{ + get_online_cpus(); + cpumask_or(cpus_previously_online, cpus_previously_online, + cpu_online_mask); + put_online_cpus(); + pr_debug("%*pb\n", cpumask_pr_args(cpus_previously_online)); +} + +static uint32_t get_core_min_freq(uint32_t cpu) +{ + int i; + uint32_t min_freq = UINT_MAX; + + if (core_ptr) { + for (i = 0; i < core_ptr->entity_count; i++) { + struct cluster_info *cluster_ptr = + &core_ptr->child_entity_ptr[i]; + if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) { + if (cluster_ptr->freq_table) + min_freq = + cluster_ptr->freq_table[0].frequency; + break; + } + } + } else { + if (table) + min_freq = table[0].frequency; + } + + return min_freq; +} + +static void msm_thermal_update_freq(bool is_shutdown, bool mitigate) +{ + uint32_t cpu; + bool update = false; + + for_each_possible_cpu(cpu) { + if (msm_thermal_info.freq_mitig_control_mask + & BIT(cpu)) { + uint32_t *freq = (is_shutdown) + ? &cpus[cpu].shutdown_max_freq + : &cpus[cpu].suspend_max_freq; + uint32_t mitigation_freq = (mitigate) ? + get_core_min_freq(cpu) : UINT_MAX; + + if (*freq == mitigation_freq) + continue; + *freq = mitigation_freq; + update = true; + pr_debug("%s mitigate CPU%u to %u\n", + (is_shutdown) ? "Shutdown" : "Suspend", cpu, + mitigation_freq); + } + } + + if (!update) + goto notify_exit; + + if (freq_mitigation_task) + complete(&freq_mitigation_complete); + else + pr_err("Freq mitigation task is not initialized\n"); +notify_exit: + return; +} + +static int msm_thermal_power_down_callback( + struct notifier_block *nfb, unsigned long action, void *data) +{ + + switch (action) { + case SYS_RESTART: + case SYS_POWER_OFF: + case SYS_HALT: + msm_thermal_update_freq(true, true); + break; + + default: + return NOTIFY_DONE; + } + + return NOTIFY_OK; +} + +static int msm_thermal_suspend_callback( + struct notifier_block *nfb, unsigned long action, void *data) +{ + switch (action) { + case PM_HIBERNATION_PREPARE: + case PM_SUSPEND_PREPARE: + msm_thermal_update_freq(false, true); + in_suspend = true; + retry_in_progress = false; + cancel_delayed_work_sync(&retry_hotplug_work); + break; + + case PM_POST_HIBERNATION: + case PM_POST_SUSPEND: + msm_thermal_update_freq(false, false); + in_suspend = false; + if (hotplug_task) + complete(&hotplug_notify_complete); + else + pr_debug("Hotplug task not initialized\n"); + break; + + default: + return NOTIFY_DONE; + } + + return NOTIFY_OK; +} + +static struct notifier_block msm_thermal_reboot_notifier = { + .notifier_call = msm_thermal_power_down_callback, +}; + +static struct device_manager_data *find_device_by_name(const char *device_name) +{ + struct device_manager_data *dev_mgr = NULL; + + list_for_each_entry(dev_mgr, &devices_list, dev_ptr) { + if (strcmp(dev_mgr->device_name, device_name) == 0) + return dev_mgr; + } + + return NULL; +} + +static int validate_client(struct device_clnt_data *clnt) +{ + int ret = 0; + struct device_manager_data *dev_mgr = NULL; + struct device_clnt_data *client_ptr = NULL; + + if (!clnt || !clnt->dev_mgr) { + pr_err("Invalid client\n"); + ret = -EINVAL; + goto validate_exit; + } + + list_for_each_entry(dev_mgr, &devices_list, dev_ptr) { + if (dev_mgr == clnt->dev_mgr) + break; + } + if (dev_mgr != clnt->dev_mgr) { + pr_err("Invalid device manager\n"); + ret = -EINVAL; + goto validate_exit; + } + + mutex_lock(&dev_mgr->clnt_lock); + list_for_each_entry(client_ptr, &dev_mgr->client_list, clnt_ptr) { + if (clnt == client_ptr) + break; + } + if (clnt != client_ptr) { + pr_err("Invalid client\n"); + ret = -EINVAL; + goto validate_unlock; + } +validate_unlock: + mutex_unlock(&dev_mgr->clnt_lock); + +validate_exit: + return ret; +} + +static int devmgr_client_cpufreq_update(struct device_manager_data *dev_mgr) +{ + int ret = 0; + struct device_clnt_data *clnt = NULL; + uint32_t max_freq = UINT_MAX; + uint32_t min_freq = 0; + + mutex_lock(&dev_mgr->clnt_lock); + list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) { + if (!clnt->req_active) + continue; + max_freq = min(max_freq, clnt->request.freq.max_freq); + min_freq = max(min_freq, clnt->request.freq.min_freq); + } + if (dev_mgr->active_req.freq.max_freq == max_freq && + dev_mgr->active_req.freq.min_freq == min_freq) { + goto update_exit; + } + dev_mgr->active_req.freq.max_freq = max_freq; + dev_mgr->active_req.freq.min_freq = min_freq; + + if (freq_mitigation_task) { + complete(&freq_mitigation_complete); + } else { + pr_err("Frequency mitigation task is not initialized\n"); + ret = -ESRCH; + } + +update_exit: + mutex_unlock(&dev_mgr->clnt_lock); + return ret; +} + +static int devmgr_client_hotplug_update(struct device_manager_data *dev_mgr) +{ + int ret = 0; + struct device_clnt_data *clnt = NULL; + cpumask_t offline_mask = CPU_MASK_NONE; + + mutex_lock(&dev_mgr->clnt_lock); + list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) { + if (!clnt->req_active) + continue; + cpumask_or(&offline_mask, &offline_mask, + &clnt->request.offline_mask); + } + if (cpumask_equal(&dev_mgr->active_req.offline_mask, &offline_mask)) + goto update_exit; + + cpumask_copy(&dev_mgr->active_req.offline_mask, &offline_mask); + + if (hotplug_task) { + complete(&hotplug_notify_complete); + } else { + pr_err("Hotplug task is not initialized\n"); + ret = -ESRCH; + } + +update_exit: + mutex_unlock(&dev_mgr->clnt_lock); + return ret; +} + +static int devmgr_hotplug_client_request_validate_and_update( + struct device_clnt_data *clnt, + union device_request *req, + enum device_req_type type) +{ + if (type != HOTPLUG_MITIGATION_REQ) + return -EINVAL; + + cpumask_copy(&clnt->request.offline_mask, &req->offline_mask); + + if (!cpumask_empty(&req->offline_mask)) + clnt->req_active = true; + else + clnt->req_active = false; + + return 0; +} + +static int devmgr_cpufreq_client_request_validate_and_update( + struct device_clnt_data *clnt, + union device_request *req, + enum device_req_type type) +{ + if (type != CPUFREQ_MITIGATION_REQ) + return -EINVAL; + + if (req->freq.max_freq < req->freq.min_freq) { + pr_err("Invalid Max and Min freq req. max:%u min:%u\n", + req->freq.max_freq, req->freq.min_freq); + return -EINVAL; + } + + clnt->request.freq.max_freq = req->freq.max_freq; + clnt->request.freq.min_freq = req->freq.min_freq; + + if ((req->freq.max_freq == CPUFREQ_MAX_NO_MITIGATION) && + (req->freq.min_freq == CPUFREQ_MIN_NO_MITIGATION)) + clnt->req_active = false; + else + clnt->req_active = true; + + return 0; +} + +int devmgr_client_request_mitigation(struct device_clnt_data *clnt, + enum device_req_type type, + union device_request *req) +{ + int ret = 0; + struct device_manager_data *dev_mgr = NULL; + + if (!mitigation) { + pr_err("Thermal Mitigations disabled.\n"); + goto req_exit; + } + + if (!clnt || !req) { + pr_err("Invalid inputs for mitigation.\n"); + ret = -EINVAL; + goto req_exit; + } + + ret = validate_client(clnt); + if (ret) { + pr_err("Invalid mitigation client. ret:%d\n", ret); + goto req_exit; + } + + if (!clnt->dev_mgr->request_validate) { + pr_err("Invalid dev mgr request update\n"); + ret = -EINVAL; + goto req_exit; + } + + dev_mgr = clnt->dev_mgr; + mutex_lock(&dev_mgr->clnt_lock); + ret = dev_mgr->request_validate(clnt, req, type); + if (ret) { + pr_err("Invalid client request\n"); + goto req_unlock; + } + +req_unlock: + mutex_unlock(&dev_mgr->clnt_lock); + if (!ret && dev_mgr->update) + dev_mgr->update(dev_mgr); + +req_exit: + return ret; +} + +struct device_clnt_data *devmgr_register_mitigation_client(struct device *dev, + const char *device_name, + void (*callback)(struct device_clnt_data *, + union device_request *, void *)) +{ + struct device_clnt_data *client = NULL; + struct device_manager_data *dev_mgr = NULL; + + if (!dev || !device_name) { + pr_err("Invalid input\n"); + return ERR_PTR(-EINVAL); + } + + dev_mgr = find_device_by_name(device_name); + if (!dev_mgr) { + pr_err("Invalid device %s\n", device_name); + return ERR_PTR(-EINVAL); + } + + client = devm_kzalloc(dev, + sizeof(struct device_clnt_data), GFP_KERNEL); + if (!client) { + pr_err("Memory alloc failed\n"); + return ERR_PTR(-ENOMEM); + } + + mutex_lock(&dev_mgr->clnt_lock); + client->dev_mgr = dev_mgr; + client->callback = callback; + list_add_tail(&client->clnt_ptr, &dev_mgr->client_list); + mutex_unlock(&dev_mgr->clnt_lock); + + return client; +} + +void devmgr_unregister_mitigation_client(struct device *dev, + struct device_clnt_data *clnt) +{ + int ret = 0; + struct device_manager_data *dev_mgr = NULL; + + if (!clnt) { + pr_err("Invalid input\n"); + return; + } + + ret = validate_client(clnt); + if (ret) + return; + + dev_mgr = clnt->dev_mgr; + mutex_lock(&dev_mgr->clnt_lock); + list_del(&clnt->clnt_ptr); + mutex_unlock(&dev_mgr->clnt_lock); + devm_kfree(dev, clnt); + if (dev_mgr->update) + dev_mgr->update(dev_mgr); +} + +static int msm_thermal_cpufreq_callback(struct notifier_block *nfb, + unsigned long event, void *data) +{ + struct cpufreq_policy *policy = data; + uint32_t max_freq_req, min_freq_req; + + switch (event) { + case CPUFREQ_ADJUST: + max_freq_req = (lmh_dcvs_available) ? UINT_MAX : + cpus[policy->cpu].parent_ptr->limited_max_freq; + min_freq_req = cpus[policy->cpu].parent_ptr->limited_min_freq; + pr_debug("mitigating CPU%d to freq max: %u min: %u\n", + policy->cpu, max_freq_req, min_freq_req); + + cpufreq_verify_within_limits(policy, min_freq_req, + max_freq_req); + + if (max_freq_req < min_freq_req) + pr_err("Invalid frequency request Max:%u Min:%u\n", + max_freq_req, min_freq_req); + break; + } + return NOTIFY_OK; +} + +static struct notifier_block msm_thermal_cpufreq_notifier = { + .notifier_call = msm_thermal_cpufreq_callback, +}; + +static int msm_lmh_dcvs_write(uint32_t node_id, uint32_t fn, uint32_t setting, + uint32_t val) +{ + int ret; + struct scm_desc desc_arg; + uint32_t *payload = NULL; + + payload = kzalloc(sizeof(uint32_t) * 5, GFP_KERNEL); + if (!payload) + return -ENOMEM; + + payload[0] = fn; + payload[1] = 0; /* unused sub-algorithm */ + payload[2] = setting; + payload[3] = 1; /* number of values */ + payload[4] = val; + + desc_arg.args[0] = SCM_BUFFER_PHYS(payload); + desc_arg.args[1] = sizeof(uint32_t) * 5; + desc_arg.args[2] = MSM_LIMITS_NODE_DCVS; + desc_arg.args[3] = node_id; + desc_arg.args[4] = 0; /* version */ + desc_arg.arginfo = SCM_ARGS(5, SCM_RO, SCM_VAL, SCM_VAL, + SCM_VAL, SCM_VAL); + + dmac_flush_range(payload, (void *)payload + 5 * (sizeof(uint32_t))); + ret = scm_call2(SCM_SIP_FNID(SCM_SVC_LMH, MSM_LIMITS_DCVSH), &desc_arg); + + kfree(payload); + return ret; +} + +static int msm_lmh_dcvs_update(int cpu) +{ + uint32_t id = cpus[cpu].parent_ptr->cluster_id; + uint32_t max_freq = cpus[cpu].limited_max_freq; + uint32_t min_freq = cpus[cpu].limited_min_freq; + uint32_t affinity; + int ret; + + switch (id) { + case 0: + affinity = MSM_LIMITS_CLUSTER_0; + break; + case 1: + affinity = MSM_LIMITS_CLUSTER_1; + break; + default: + pr_err("%s: unknown affinity %d\n", __func__, id); + return -EINVAL; + }; + + ret = msm_lmh_dcvs_write(affinity, MSM_LIMITS_SUB_FN_GENERAL, + MSM_LIMITS_DOMAIN_MAX, max_freq); + if (ret) + return ret; + + ret = msm_lmh_dcvs_write(affinity, MSM_LIMITS_SUB_FN_GENERAL, + MSM_LIMITS_DOMAIN_MIN, min_freq); + if (ret) + return ret; + /* + * Notify LMH dcvs driver about the new software limit. This will + * trigger LMH DCVS driver polling for the mitigated frequency. + */ + msm_lmh_dcvsh_sw_notify(cpu); + + return ret; +} + +static void update_cpu_freq(int cpu, enum freq_limits changed) +{ + int ret = 0; + cpumask_t mask; + + /* + * If the limits overshoot each other, choose the min requirement + * over the max freq requirement. + */ + if (cpus[cpu].limited_min_freq > cpus[cpu].limited_max_freq) + cpus[cpu].limited_max_freq = cpus[cpu].limited_min_freq; + + get_cluster_mask(cpu, &mask); + if (cpu_online(cpu)) { + if ((cpumask_intersects(&mask, &throttling_mask)) + && (cpus[cpu].limited_max_freq + >= get_core_max_freq(cpu))) { + cpumask_xor(&throttling_mask, &mask, &throttling_mask); + set_cpu_throttled(&mask, false); + } else if (!cpumask_intersects(&mask, &throttling_mask)) { + cpumask_or(&throttling_mask, &mask, &throttling_mask); + set_cpu_throttled(&mask, true); + } + trace_thermal_pre_frequency_mit(cpu, + cpus[cpu].limited_max_freq, + cpus[cpu].limited_min_freq); + + /* + * If LMH DCVS is available, we update the hardware directly + * for faster response. However, the LMH DCVS does not aggregate + * min freq correctly - cpufreq could be voting for a min + * freq lesser than what we desire and that would be honored. + * Update cpufreq, so the min freq remains consistent in the hw. + */ + if (lmh_dcvs_available) { + msm_lmh_dcvs_update(cpu); + if (changed & FREQ_LIMIT_MIN) + cpufreq_update_policy(cpu); + } else { + cpufreq_update_policy(cpu); + } + + trace_thermal_post_frequency_mit(cpu, + cpufreq_quick_get_max(cpu), + cpus[cpu].limited_min_freq); + if (ret) + pr_err("Unable to update policy for cpu:%d. err:%d\n", + cpu, ret); + } +} + +static ssize_t cluster_info_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + uint32_t i = 0; + ssize_t tot_size = 0, size = 0; + + for (; i < core_ptr->entity_count; i++) { + struct cluster_info *cluster_ptr = + &core_ptr->child_entity_ptr[i]; + + size = snprintf(&buf[tot_size], PAGE_SIZE - tot_size, + "%d:%lu:1 ", cluster_ptr->cluster_id, + *cluster_ptr->cluster_cores.bits); + if ((tot_size + size) >= PAGE_SIZE) { + pr_err("Not enough buffer size"); + break; + } + tot_size += size; + } + + return tot_size; +} + +static int thermal_config_debugfs_open(struct inode *inode, + struct file *file) +{ + return single_open(file, thermal_config_debugfs_read, + inode->i_private); +} + +static const struct file_operations thermal_debugfs_config_ops = { + .open = thermal_config_debugfs_open, + .read = seq_read, + .write = thermal_config_debugfs_write, + .llseek = seq_lseek, + .release = single_release, +}; + +static int create_config_debugfs( + struct msm_thermal_debugfs_thresh_config *config_ptr, + struct dentry *parent) +{ + int ret = 0; + + if (!strlen(config_ptr->config_name)) + return -ENODEV; + + THERM_CREATE_DEBUGFS_DIR(config_ptr->dbg_config, + config_ptr->config_name, parent, ret); + if (ret) + goto create_exit; + + config_ptr->dbg_thresh = debugfs_create_u64(MSM_THERMAL_THRESH, + 0600, config_ptr->dbg_config, (u64 *)&config_ptr->thresh); + if (IS_ERR(config_ptr->dbg_thresh)) { + ret = PTR_ERR(config_ptr->dbg_thresh); + pr_err("Error creating thresh debugfs:[%s]. error:%d\n", + config_ptr->config_name, ret); + goto create_exit; + } + + config_ptr->dbg_thresh_clr = debugfs_create_u64(MSM_THERMAL_THRESH_CLR, + 0600, config_ptr->dbg_config, (u64 *)&config_ptr->thresh_clr); + if (IS_ERR(config_ptr->dbg_thresh)) { + ret = PTR_ERR(config_ptr->dbg_thresh); + pr_err("Error creating thresh_clr debugfs:[%s]. error:%d\n", + config_ptr->config_name, ret); + goto create_exit; + } + + config_ptr->dbg_thresh_update = debugfs_create_bool( + MSM_THERMAL_THRESH_UPDATE, 0600, config_ptr->dbg_config, + &config_ptr->update); + if (IS_ERR(config_ptr->dbg_thresh_update)) { + ret = PTR_ERR(config_ptr->dbg_thresh_update); + pr_err("Error creating enable debugfs:[%s]. error:%d\n", + config_ptr->config_name, ret); + goto create_exit; + } + +create_exit: + if (ret) + debugfs_remove_recursive(parent); + + return ret; +} + +static int create_thermal_debugfs(void) +{ + int ret = 0, idx = 0; + + if (msm_therm_debugfs) + return ret; + + msm_therm_debugfs = devm_kzalloc(&msm_thermal_info.pdev->dev, + sizeof(struct msm_thermal_debugfs_entry), GFP_KERNEL); + if (!msm_therm_debugfs) { + ret = -ENOMEM; + pr_err("Memory alloc failed. err:%d\n", ret); + return ret; + } + + THERM_CREATE_DEBUGFS_DIR(msm_therm_debugfs->parent, MSM_THERMAL_NAME, + NULL, ret); + if (ret) + goto create_exit; + + msm_therm_debugfs->tsens_print = debugfs_create_bool(MSM_TSENS_PRINT, + 0600, msm_therm_debugfs->parent, &tsens_temp_print); + if (IS_ERR(msm_therm_debugfs->tsens_print)) { + ret = PTR_ERR(msm_therm_debugfs->tsens_print); + pr_err("Error creating debugfs:[%s]. err:%d\n", + MSM_TSENS_PRINT, ret); + goto create_exit; + } + + THERM_CREATE_DEBUGFS_DIR(msm_therm_debugfs->config, MSM_THERMAL_CONFIG, + msm_therm_debugfs->parent, ret); + if (ret) + goto create_exit; + + msm_therm_debugfs->config_data = debugfs_create_file(MSM_CONFIG_DATA, + 0600, msm_therm_debugfs->config, NULL, + &thermal_debugfs_config_ops); + if (!msm_therm_debugfs->config_data) { + pr_err("Error creating debugfs:[%s]\n", + MSM_CONFIG_DATA); + goto create_exit; + } + for (idx = 0; idx < MSM_LIST_MAX_NR + MAX_CPU_CONFIG; idx++) + create_config_debugfs(&mit_config[idx], + msm_therm_debugfs->config); + +create_exit: + if (ret) { + debugfs_remove_recursive(msm_therm_debugfs->parent); + devm_kfree(&msm_thermal_info.pdev->dev, msm_therm_debugfs); + } + return ret; +} + +static struct kobj_attribute cluster_info_attr = __ATTR_RO(cluster_info); +static int create_cpu_topology_sysfs(void) +{ + int ret = 0; + struct kobject *module_kobj = NULL; + + if (!cluster_info_probed) { + cluster_info_nodes_called = true; + return ret; + } + if (!core_ptr) + return ret; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + return -ENODEV; + } + + sysfs_attr_init(&cluster_info_attr.attr); + ret = sysfs_create_file(module_kobj, &cluster_info_attr.attr); + if (ret) { + pr_err("cannot create cluster info attr group. err:%d\n", ret); + return ret; + } + + return ret; +} + +static int get_device_tree_cluster_info(struct device *dev, int *cluster_id, + cpumask_t *cluster_cpus) +{ + int idx = 0, ret = 0, max_entry = 0, core_cnt = 0, c_idx = 0, cpu = 0; + uint32_t val = 0; + char *key = "qcom,synchronous-cluster-map"; + struct device_node *core_phandle = NULL; + + if (!of_get_property(dev->of_node, key, &max_entry) + || max_entry <= 0) { + pr_debug("Property %s not defined.\n", key); + return -ENODEV; + } + max_entry /= sizeof(__be32); + + for (idx = 0; idx < max_entry; idx++, c_idx++) { + /* Read Cluster ID */ + ret = of_property_read_u32_index(dev->of_node, key, idx++, + &val); + if (ret) { + pr_err("Error reading index%d. err:%d\n", idx - 1, + ret); + return -EINVAL; + } + /* Read number of cores inside a cluster */ + cluster_id[c_idx] = val; + cpumask_clear(&cluster_cpus[c_idx]); + ret = of_property_read_u32_index(dev->of_node, key, idx, + &val); + if (ret || val < 1) { + pr_err("Invalid core count[%d] for Cluster%d. err:%d\n" + , val, cluster_id[c_idx - 1], ret); + return -EINVAL; + } + core_cnt = val + idx; + /* map the cores to logical CPUs and get sibiling mask */ + for (; core_cnt != idx; core_cnt--) { + core_phandle = of_parse_phandle(dev->of_node, key, + core_cnt); + if (!core_phandle) { + pr_debug("Invalid phandle. core%d cluster%d\n", + core_cnt, cluster_id[c_idx - 1]); + continue; + } + + for_each_possible_cpu(cpu) { + if (of_get_cpu_node(cpu, NULL) + == core_phandle) + break; + } + if (cpu >= num_possible_cpus()) { + pr_debug("Skipping core%d in cluster%d\n", + core_cnt, cluster_id[c_idx - 1]); + continue; + } + cpumask_set_cpu(cpu, &cluster_cpus[c_idx]); + } + idx += val; + } + + return c_idx; +} + +static int get_kernel_cluster_info(int *cluster_id, cpumask_t *cluster_cpus) +{ + uint32_t _cpu, cluster_index, cluster_cnt; + + for (_cpu = 0, cluster_cnt = 0; _cpu < num_possible_cpus(); _cpu++) { + if (topology_physical_package_id(_cpu) < 0) { + pr_err("CPU%d topology not initialized.\n", _cpu); + return -ENODEV; + } + /* Do not use the sibling cpumask from topology module. + ** kernel topology module updates the sibling cpumask + ** only when the cores are brought online for the first time. + ** KTM figures out the sibling cpumask using the + ** cluster and core ID mapping. + */ + for (cluster_index = 0; cluster_index < num_possible_cpus(); + cluster_index++) { + if (cluster_id[cluster_index] == -1) { + cluster_id[cluster_index] = + topology_physical_package_id(_cpu); + cpumask_clear(&cluster_cpus[cluster_index]); + cpumask_set_cpu(_cpu, + &cluster_cpus[cluster_index]); + cluster_cnt++; + break; + } + if (cluster_id[cluster_index] == + topology_physical_package_id(_cpu)) { + cpumask_set_cpu(_cpu, + &cluster_cpus[cluster_index]); + break; + } + } + } + + return cluster_cnt; +} + +static void update_cpu_topology(struct device *dev) +{ + int cluster_id[NR_CPUS] = {[0 ... NR_CPUS-1] = -1}; + cpumask_t cluster_cpus[NR_CPUS]; + uint32_t i; + int cluster_cnt; + struct cluster_info *temp_ptr = NULL; + + cluster_info_probed = true; + cluster_cnt = get_kernel_cluster_info(cluster_id, cluster_cpus); + if (cluster_cnt <= 0) { + cluster_cnt = get_device_tree_cluster_info(dev, cluster_id, + cluster_cpus); + if (cluster_cnt <= 0) { + core_ptr = NULL; + pr_debug("Cluster Info not defined. KTM continues.\n"); + return; + } + } + + core_ptr = devm_kzalloc(dev, sizeof(struct cluster_info), GFP_KERNEL); + if (!core_ptr) { + pr_err("Memory alloc failed\n"); + return; + } + core_ptr->parent_ptr = NULL; + core_ptr->entity_count = cluster_cnt; + core_ptr->cluster_id = -1; + + temp_ptr = devm_kzalloc(dev, sizeof(struct cluster_info) * cluster_cnt, + GFP_KERNEL); + if (!temp_ptr) { + pr_err("Memory alloc failed\n"); + devm_kfree(dev, core_ptr); + core_ptr = NULL; + return; + } + + for (i = 0; i < cluster_cnt; i++) { + int idx = 0; + + pr_debug("Cluster_ID:%d CPU's:%lu\n", cluster_id[i], + *cpumask_bits(&cluster_cpus[i])); + temp_ptr[i].cluster_id = cluster_id[i]; + temp_ptr[i].parent_ptr = core_ptr; + cpumask_copy(&temp_ptr[i].cluster_cores, &cluster_cpus[i]); + temp_ptr[i].limited_max_freq = UINT_MAX; + temp_ptr[i].limited_min_freq = 0; + temp_ptr[i].freq_idx = 0; + temp_ptr[i].freq_idx_low = 0; + temp_ptr[i].freq_idx_high = 0; + temp_ptr[i].freq_table = NULL; + temp_ptr[i].entity_count = cpumask_weight(&cluster_cpus[i]); + for_each_cpu(idx, &temp_ptr[i].cluster_cores) { + cpus[idx].parent_ptr = &temp_ptr[i]; + } + temp_ptr[i].child_entity_ptr = NULL; + } + core_ptr->child_entity_ptr = temp_ptr; +} + +static int get_cpu_freq_plan_len(int cpu) +{ + int table_len = 0; + struct device *cpu_dev = NULL; + + cpu_dev = get_cpu_device(cpu); + if (!cpu_dev) { + pr_err("Error in get CPU%d device\n", cpu); + goto exit; + } + + rcu_read_lock(); + table_len = dev_pm_opp_get_opp_count(cpu_dev); + if (table_len <= 0) { + pr_err("Error reading CPU%d freq table len. error:%d\n", + cpu, table_len); + table_len = 0; + goto unlock_and_exit; + } + +unlock_and_exit: + rcu_read_unlock(); + +exit: + return table_len; +} + +static int get_cpu_freq_plan(int cpu, + struct cpufreq_frequency_table *freq_table_ptr) +{ + int table_len = 0; + struct dev_pm_opp *opp = NULL; + unsigned long freq = 0; + struct device *cpu_dev = NULL; + + cpu_dev = get_cpu_device(cpu); + if (!cpu_dev) { + pr_err("Error in get CPU%d device\n", cpu); + goto exit; + } + + rcu_read_lock(); + while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq))) { + /* Convert from Hz to kHz */ + freq_table_ptr[table_len].frequency = freq / 1000; + pr_debug("cpu%d freq %d :%d\n", cpu, table_len, + freq_table_ptr[table_len].frequency); + freq++; + table_len++; + } + rcu_read_unlock(); + +exit: + return table_len; +} + +static int init_cluster_freq_table(void) +{ + uint32_t _cluster = 0; + int table_len = 0; + int ret = 0; + struct cluster_info *cluster_ptr = NULL; + + for (; _cluster < core_ptr->entity_count; _cluster++, table_len = 0) { + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + if (cluster_ptr->freq_table) + continue; + + table_len = get_cpu_freq_plan_len( + cpumask_first(&cluster_ptr->cluster_cores)); + if (!table_len) { + ret = -EAGAIN; + continue; + } + cluster_ptr->freq_idx_low = 0; + cluster_ptr->freq_idx_high = cluster_ptr->freq_idx = + table_len - 1; + if (cluster_ptr->freq_idx_high < 0 + || (cluster_ptr->freq_idx_high + < cluster_ptr->freq_idx_low)) { + cluster_ptr->freq_idx = cluster_ptr->freq_idx_low = + cluster_ptr->freq_idx_high = 0; + WARN(1, "Cluster%d frequency table length:%d\n", + cluster_ptr->cluster_id, table_len); + ret = -EINVAL; + goto exit; + } + cluster_ptr->freq_table = kzalloc( + sizeof(struct cpufreq_frequency_table) * table_len, + GFP_KERNEL); + if (!cluster_ptr->freq_table) { + pr_err("memory alloc failed\n"); + cluster_ptr->freq_idx = cluster_ptr->freq_idx_low = + cluster_ptr->freq_idx_high = 0; + ret = -ENOMEM; + goto exit; + } + table_len = get_cpu_freq_plan( + cpumask_first(&cluster_ptr->cluster_cores), + cluster_ptr->freq_table); + if (!table_len) { + kfree(cluster_ptr->freq_table); + cluster_ptr->freq_table = NULL; + pr_err("Error reading cluster%d cpufreq table\n", + cluster_ptr->cluster_id); + ret = -EAGAIN; + continue; + } + } + +exit: + return ret; +} + +static void update_cluster_freq(void) +{ + int online_cpu = -1; + struct cluster_info *cluster_ptr = NULL; + uint32_t _cluster = 0, _cpu = 0, max = UINT_MAX, min = 0; + uint32_t changed; + + if (!core_ptr) + return; + + for (; _cluster < core_ptr->entity_count; _cluster++, _cpu = 0, + online_cpu = -1, max = UINT_MAX, min = 0) { + /* + ** Go over the frequency limits + ** of each core in the cluster and aggregate the minimum + ** and maximum frequencies. After aggregating, request for + ** frequency update on the first online core in that cluster. + ** Cpufreq driver takes care of updating the frequency of + ** other cores in a synchronous cluster. + */ + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + + for_each_cpu(_cpu, &cluster_ptr->cluster_cores) { + if (online_cpu == -1 && cpu_online(_cpu)) + online_cpu = _cpu; + max = min(max, cpus[_cpu].limited_max_freq); + min = max(min, cpus[_cpu].limited_min_freq); + } + if (cluster_ptr->limited_max_freq == max + && cluster_ptr->limited_min_freq == min) + continue; + changed = 0; + if (max != cluster_ptr->limited_max_freq) + changed |= FREQ_LIMIT_MAX; + if (min != cluster_ptr->limited_min_freq) + changed |= FREQ_LIMIT_MIN; + cluster_ptr->limited_max_freq = max; + cluster_ptr->limited_min_freq = min; + if (online_cpu != -1) + update_cpu_freq(online_cpu, changed); + } +} + +static void do_cluster_freq_ctrl(int temp) +{ + uint32_t _cluster = 0; + int _cpu = -1, freq_idx = 0; + bool mitigate = false; + struct cluster_info *cluster_ptr = NULL; + + if (temp >= msm_thermal_info.limit_temp_degC) + mitigate = true; + else if (temp < msm_thermal_info.limit_temp_degC - + msm_thermal_info.temp_hysteresis_degC) + mitigate = false; + else + return; + + get_online_cpus(); + for (; _cluster < core_ptr->entity_count; _cluster++) { + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + if (!cluster_ptr->freq_table) + continue; + + if (mitigate) + freq_idx = max_t(int, cluster_ptr->freq_idx_low, + (cluster_ptr->freq_idx + - msm_thermal_info.bootup_freq_step)); + else + freq_idx = min_t(int, cluster_ptr->freq_idx_high, + (cluster_ptr->freq_idx + + msm_thermal_info.bootup_freq_step)); + if (freq_idx == cluster_ptr->freq_idx) + continue; + + cluster_ptr->freq_idx = freq_idx; + for_each_cpu(_cpu, &cluster_ptr->cluster_cores) { + if (!(msm_thermal_info.bootup_freq_control_mask + & BIT(_cpu))) + continue; + pr_info("Limiting CPU%d max frequency to %u. Temp:%d\n" + , _cpu + , cluster_ptr->freq_table[freq_idx].frequency + , temp); + cpus[_cpu].limited_max_freq = min( + cluster_ptr->freq_table[freq_idx].frequency, + cpus[_cpu].vdd_max_freq); + } + } + if (_cpu != -1) + update_cluster_freq(); + put_online_cpus(); +} + +/** + * msm_thermal_lmh_dcvs_init: Initialize LMH DCVS hardware block + * + * @pdev: handle to the thermal device node + * + * Probe for the 'OSM clock' and initialize the LMH DCVS blocks. + */ +static int msm_thermal_lmh_dcvs_init(struct platform_device *pdev) +{ + struct clk *osm_clk; + const char *clk_name = "osm"; + int ret = 0; + + /* We are okay if the osm clock is not present in DT */ + osm_clk = devm_clk_get(&pdev->dev, clk_name); + if (IS_ERR(osm_clk)) + return ret; + + /* + * We actually don't need the clock, we just wanted to make sure + * the OSM block is ready. + */ + devm_clk_put(&pdev->dev, osm_clk); + + /* Enable the CRNT and Reliability algorithm. Again, we dont + * care if this fails + */ + ret = msm_lmh_dcvs_write(MSM_LIMITS_CLUSTER_0, + MSM_LIMITS_SUB_FN_REL, + MSM_LIMITS_ALGO_MODE_ENABLE, 1); + if (ret) + pr_err("Unable to enable REL algo for cluster0\n"); + ret = msm_lmh_dcvs_write(MSM_LIMITS_CLUSTER_1, + MSM_LIMITS_SUB_FN_REL, + MSM_LIMITS_ALGO_MODE_ENABLE, 1); + if (ret) + pr_err("Unable to enable REL algo for cluster1\n"); + + ret = msm_lmh_dcvs_write(MSM_LIMITS_CLUSTER_0, + MSM_LIMITS_SUB_FN_CRNT, + MSM_LIMITS_ALGO_MODE_ENABLE, 1); + if (ret) + pr_err("Unable enable CRNT algo for cluster0\n"); + ret = msm_lmh_dcvs_write(MSM_LIMITS_CLUSTER_1, + MSM_LIMITS_SUB_FN_CRNT, + MSM_LIMITS_ALGO_MODE_ENABLE, 1); + if (ret) + pr_err("Unable enable CRNT algo for cluster1\n"); + + lmh_dcvs_available = true; + + return ret; +} + +/* If freq table exists, then we can send freq request */ +static int check_freq_table(void) +{ + int ret = 0; + static bool invalid_table; + int table_len = 0; + + if (invalid_table) + return -EINVAL; + if (freq_table_get) + return 0; + + if (core_ptr) { + ret = init_cluster_freq_table(); + if (!ret) + freq_table_get = 1; + else if (ret == -EINVAL) + invalid_table = true; + goto exit; + } + + table_len = get_cpu_freq_plan_len(0); + if (!table_len) + return -EINVAL; + + table = kzalloc(sizeof(struct cpufreq_frequency_table) + * table_len, GFP_KERNEL); + if (!table) { + ret = -ENOMEM; + goto exit; + } + table_len = get_cpu_freq_plan(0, table); + if (!table_len) { + pr_err("error reading cpufreq table\n"); + ret = -EINVAL; + goto free_and_exit; + } + + limit_idx_low = 0; + limit_idx_high = limit_idx = table_len - 1; + if (limit_idx_high < 0 || limit_idx_high < limit_idx_low) { + invalid_table = true; + limit_idx_low = limit_idx_high = limit_idx = 0; + WARN(1, "CPU0 frequency table length:%d\n", table_len); + ret = -EINVAL; + goto free_and_exit; + } + freq_table_get = 1; + +free_and_exit: + if (ret) { + kfree(table); + table = NULL; + } + +exit: + if (!ret) { + int err; + + err = msm_thermal_lmh_dcvs_init(msm_thermal_info.pdev); + if (err) + pr_err("Error initializing OSM\n"); + } + return ret; +} + +static int update_cpu_min_freq_all(struct rail *apss_rail, uint32_t min) +{ + uint32_t cpu = 0, _cluster = 0, max_freq = UINT_MAX; + int ret = 0; + struct cluster_info *cluster_ptr = NULL; + bool valid_table = false; + + if (!freq_table_get) { + ret = check_freq_table(); + if (ret && !core_ptr) { + pr_err("Fail to get freq table. err:%d\n", ret); + return ret; + } + } + if (min != apss_rail->min_level) + max_freq = apss_rail->max_frequency_limit; + + get_online_cpus(); + /* If min is larger than allowed max */ + if (core_ptr) { + for (; _cluster < core_ptr->entity_count; _cluster++) { + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + if (!cluster_ptr->freq_table) + continue; + valid_table = true; + min = min(min, + cluster_ptr->freq_table[ + cluster_ptr->freq_idx_high].frequency); + max_freq = max(max_freq, cluster_ptr->freq_table[ + cluster_ptr->freq_idx_low].frequency); + } + if (!valid_table) + goto update_freq_exit; + } else { + min = min(min, table[limit_idx_high].frequency); + max_freq = max(max_freq, table[limit_idx_low].frequency); + } + + pr_debug("Requesting min freq:%u max freq:%u for all CPU's\n", + min, max_freq); + if (freq_mitigation_task) { + if (!apss_rail->device_handle[0]) { + pr_err("device manager handle not registered\n"); + ret = -ENODEV; + goto update_freq_exit; + } + for_each_possible_cpu(cpu) { + cpus[cpu].vdd_max_freq = max_freq; + apss_rail->request[cpu].freq.max_freq = max_freq; + apss_rail->request[cpu].freq.min_freq = min; + ret = devmgr_client_request_mitigation( + apss_rail->device_handle[cpu], + CPUFREQ_MITIGATION_REQ, + &apss_rail->request[cpu]); + } + } else if (core_ptr) { + for (_cluster = 0; _cluster < core_ptr->entity_count; + _cluster++) { + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + if (!cluster_ptr->freq_table) + continue; + for_each_cpu(cpu, &cluster_ptr->cluster_cores) { + uint32_t max; + uint32_t changed = 0; + + cpus[cpu].vdd_max_freq = max_freq; + max = min(cluster_ptr->freq_table[ + cluster_ptr->freq_idx].frequency, + cpus[cpu].vdd_max_freq); + + if (max != cpus[cpu].limited_max_freq) + changed |= FREQ_LIMIT_MAX; + if (min != cpus[cpu].limited_min_freq) + changed |= FREQ_LIMIT_MIN; + + cpus[cpu].limited_min_freq = min; + cpus[cpu].limited_max_freq = max; + } + update_cluster_freq(); + } + } else { + for_each_possible_cpu(cpu) { + uint32_t max; + uint32_t changed = 0; + + cpus[cpu].vdd_max_freq = max_freq; + max = min(table[limit_idx].frequency, + cpus[cpu].vdd_max_freq); + + if (max != cpus[cpu].limited_max_freq) + changed |= FREQ_LIMIT_MAX; + if (min != cpus[cpu].limited_min_freq) + changed |= FREQ_LIMIT_MIN; + + cpus[cpu].limited_min_freq = min; + cpus[cpu].limited_max_freq = max; + } + update_cluster_freq(); + } + +update_freq_exit: + put_online_cpus(); + return ret; +} + +static int vdd_restriction_apply_freq(struct rail *r, int level) +{ + int ret = 0; + + if (level == r->curr_level) + return ret; + + /* level = -1: disable, level = 0,1,2..n: enable */ + if (level == -1) { + ret = update_cpu_min_freq_all(r, r->min_level); + if (ret) + return ret; + else + r->curr_level = -1; + } else if (level >= 0 && level < (r->num_levels)) { + ret = update_cpu_min_freq_all(r, r->levels[level]); + if (ret) + return ret; + else + r->curr_level = level; + } else { + pr_err("level input:%d is not within range\n", level); + return -EINVAL; + } + + return ret; +} + +static int vdd_restriction_apply_voltage(struct rail *r, int level) +{ + int ret = 0; + + if (r->reg == NULL) { + pr_err("%s don't have regulator handle. can't apply vdd\n", + r->name); + return -EFAULT; + } + if (level == r->curr_level) + return ret; + + /* level = -1: disable, level = 0,1,2..n: enable */ + if (level == -1) { + ret = regulator_set_voltage(r->reg, r->min_level, + INT_MAX); + if (!ret) + r->curr_level = -1; + pr_debug("Requested min level for %s. curr level: %d\n", + r->name, r->curr_level); + } else if (level >= 0 && level < (r->num_levels)) { + ret = regulator_set_voltage(r->reg, r->levels[level], + INT_MAX); + if (!ret) + r->curr_level = level; + pr_debug("Requesting level %d for %s. curr level: %d\n", + r->levels[level], r->name, r->levels[r->curr_level]); + } else { + pr_err("level input:%d is not within range\n", level); + return -EINVAL; + } + + return ret; +} + +/* Setting all rails the same mode */ +static int psm_set_mode_all(int mode) +{ + int i = 0; + int fail_cnt = 0; + int ret = 0; + + pr_debug("Requesting PMIC Mode: %d\n", mode); + for (i = 0; i < psm_rails_cnt; i++) { + if (psm_rails[i].mode != mode) { + ret = rpm_regulator_set_mode(psm_rails[i].reg, mode); + if (ret) { + pr_err("Cannot set mode:%d for %s. err:%d", + mode, psm_rails[i].name, ret); + fail_cnt++; + } else + psm_rails[i].mode = mode; + } + } + + return fail_cnt ? (-EFAULT) : ret; +} + +static ssize_t vdd_rstr_en_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr); + + return snprintf(buf, PAGE_SIZE, "%d\n", en->enabled); +} + +static ssize_t vdd_rstr_en_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int i = 0; + uint8_t en_cnt = 0; + uint8_t dis_cnt = 0; + uint32_t val = 0; + struct kernel_param kp; + struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr); + + mutex_lock(&vdd_rstr_mutex); + kp.arg = &val; + ret = param_set_bool(buf, &kp); + if (ret) { + pr_err("Invalid input %s for enabled\n", buf); + goto done_vdd_rstr_en; + } + + if ((val == 0) && (en->enabled == 0)) + goto done_vdd_rstr_en; + + for (i = 0; i < rails_cnt; i++) { + if (rails[i].freq_req == 1 && freq_table_get) + ret = vdd_restriction_apply_freq(&rails[i], + (val) ? 0 : -1); + else + ret = vdd_restriction_apply_voltage(&rails[i], + (val) ? 0 : -1); + + /* + * Even if fail to set one rail, still try to set the + * others. Continue the loop + */ + if (ret) + pr_err("Set vdd restriction for %s failed\n", + rails[i].name); + else { + if (val) + en_cnt++; + else + dis_cnt++; + } + } + /* As long as one rail is enabled, vdd rstr is enabled */ + if (val && en_cnt) + en->enabled = 1; + else if (!val && (dis_cnt == rails_cnt)) + en->enabled = 0; + pr_debug("%s vdd restriction. curr: %d\n", + (val) ? "Enable" : "Disable", en->enabled); + +done_vdd_rstr_en: + mutex_unlock(&vdd_rstr_mutex); + return count; +} + +static int send_temperature_band(enum msm_thermal_phase_ctrl phase, + enum msm_temp_band req_band) +{ + int ret = 0; + uint32_t msg_id; + struct msm_rpm_request *rpm_req; + unsigned int band = req_band; + uint32_t key, resource, resource_id; + + if (phase < 0 || phase >= MSM_PHASE_CTRL_NR || + req_band <= 0 || req_band >= MSM_TEMP_MAX_NR) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto phase_ctrl_exit; + } + switch (phase) { + case MSM_CX_PHASE_CTRL: + key = msm_thermal_info.cx_phase_request_key; + break; + case MSM_GFX_PHASE_CTRL: + key = msm_thermal_info.gfx_phase_request_key; + break; + default: + goto phase_ctrl_exit; + break; + } + + resource = msm_thermal_info.phase_rpm_resource_type; + resource_id = msm_thermal_info.phase_rpm_resource_id; + pr_debug("Sending %s temperature band %d\n", + (phase == MSM_CX_PHASE_CTRL) ? "CX" : "GFX", + req_band); + rpm_req = msm_rpm_create_request(MSM_RPM_CTX_ACTIVE_SET, + resource, resource_id, 1); + if (!rpm_req) { + pr_err("Creating RPM request failed\n"); + ret = -ENXIO; + goto phase_ctrl_exit; + } + + ret = msm_rpm_add_kvp_data(rpm_req, key, (const uint8_t *)&band, + (int)sizeof(band)); + if (ret) { + pr_err("Adding KVP data failed. err:%d\n", ret); + goto free_rpm_handle; + } + + msg_id = msm_rpm_send_request(rpm_req); + if (!msg_id) { + pr_err("RPM send request failed\n"); + ret = -ENXIO; + goto free_rpm_handle; + } + + ret = msm_rpm_wait_for_ack(msg_id); + if (ret) { + pr_err("RPM wait for ACK failed. err:%d\n", ret); + goto free_rpm_handle; + } + +free_rpm_handle: + msm_rpm_free_request(rpm_req); +phase_ctrl_exit: + return ret; +} + +static uint32_t msm_thermal_str_to_int(const char *inp) +{ + int i, len; + uint32_t output = 0; + + len = strnlen(inp, sizeof(uint32_t)); + for (i = 0; i < len; i++) + output |= inp[i] << (i * 8); + + return output; +} + +static ssize_t sensor_info_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + int i; + ssize_t tot_size = 0, size = 0; + + for (i = 0; i < sensor_cnt; i++) { + size = snprintf(&buf[tot_size], PAGE_SIZE - tot_size, + "%s:%s:%s:%d ", + sensors[i].type, sensors[i].name, + sensors[i].alias ? : "", + sensors[i].scaling_factor); + if (tot_size + size >= PAGE_SIZE) { + pr_err("Not enough buffer size\n"); + break; + } + tot_size += size; + } + if (tot_size) + buf[tot_size - 1] = '\n'; + + return tot_size; +} + +static struct vdd_rstr_enable vdd_rstr_en = { + .ko_attr.attr.name = __stringify(enabled), + .ko_attr.attr.mode = 0644, + .ko_attr.show = vdd_rstr_en_show, + .ko_attr.store = vdd_rstr_en_store, + .enabled = 1, +}; + +static struct attribute *vdd_rstr_en_attribs[] = { + &vdd_rstr_en.ko_attr.attr, + NULL, +}; + +static struct attribute_group vdd_rstr_en_attribs_gp = { + .attrs = vdd_rstr_en_attribs, +}; + +static ssize_t vdd_rstr_reg_value_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + int val = 0; + struct rail *reg = VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr); + /* -1:disabled, -2:fail to get regualtor handle */ + if (reg->curr_level < 0) + val = reg->curr_level; + else + val = reg->levels[reg->curr_level]; + + return snprintf(buf, PAGE_SIZE, "%d\n", val); +} + +static ssize_t vdd_rstr_reg_level_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr); + return snprintf(buf, PAGE_SIZE, "%d\n", reg->curr_level); +} + +static ssize_t vdd_rstr_reg_level_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int val = 0; + + struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr); + + mutex_lock(&vdd_rstr_mutex); + if (vdd_rstr_en.enabled == 0) + goto done_store_level; + + ret = kstrtouint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s for level\n", buf); + goto done_store_level; + } + + if (val < 0 || val > reg->num_levels - 1) { + pr_err(" Invalid number %d for level\n", val); + goto done_store_level; + } + + if (val != reg->curr_level) { + if (reg->freq_req == 1 && freq_table_get) + update_cpu_min_freq_all(reg, reg->levels[val]); + else { + ret = vdd_restriction_apply_voltage(reg, val); + if (ret) { + pr_err( \ + "Set vdd restriction for regulator %s failed. err:%d\n", + reg->name, ret); + goto done_store_level; + } + } + reg->curr_level = val; + pr_debug("Request level %d for %s\n", + reg->curr_level, reg->name); + } + +done_store_level: + mutex_unlock(&vdd_rstr_mutex); + return count; +} + +static int request_optimum_current(struct psm_rail *rail, enum ocr_request req) +{ + int ret = 0; + + if ((!rail) || (req >= OPTIMUM_CURRENT_NR) || + (req < 0)) { + pr_err("Invalid input %d\n", req); + ret = -EINVAL; + goto request_ocr_exit; + } + + ret = regulator_set_load(rail->phase_reg, + (req == OPTIMUM_CURRENT_MAX) ? MAX_CURRENT_UA : 0); + if (ret < 0) { + pr_err("Optimum current request failed. err:%d\n", ret); + goto request_ocr_exit; + } + ret = 0; /*regulator_set_optimum_mode returns the mode on success*/ + pr_debug("Requested optimum current mode: %d\n", req); + +request_ocr_exit: + return ret; +} + +static int ocr_set_mode_all(enum ocr_request req) +{ + int ret = 0, i; + + for (i = 0; i < ocr_rail_cnt; i++) { + if (ocr_rails[i].mode == req) + continue; + ret = request_optimum_current(&ocr_rails[i], req); + if (ret) + goto ocr_set_mode_exit; + ocr_rails[i].mode = req; + } + +ocr_set_mode_exit: + return ret; +} + +static ssize_t ocr_reg_mode_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); + return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode); +} + +static ssize_t ocr_reg_mode_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int val = 0; + struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); + + if (!ocr_enabled) + return count; + + mutex_lock(&ocr_mutex); + ret = kstrtoint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s for mode. err:%d\n", + buf, ret); + goto done_ocr_store; + } + + if ((val != OPTIMUM_CURRENT_MAX) && + (val != OPTIMUM_CURRENT_MIN)) { + pr_err("Invalid value %d for mode\n", val); + goto done_ocr_store; + } + + if (val != reg->mode) { + ret = request_optimum_current(reg, val); + if (ret) + goto done_ocr_store; + reg->mode = val; + } + +done_ocr_store: + mutex_unlock(&ocr_mutex); + return count; +} + +static ssize_t store_phase_request(const char *buf, size_t count, bool is_cx) +{ + int ret = 0, val; + struct mutex *phase_mutex = (is_cx) ? (&cx_mutex) : (&gfx_mutex); + enum msm_thermal_phase_ctrl phase_req = (is_cx) ? MSM_CX_PHASE_CTRL : + MSM_GFX_PHASE_CTRL; + + ret = kstrtoint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s for %s temperature band\n", + buf, (is_cx) ? "CX" : "GFX"); + goto phase_store_exit; + } + if ((val <= 0) || (val >= MSM_TEMP_MAX_NR)) { + pr_err("Invalid input %d for %s temperature band\n", + val, (is_cx) ? "CX" : "GFX"); + ret = -EINVAL; + goto phase_store_exit; + } + mutex_lock(phase_mutex); + if (val != ((is_cx) ? curr_cx_band : curr_gfx_band)) { + ret = send_temperature_band(phase_req, val); + if (!ret) { + *((is_cx) ? &curr_cx_band : &curr_gfx_band) = val; + } else { + pr_err("Failed to send %d temp. band to %s rail\n", val, + (is_cx) ? "CX" : "GFX"); + goto phase_store_unlock_exit; + } + } + ret = count; +phase_store_unlock_exit: + mutex_unlock(phase_mutex); +phase_store_exit: + return ret; +} + +#define show_phase(_name, _variable) \ +static ssize_t _name##_phase_show(struct kobject *kobj, \ + struct kobj_attribute *attr, char *buf) \ +{ \ + return snprintf(buf, PAGE_SIZE, "%u\n", _variable); \ +} + +#define store_phase(_name, _variable, _iscx) \ +static ssize_t _name##_phase_store(struct kobject *kobj, \ + struct kobj_attribute *attr, const char *buf, size_t count) \ +{ \ + return store_phase_request(buf, count, _iscx); \ +} + +show_phase(gfx, curr_gfx_band) +show_phase(cx, curr_cx_band) +store_phase(gfx, curr_gfx_band, false) +store_phase(cx, curr_cx_band, true) + +static ssize_t psm_reg_mode_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); + return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode); +} + +static ssize_t psm_reg_mode_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int val = 0; + struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); + + mutex_lock(&psm_mutex); + ret = kstrtoint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s for mode\n", buf); + goto done_psm_store; + } + + if ((val != PMIC_PWM_MODE) && (val != PMIC_AUTO_MODE)) { + pr_err("Invalid number %d for mode\n", val); + goto done_psm_store; + } + + if (val != reg->mode) { + ret = rpm_regulator_set_mode(reg->reg, val); + if (ret) { + pr_err("Fail to set Mode:%d for %s. err:%d\n", + val, reg->name, ret); + goto done_psm_store; + } + reg->mode = val; + } + +done_psm_store: + mutex_unlock(&psm_mutex); + return count; +} + +static int check_sensor_id(int sensor_id) +{ + int i = 0; + bool hw_id_found = false; + int ret = 0; + + for (i = 0; i < max_tsens_num; i++) { + if (sensor_id == tsens_id_map[i]) { + hw_id_found = true; + break; + } + } + if (!hw_id_found) { + pr_err("Invalid sensor hw id:%d\n", sensor_id); + return -EINVAL; + } + + return ret; +} + +static int zone_id_to_tsen_id(int zone_id, int *tsens_id) +{ + int i = 0; + int ret = 0; + + if (!zone_id_tsens_map) { + pr_debug("zone_id_tsens_map is not initialized.\n"); + *tsens_id = zone_id; + return ret; + } + + for (i = 0; i < max_tsens_num; i++) { + if (zone_id == zone_id_tsens_map[i]) { + *tsens_id = tsens_id_map[i]; + break; + } + } + if (i == max_tsens_num) { + pr_err("Invalid sensor zone id:%d\n", zone_id); + return -EINVAL; + } + + return ret; +} + +static int create_sensor_zone_id_map(void) +{ + int i = 0; + int zone_id = -1; + + zone_id_tsens_map = devm_kzalloc(&msm_thermal_info.pdev->dev, + sizeof(int) * max_tsens_num, GFP_KERNEL); + + if (!zone_id_tsens_map) { + pr_err("Cannot allocate memory for zone_id_tsens_map\n"); + return -ENOMEM; + } + + for (i = 0; i < max_tsens_num; i++) { + char tsens_name[TSENS_NAME_MAX] = ""; + + snprintf(tsens_name, TSENS_NAME_MAX, TSENS_NAME_FORMAT, + tsens_id_map[i]); + zone_id = sensor_get_id(tsens_name); + if (zone_id < 0) { + pr_err("Error getting zone id for %s. err:%d\n", + tsens_name, zone_id); + goto fail; + } else { + zone_id_tsens_map[i] = zone_id; + } + } + return 0; + +fail: + devm_kfree(&msm_thermal_info.pdev->dev, zone_id_tsens_map); + return zone_id; +} + +static int create_sensor_id_map(struct device *dev) +{ + int ret = 0; + + tsens_id_map = devm_kzalloc(dev, + sizeof(int) * max_tsens_num, GFP_KERNEL); + + if (!tsens_id_map) { + pr_err("Cannot allocate memory for tsens_id_map\n"); + return -ENOMEM; + } + + ret = tsens_get_hw_id_mapping(max_tsens_num, tsens_id_map); + if (ret) { + pr_err("Failed to get tsens id's:%d\n", ret); + goto fail; + } + + return ret; +fail: + devm_kfree(dev, tsens_id_map); + return ret; +} + +/* 1:enable, 0:disable */ +static int vdd_restriction_apply_all(int en) +{ + int i = 0; + int en_cnt = 0; + int dis_cnt = 0; + int fail_cnt = 0; + int ret = 0; + + for (i = 0; i < rails_cnt; i++) { + if (rails[i].freq_req == 1) + if (freq_table_get) + ret = vdd_restriction_apply_freq(&rails[i], + en ? 0 : -1); + else + continue; + else + ret = vdd_restriction_apply_voltage(&rails[i], + en ? 0 : -1); + if (ret) { + pr_err("Failed to %s for %s. err:%d", + (en) ? "enable" : "disable", + rails[i].name, ret); + fail_cnt++; + } else { + if (en) + en_cnt++; + else + dis_cnt++; + } + } + + /* As long as one rail is enabled, vdd rstr is enabled */ + if (en && en_cnt) + vdd_rstr_en.enabled = 1; + else if (!en && (dis_cnt == rails_cnt)) + vdd_rstr_en.enabled = 0; + + /* + * Check fail_cnt again to make sure all of the rails are applied + * restriction successfully or not + */ + if (fail_cnt) + return -EFAULT; + return ret; +} + +static int set_and_activate_threshold(uint32_t sensor_id, + struct sensor_threshold *threshold) +{ + int ret = 0; + + ret = sensor_set_trip(sensor_id, threshold); + if (ret != 0) { + pr_err("sensor:%u Error in setting trip:%d. err:%d\n", + sensor_id, threshold->trip, ret); + goto set_done; + } + + ret = sensor_activate_trip(sensor_id, threshold, true); + if (ret != 0) { + pr_err("sensor:%u Error in enabling trip:%d. err:%d\n", + sensor_id, threshold->trip, ret); + goto set_done; + } + +set_done: + return ret; +} + +static int therm_get_temp(uint32_t id, enum sensor_id_type type, int *temp) +{ + int ret = 0; + struct tsens_device tsens_dev; + + if (!temp) { + pr_err("Invalid value\n"); + ret = -EINVAL; + goto get_temp_exit; + } + + switch (type) { + case THERM_ZONE_ID: + ret = sensor_get_temp(id, temp); + if (ret) { + pr_err("Unable to read thermal zone sensor:%d\n", id); + goto get_temp_exit; + } + break; + case THERM_TSENS_ID: + tsens_dev.sensor_num = id; + ret = tsens_get_temp(&tsens_dev, temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d\n", + tsens_dev.sensor_num); + goto get_temp_exit; + } + break; + default: + pr_err("Invalid type\n"); + ret = -EINVAL; + goto get_temp_exit; + } + + if (tsens_scaling_factor) + *temp = *temp / tsens_scaling_factor; + +get_temp_exit: + return ret; +} + +static int msm_thermal_panic_callback(struct notifier_block *nfb, + unsigned long event, void *data) +{ + int i; + + for (i = 0; i < max_tsens_num; i++) { + therm_get_temp(tsens_id_map[i], + THERM_TSENS_ID, + &tsens_temp_at_panic[i]); + if (tsens_temp_print) + pr_err("tsens%d temperature:%dC\n", + tsens_id_map[i], tsens_temp_at_panic[i]); + } + + return NOTIFY_OK; +} + +static struct notifier_block msm_thermal_panic_notifier = { + .notifier_call = msm_thermal_panic_callback, +}; + +int sensor_mgr_set_threshold(uint32_t zone_id, + struct sensor_threshold *threshold) +{ + int i = 0, ret = 0; + int temp; + + if (!threshold) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto set_threshold_exit; + } + + ret = therm_get_temp(zone_id, THERM_ZONE_ID, &temp); + if (ret) { + pr_err("Unable to read temperature for zone:%d. err:%d\n", + zone_id, ret); + goto set_threshold_exit; + } + pr_debug("Sensor:[%d] temp:[%d]\n", zone_id, temp); + while (i < MAX_THRESHOLD) { + switch (threshold[i].trip) { + case THERMAL_TRIP_CONFIGURABLE_HI: + if (threshold[i].temp / tsens_scaling_factor >= temp) { + ret = set_and_activate_threshold(zone_id, + &threshold[i]); + if (ret) + goto set_threshold_exit; + UPDATE_THRESHOLD_SET(ret, + THERMAL_TRIP_CONFIGURABLE_HI); + } + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + if (threshold[i].temp / tsens_scaling_factor <= temp) { + ret = set_and_activate_threshold(zone_id, + &threshold[i]); + if (ret) + goto set_threshold_exit; + UPDATE_THRESHOLD_SET(ret, + THERMAL_TRIP_CONFIGURABLE_LOW); + } + break; + default: + pr_err("zone:%u Invalid trip:%d\n", zone_id, + threshold[i].trip); + break; + } + i++; + } +set_threshold_exit: + return ret; +} + +static int apply_vdd_mx_restriction(void) +{ + int ret_mx = 0, ret_cx = 0; + + if (mx_restr_applied) + goto done; + + APPLY_VDD_RESTRICTION(vdd_mx, msm_thermal_info.vdd_mx_min, mx, ret_mx); + if (vdd_cx) + APPLY_VDD_RESTRICTION(vdd_cx, msm_thermal_info.vdd_cx_min, + cx, ret_cx); + if (!ret_mx && !ret_cx) + mx_restr_applied = true; + +done: + return (ret_mx | ret_cx); +} + +static int remove_vdd_mx_restriction(void) +{ + int ret_mx = 0, ret_cx = 0; + + if (!mx_restr_applied) + goto done; + + REMOVE_VDD_RESTRICTION(vdd_mx, mx, ret_mx); + if (vdd_cx) + REMOVE_VDD_RESTRICTION(vdd_cx, cx, ret_cx); + if (!ret_mx && !ret_cx) + mx_restr_applied = false; + +done: + return (ret_mx | ret_cx); +} + +static int do_vdd_mx(void) +{ + int temp = 0; + int ret = 0; + int i = 0; + int dis_cnt = 0; + + if (!vdd_mx_enabled) + return ret; + + mutex_lock(&vdd_mx_mutex); + for (i = 0; i < thresh[MSM_VDD_MX_RESTRICTION].thresh_ct; i++) { + ret = therm_get_temp( + thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i].sensor_id, + thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i].id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d, err:%d\n", + thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i]. + sensor_id, ret); + dis_cnt++; + continue; + } + if (temp <= msm_thermal_info.vdd_mx_temp_degC) { + ret = apply_vdd_mx_restriction(); + if (ret) + pr_err( + "Failed to apply mx restriction\n"); + goto exit; + } else if (temp >= (msm_thermal_info.vdd_mx_temp_degC + + msm_thermal_info.vdd_mx_temp_hyst_degC)) { + dis_cnt++; + } + } + + if ((dis_cnt == thresh[MSM_VDD_MX_RESTRICTION].thresh_ct)) { + ret = remove_vdd_mx_restriction(); + if (ret) + pr_err("Failed to remove vdd mx restriction\n"); + } + +exit: + mutex_unlock(&vdd_mx_mutex); + return ret; +} + +static void vdd_mx_notify(struct therm_threshold *trig_thresh) +{ + static uint32_t mx_sens_status; + int ret; + + pr_debug("Sensor%d trigger recevied for type %d\n", + trig_thresh->sensor_id, + trig_thresh->trip_triggered); + + if (!vdd_mx_enabled) + return; + + mutex_lock(&vdd_mx_mutex); + + switch (trig_thresh->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_LOW: + mx_sens_status |= BIT(trig_thresh->sensor_id); + break; + case THERMAL_TRIP_CONFIGURABLE_HI: + if (mx_sens_status & BIT(trig_thresh->sensor_id)) + mx_sens_status ^= BIT(trig_thresh->sensor_id); + break; + default: + pr_err("Unsupported trip type\n"); + break; + } + + if (mx_sens_status) { + ret = apply_vdd_mx_restriction(); + if (ret) + pr_err("Failed to apply mx restriction\n"); + } else if (!mx_sens_status) { + ret = remove_vdd_mx_restriction(); + if (ret) + pr_err("Failed to remove vdd mx restriction\n"); + } + mutex_unlock(&vdd_mx_mutex); + + if (trig_thresh->cur_state != trig_thresh->trip_triggered) { + sensor_mgr_set_threshold(trig_thresh->sensor_id, + trig_thresh->threshold); + trig_thresh->cur_state = trig_thresh->trip_triggered; + } +} + +static void msm_thermal_bite(int zone_id, int temp) +{ + struct scm_desc desc; + int tsens_id = 0; + int ret = 0; + + ret = zone_id_to_tsen_id(zone_id, &tsens_id); + if (ret < 0) { + pr_err("Zone:%d reached temperature:%d. Err = %d System reset\n", + zone_id, temp, ret); + } else { + pr_err("Tsens:%d reached temperature:%d. System reset\n", + tsens_id, temp); + } + if (!is_scm_armv8()) { + scm_call_atomic1(SCM_SVC_BOOT, THERM_SECURE_BITE_CMD, 0); + } else { + desc.args[0] = 0; + desc.arginfo = SCM_ARGS(1); + scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_BOOT, + THERM_SECURE_BITE_CMD), &desc); + } +} + +static int do_therm_reset(void) +{ + int ret = 0, i; + int temp = 0; + + if (!therm_reset_enabled) + return ret; + + for (i = 0; i < thresh[MSM_THERM_RESET].thresh_ct; i++) { + ret = therm_get_temp( + thresh[MSM_THERM_RESET].thresh_list[i].sensor_id, + thresh[MSM_THERM_RESET].thresh_list[i].id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh[MSM_THERM_RESET].thresh_list[i].sensor_id, + ret); + continue; + } + + if (temp >= msm_thermal_info.therm_reset_temp_degC) + msm_thermal_bite( + thresh[MSM_THERM_RESET].thresh_list[i].sensor_id, temp); + } + + return ret; +} + +static void therm_reset_notify(struct therm_threshold *thresh_data) +{ + int temp = 0; + int ret = 0; + + if (!therm_reset_enabled) + return; + + if (!thresh_data) { + pr_err("Invalid input\n"); + return; + } + + switch (thresh_data->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + ret = therm_get_temp(thresh_data->sensor_id, + thresh_data->id_type, &temp); + if (ret) + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh_data->sensor_id, ret); + msm_thermal_bite(thresh_data->sensor_id, temp); + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + break; + default: + pr_err("Invalid trip type\n"); + break; + } + sensor_mgr_set_threshold(thresh_data->sensor_id, + thresh_data->threshold); +} + +static void retry_hotplug(struct work_struct *work) +{ + mutex_lock(&core_control_mutex); + if (retry_in_progress) { + pr_debug("Retrying hotplug\n"); + retry_in_progress = false; + complete(&hotplug_notify_complete); + } + mutex_unlock(&core_control_mutex); +} + +#ifdef CONFIG_SMP +static void __ref do_core_control(int temp) +{ + int i = 0; + int ret = 0; + struct device *cpu_dev = NULL; + + if (!core_control_enabled) + return; + + mutex_lock(&core_control_mutex); + if (msm_thermal_info.core_control_mask && + temp >= msm_thermal_info.core_limit_temp_degC) { + for (i = num_possible_cpus(); i > 0; i--) { + if (!(msm_thermal_info.core_control_mask & BIT(i))) + continue; + if (cpus_offlined & BIT(i) && !cpu_online(i)) + continue; + pr_info("Set Offline: CPU%d Temp: %d\n", + i, temp); + lock_device_hotplug(); + if (cpu_online(i)) { + cpu_dev = get_cpu_device(i); + trace_thermal_pre_core_offline(i); + ret = device_offline(cpu_dev); + if (ret) + pr_err("Error %d offline core %d\n", + ret, i); + trace_thermal_post_core_offline(i, + cpumask_test_cpu(i, cpu_online_mask)); + } + unlock_device_hotplug(); + cpus_offlined |= BIT(i); + break; + } + } else if (msm_thermal_info.core_control_mask && cpus_offlined && + temp <= (msm_thermal_info.core_limit_temp_degC - + msm_thermal_info.core_temp_hysteresis_degC)) { + for (i = 0; i < num_possible_cpus(); i++) { + if (!(cpus_offlined & BIT(i))) + continue; + cpus_offlined &= ~BIT(i); + pr_info("Allow Online CPU%d Temp: %d\n", + i, temp); + /* + * If this core is already online, then bring up the + * next offlined core. + */ + lock_device_hotplug(); + if (cpu_online(i)) { + unlock_device_hotplug(); + continue; + } + /* If this core wasn't previously online don't put it + online */ + if (!(cpumask_test_cpu(i, cpus_previously_online))) { + unlock_device_hotplug(); + continue; + } + cpu_dev = get_cpu_device(i); + trace_thermal_pre_core_online(i); + ret = device_online(cpu_dev); + if (ret) + pr_err("Error %d online core %d\n", + ret, i); + trace_thermal_post_core_online(i, + cpumask_test_cpu(i, cpu_online_mask)); + unlock_device_hotplug(); + break; + } + } + mutex_unlock(&core_control_mutex); +} +/* Call with core_control_mutex locked */ +static int __ref update_offline_cores(int val) +{ + uint32_t cpu = 0; + int ret = 0; + uint32_t previous_cpus_offlined = 0; + bool pend_hotplug_req = false; + struct device *cpu_dev = NULL; + + if (!core_control_enabled) + return 0; + + previous_cpus_offlined = cpus_offlined; + cpus_offlined = msm_thermal_info.core_control_mask & val; + + for_each_possible_cpu(cpu) { + if (cpus_offlined & BIT(cpu)) { + lock_device_hotplug(); + if (!cpu_online(cpu)) { + unlock_device_hotplug(); + continue; + } + cpu_dev = get_cpu_device(cpu); + trace_thermal_pre_core_offline(cpu); + ret = device_offline(cpu_dev); + if (ret) { + pr_err_ratelimited( + "Unable to offline CPU%d. err:%d\n", + cpu, ret); + pend_hotplug_req = true; + } else { + pr_debug("Offlined CPU%d\n", cpu); + } + trace_thermal_post_core_offline(cpu, + cpumask_test_cpu(cpu, cpu_online_mask)); + unlock_device_hotplug(); + } else if (online_core && (previous_cpus_offlined & BIT(cpu))) { + lock_device_hotplug(); + if (cpu_online(cpu)) { + unlock_device_hotplug(); + continue; + } + /* If this core wasn't previously online don't put it + online */ + if (!(cpumask_test_cpu(cpu, cpus_previously_online))) { + unlock_device_hotplug(); + continue; + } + cpu_dev = get_cpu_device(cpu); + trace_thermal_pre_core_online(cpu); + ret = device_online(cpu_dev); + if (ret && ret == notifier_to_errno(NOTIFY_BAD)) { + pr_debug("Onlining CPU%d is vetoed\n", cpu); + } else if (ret) { + cpus_offlined |= BIT(cpu); + pend_hotplug_req = true; + pr_err_ratelimited( + "Unable to online CPU%d. err:%d\n", + cpu, ret); + } else { + pr_debug("Onlined CPU%d\n", cpu); + trace_thermal_post_core_online(cpu, + cpumask_test_cpu(cpu, cpu_online_mask)); + } + unlock_device_hotplug(); + } + } + + if (pend_hotplug_req && !in_suspend && !retry_in_progress) { + retry_in_progress = true; + schedule_delayed_work(&retry_hotplug_work, + msecs_to_jiffies(HOTPLUG_RETRY_INTERVAL_MS)); + } + + return ret; +} + +static __ref int do_hotplug(void *data) +{ + int ret = 0; + uint32_t cpu = 0, mask = 0; + struct device_clnt_data *clnt = NULL; + struct sched_param param = {.sched_priority = MAX_RT_PRIO-2}; + + if (!core_control_enabled) { + pr_debug("Core control disabled\n"); + return -EINVAL; + } + + sched_setscheduler(current, SCHED_FIFO, ¶m); + while (!kthread_should_stop()) { + while (wait_for_completion_interruptible( + &hotplug_notify_complete) != 0) + ; + reinit_completion(&hotplug_notify_complete); + mask = 0; + + mutex_lock(&core_control_mutex); + for_each_possible_cpu(cpu) { + if (hotplug_enabled && + cpus[cpu].hotplug_thresh_clear) { + ret = + sensor_mgr_set_threshold(cpus[cpu].sensor_id, + &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]); + + if (cpus[cpu].offline + && !IS_LOW_THRESHOLD_SET(ret)) + cpus[cpu].offline = 0; + cpus[cpu].hotplug_thresh_clear = false; + } + if (cpus[cpu].offline || cpus[cpu].user_offline) + mask |= BIT(cpu); + } + if (devices && devices->hotplug_dev) { + mutex_lock(&devices->hotplug_dev->clnt_lock); + for_each_cpu(cpu, + &devices->hotplug_dev->active_req.offline_mask) + mask |= BIT(cpu); + mutex_unlock(&devices->hotplug_dev->clnt_lock); + } + if (mask != cpus_offlined) + update_offline_cores(mask); + mutex_unlock(&core_control_mutex); + + if (devices && devices->hotplug_dev) { + union device_request req; + + req.offline_mask = CPU_MASK_NONE; + mutex_lock(&devices->hotplug_dev->clnt_lock); + for_each_cpu(cpu, + &devices->hotplug_dev->active_req.offline_mask) + if (mask & BIT(cpu)) + cpumask_test_and_set_cpu(cpu, + &req.offline_mask); + + list_for_each_entry(clnt, + &devices->hotplug_dev->client_list, + clnt_ptr) { + if (clnt->callback) + clnt->callback(clnt, &req, + clnt->usr_data); + } + mutex_unlock(&devices->hotplug_dev->clnt_lock); + } + sysfs_notify(cc_kobj, NULL, "cpus_offlined"); + } + + return ret; +} +#else +static void __ref do_core_control(int temp) +{ + return; +} + +static __ref int do_hotplug(void *data) +{ + return 0; +} + +static int __ref update_offline_cores(int val) +{ + return 0; +} +#endif + +static int do_gfx_phase_cond(void) +{ + int temp = 0; + int ret = 0; + uint32_t new_req_band = curr_gfx_band; + + if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled) + return ret; + + mutex_lock(&gfx_mutex); + if (gfx_warm_phase_ctrl_enabled) { + ret = therm_get_temp( + thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->sensor_id, + thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->sensor_id, + ret); + goto gfx_phase_cond_exit; + } + } else { + ret = therm_get_temp( + thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->sensor_id, + thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->sensor_id, + ret); + goto gfx_phase_cond_exit; + } + } + + switch (curr_gfx_band) { + case MSM_HOT_CRITICAL: + if (temp < (msm_thermal_info.gfx_phase_hot_temp_degC - + msm_thermal_info.gfx_phase_hot_temp_hyst_degC)) + new_req_band = MSM_WARM; + break; + case MSM_WARM: + if (temp >= msm_thermal_info.gfx_phase_hot_temp_degC) + new_req_band = MSM_HOT_CRITICAL; + else if (temp < (msm_thermal_info.gfx_phase_warm_temp_degC - + msm_thermal_info.gfx_phase_warm_temp_hyst_degC)) + new_req_band = MSM_NORMAL; + break; + case MSM_NORMAL: + if (temp >= msm_thermal_info.gfx_phase_warm_temp_degC) + new_req_band = MSM_WARM; + break; + default: + if (temp >= msm_thermal_info.gfx_phase_hot_temp_degC) + new_req_band = MSM_HOT_CRITICAL; + else if (temp >= msm_thermal_info.gfx_phase_warm_temp_degC) + new_req_band = MSM_WARM; + else + new_req_band = MSM_NORMAL; + break; + } + + if (new_req_band != curr_gfx_band) { + ret = send_temperature_band(MSM_GFX_PHASE_CTRL, new_req_band); + if (!ret) { + pr_debug("Reached %d band. Temp:%d\n", new_req_band, + temp); + curr_gfx_band = new_req_band; + } else { + pr_err("Error sending temp. band:%d. Temp:%d. err:%d", + new_req_band, temp, ret); + } + } + +gfx_phase_cond_exit: + mutex_unlock(&gfx_mutex); + return ret; +} + +static int do_cx_phase_cond(void) +{ + int temp = 0; + int i, ret = 0, dis_cnt = 0; + + if (!cx_phase_ctrl_enabled) + return ret; + + mutex_lock(&cx_mutex); + for (i = 0; i < thresh[MSM_CX_PHASE_CTRL_HOT].thresh_ct; i++) { + ret = therm_get_temp( + thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].sensor_id, + thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].sensor_id, + ret); + dis_cnt++; + continue; + } + + if (temp >= msm_thermal_info.cx_phase_hot_temp_degC) { + if (curr_cx_band != MSM_HOT_CRITICAL) { + ret = send_temperature_band(MSM_CX_PHASE_CTRL, + MSM_HOT_CRITICAL); + if (!ret) { + pr_debug("band:HOT_CRITICAL Temp:%d\n", + temp); + curr_cx_band = MSM_HOT_CRITICAL; + } else { + pr_err("Error %d sending HOT_CRITICAL", + ret); + } + } + goto cx_phase_cond_exit; + } else if (temp < (msm_thermal_info.cx_phase_hot_temp_degC - + msm_thermal_info.cx_phase_hot_temp_hyst_degC)) + dis_cnt++; + } + if (dis_cnt == max_tsens_num && curr_cx_band != MSM_WARM) { + ret = send_temperature_band(MSM_CX_PHASE_CTRL, MSM_WARM); + if (!ret) { + pr_debug("band:WARM Temp:%d\n", temp); + curr_cx_band = MSM_WARM; + } else { + pr_err("Error sending WARM temp band. err:%d", + ret); + } + } +cx_phase_cond_exit: + mutex_unlock(&cx_mutex); + return ret; +} + +static int do_ocr(void) +{ + int temp = 0; + int ret = 0; + int i = 0, j = 0; + int pfm_cnt = 0; + + if (!ocr_enabled) + return ret; + + mutex_lock(&ocr_mutex); + for (i = 0; i < thresh[MSM_OCR].thresh_ct; i++) { + ret = therm_get_temp( + thresh[MSM_OCR].thresh_list[i].sensor_id, + thresh[MSM_OCR].thresh_list[i].id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor %d. err:%d\n", + thresh[MSM_OCR].thresh_list[i].sensor_id, + ret); + pfm_cnt++; + continue; + } + + if (temp > msm_thermal_info.ocr_temp_degC) { + if (ocr_rails[0].init != OPTIMUM_CURRENT_NR) + for (j = 0; j < ocr_rail_cnt; j++) + ocr_rails[j].init = OPTIMUM_CURRENT_NR; + ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX); + if (ret) + pr_err("Error setting max ocr. err:%d\n", + ret); + else + pr_debug("Requested MAX OCR. tsens:%d Temp:%d", + thresh[MSM_OCR].thresh_list[i].sensor_id, temp); + goto do_ocr_exit; + } else if (temp <= (msm_thermal_info.ocr_temp_degC - + msm_thermal_info.ocr_temp_hyst_degC)) + pfm_cnt++; + } + + if (pfm_cnt == thresh[MSM_OCR].thresh_ct || + ocr_rails[0].init != OPTIMUM_CURRENT_NR) { + /* 'init' not equal to OPTIMUM_CURRENT_NR means this is the + ** first polling iteration after device probe. During first + ** iteration, if temperature is less than the set point, clear + ** the max current request made and reset the 'init'. + */ + if (ocr_rails[0].init != OPTIMUM_CURRENT_NR) + for (j = 0; j < ocr_rail_cnt; j++) + ocr_rails[j].init = OPTIMUM_CURRENT_NR; + ret = ocr_set_mode_all(OPTIMUM_CURRENT_MIN); + if (ret) { + pr_err("Error setting min ocr. err:%d\n", + ret); + goto do_ocr_exit; + } else { + pr_debug("Requested MIN OCR. Temp:%d", temp); + } + } +do_ocr_exit: + mutex_unlock(&ocr_mutex); + return ret; +} + +static int do_vdd_restriction(void) +{ + int temp = 0; + int ret = 0; + int i = 0; + int dis_cnt = 0; + + if (!vdd_rstr_enabled) + return ret; + + if (usefreq && !freq_table_get) { + if (check_freq_table() && !core_ptr) + return ret; + } + mutex_lock(&vdd_rstr_mutex); + for (i = 0; i < thresh[MSM_VDD_RESTRICTION].thresh_ct; i++) { + ret = therm_get_temp( + thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id, + thresh[MSM_VDD_RESTRICTION].thresh_list[i].id_type, + &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id, + ret); + dis_cnt++; + continue; + } + if (temp <= msm_thermal_info.vdd_rstr_temp_degC) { + ret = vdd_restriction_apply_all(1); + if (ret) { + pr_err( \ + "Enable vdd rstr for all failed. err:%d\n", + ret); + goto exit; + } + pr_debug("Enabled Vdd Restriction tsens:%d. Temp:%d\n", + thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id, + temp); + goto exit; + } else if (temp > msm_thermal_info.vdd_rstr_temp_hyst_degC) + dis_cnt++; + } + if (dis_cnt == max_tsens_num) { + ret = vdd_restriction_apply_all(0); + if (ret) { + pr_err("Disable vdd rstr for all failed. err:%d\n", + ret); + goto exit; + } + pr_debug("Disabled Vdd Restriction\n"); + } +exit: + mutex_unlock(&vdd_rstr_mutex); + return ret; +} + +static int do_psm(void) +{ + int temp = 0; + int ret = 0; + int i = 0; + int auto_cnt = 0; + + if (!psm_enabled) + return ret; + + mutex_lock(&psm_mutex); + for (i = 0; i < max_tsens_num; i++) { + ret = therm_get_temp(tsens_id_map[i], THERM_TSENS_ID, &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + tsens_id_map[i], ret); + auto_cnt++; + continue; + } + + /* + * As long as one sensor is above the threshold, set PWM mode + * on all rails, and loop stops. Set auto mode when all rails + * are below thershold + */ + if (temp > msm_thermal_info.psm_temp_degC) { + ret = psm_set_mode_all(PMIC_PWM_MODE); + if (ret) { + pr_err("Set pwm mode for all failed. err:%d\n", + ret); + goto exit; + } + pr_debug("Requested PMIC PWM Mode tsens:%d. Temp:%d\n", + tsens_id_map[i], temp); + break; + } else if (temp <= msm_thermal_info.psm_temp_hyst_degC) + auto_cnt++; + } + + if (auto_cnt == max_tsens_num) { + ret = psm_set_mode_all(PMIC_AUTO_MODE); + if (ret) { + pr_err("Set auto mode for all failed. err:%d\n", ret); + goto exit; + } + pr_debug("Requested PMIC AUTO Mode\n"); + } + +exit: + mutex_unlock(&psm_mutex); + return ret; +} + +static void do_freq_control(int temp) +{ + uint32_t cpu = 0; + uint32_t max_freq = cpus[cpu].limited_max_freq; + + if (!boot_freq_mitig_enabled) + return; + if (core_ptr) + return do_cluster_freq_ctrl(temp); + if (!freq_table_get) + return; + + if (temp >= msm_thermal_info.limit_temp_degC) { + if (limit_idx == limit_idx_low) + return; + + limit_idx -= msm_thermal_info.bootup_freq_step; + if (limit_idx < limit_idx_low) + limit_idx = limit_idx_low; + } else if (temp < msm_thermal_info.limit_temp_degC - + msm_thermal_info.temp_hysteresis_degC) { + if (limit_idx == limit_idx_high) + return; + + limit_idx += msm_thermal_info.bootup_freq_step; + if (limit_idx >= limit_idx_high) + limit_idx = limit_idx_high; + } + + /* Update new limits */ + get_online_cpus(); + max_freq = table[limit_idx].frequency; + if (max_freq == cpus[cpu].limited_max_freq) { + put_online_cpus(); + return; + } + + for_each_possible_cpu(cpu) { + if (!(msm_thermal_info.bootup_freq_control_mask & BIT(cpu))) + continue; + pr_info("Limiting CPU%d max frequency to %u. Temp:%d\n", + cpu, max_freq, temp); + cpus[cpu].limited_max_freq = + min(max_freq, cpus[cpu].vdd_max_freq); + } + update_cluster_freq(); + put_online_cpus(); +} + +static void check_temp(struct work_struct *work) +{ + int temp = 0; + int ret = 0; + + do_therm_reset(); + + ret = therm_get_temp(msm_thermal_info.sensor_id, THERM_TSENS_ID, &temp); + if (ret) { + pr_err("Unable to read TSENS sensor:%d. err:%d\n", + msm_thermal_info.sensor_id, ret); + goto reschedule; + } + do_core_control(temp); + do_vdd_mx(); + do_psm(); + do_gfx_phase_cond(); + do_cx_phase_cond(); + do_ocr(); + + /* + ** All mitigation involving CPU frequency should be + ** placed below this check. The mitigation following this + ** frequency table check, should be able to handle the failure case. + */ + if (!freq_table_get) + check_freq_table(); + + do_vdd_restriction(); + do_freq_control(temp); + +reschedule: + if (polling_enabled) + schedule_delayed_work(&check_temp_work, + msecs_to_jiffies(msm_thermal_info.poll_ms)); +} + +static int __ref msm_thermal_cpu_callback(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + uint32_t cpu = (uintptr_t)hcpu; + + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_UP_PREPARE: + if (!cpumask_test_and_set_cpu(cpu, cpus_previously_online)) + pr_debug("Total prev cores online tracked %u\n", + cpumask_weight(cpus_previously_online)); + if (core_control_enabled && + (msm_thermal_info.core_control_mask & BIT(cpu)) && + (cpus_offlined & BIT(cpu))) { + pr_debug("Preventing CPU%d from coming online.\n", + cpu); + return NOTIFY_BAD; + } + break; + case CPU_DOWN_PREPARE: + if (!cpumask_test_and_set_cpu(cpu, cpus_previously_online)) + pr_debug("Total prev cores online tracked %u\n", + cpumask_weight(cpus_previously_online)); + break; + case CPU_ONLINE: + if (core_control_enabled && + (msm_thermal_info.core_control_mask & BIT(cpu)) && + (cpus_offlined & BIT(cpu))) { + if (hotplug_task) { + pr_debug("Re-evaluate and hotplug CPU%d\n", + cpu); + complete(&hotplug_notify_complete); + } else { + /* + * This will be auto-corrected next time + * do_core_control() is called + */ + pr_err("CPU%d online, after thermal veto\n", + cpu); + } + } + break; + default: + break; + } + + pr_debug("voting for CPU%d to be online\n", cpu); + return NOTIFY_OK; +} + +static struct notifier_block __refdata msm_thermal_cpu_notifier = { + .notifier_call = msm_thermal_cpu_callback, +}; +static int hotplug_notify(enum thermal_trip_type type, int temp, void *data) +{ + struct cpu_info *cpu_node = (struct cpu_info *)data; + + pr_info_ratelimited("%s reach temp threshold: %d\n", + cpu_node->sensor_type, temp); + + if (!(msm_thermal_info.core_control_mask & BIT(cpu_node->cpu))) + return 0; + switch (type) { + case THERMAL_TRIP_CONFIGURABLE_HI: + if (!(cpu_node->offline)) + cpu_node->offline = 1; + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + if (cpu_node->offline) + cpu_node->offline = 0; + break; + default: + break; + } + if (hotplug_task) { + cpu_node->hotplug_thresh_clear = true; + complete(&hotplug_notify_complete); + } else + pr_err("Hotplug task is not initialized\n"); + return 0; +} +/* Adjust cpus offlined bit based on temperature reading. */ +static int hotplug_init_cpu_offlined(void) +{ + int temp = 0; + uint32_t cpu = 0; + + if (!hotplug_enabled || !hotplug_task) + return 0; + + mutex_lock(&core_control_mutex); + for_each_possible_cpu(cpu) { + if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu))) + continue; + if (therm_get_temp(cpus[cpu].sensor_id, cpus[cpu].id_type, + &temp)) { + pr_err("Unable to read TSENS sensor:%d.\n", + cpus[cpu].sensor_id); + mutex_unlock(&core_control_mutex); + return -EINVAL; + } + + if (temp >= msm_thermal_info.hotplug_temp_degC) + cpus[cpu].offline = 1; + else + cpus[cpu].offline = 0; + } + mutex_unlock(&core_control_mutex); + + if (hotplug_task) + complete(&hotplug_notify_complete); + else { + pr_err("Hotplug task is not initialized\n"); + return -EINVAL; + } + return 0; +} + +static void hotplug_init(void) +{ + uint32_t cpu = 0; + struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL; + + if (hotplug_task) + return; + + if (!hotplug_enabled) + goto init_kthread; + + for_each_possible_cpu(cpu) { + cpus[cpu].sensor_id = + sensor_get_id((char *)cpus[cpu].sensor_type); + cpus[cpu].id_type = THERM_ZONE_ID; + if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu))) + continue; + + hi_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]; + low_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_LOW]; + hi_thresh->temp = (msm_thermal_info.hotplug_temp_degC) + * tsens_scaling_factor; + hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI; + low_thresh->temp = (msm_thermal_info.hotplug_temp_degC - + msm_thermal_info.hotplug_temp_hysteresis_degC) + * tsens_scaling_factor; + low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW; + hi_thresh->notify = low_thresh->notify = hotplug_notify; + hi_thresh->data = low_thresh->data = (void *)&cpus[cpu]; + + sensor_mgr_set_threshold(cpus[cpu].sensor_id, hi_thresh); + } +init_kthread: + init_completion(&hotplug_notify_complete); + hotplug_task = kthread_run(do_hotplug, NULL, "msm_thermal:hotplug"); + if (IS_ERR(hotplug_task)) { + pr_err("Failed to create do_hotplug thread. err:%ld\n", + PTR_ERR(hotplug_task)); + return; + } + /* + * Adjust cpus offlined bit when hotplug intitializes so that the new + * cpus offlined state is based on hotplug threshold range + */ + if (hotplug_init_cpu_offlined()) + kthread_stop(hotplug_task); +} + +static __ref int do_freq_mitigation(void *data) +{ + int ret = 0; + uint32_t cpu = 0, max_freq_req = 0, min_freq_req = 0; + struct sched_param param = {.sched_priority = MAX_RT_PRIO-1}; + struct device_clnt_data *clnt = NULL; + struct device_manager_data *cpu_dev = NULL; + uint32_t changed; + + sched_setscheduler(current, SCHED_FIFO, ¶m); + while (!kthread_should_stop()) { + while (wait_for_completion_interruptible( + &freq_mitigation_complete) != 0) + ; + reinit_completion(&freq_mitigation_complete); + + for_each_possible_cpu(cpu) { + max_freq_req = (cpus[cpu].max_freq) ? + msm_thermal_info.freq_limit : + UINT_MAX; + max_freq_req = min(max_freq_req, + cpus[cpu].user_max_freq); + + max_freq_req = min(max_freq_req, + cpus[cpu].shutdown_max_freq); + + max_freq_req = min(max_freq_req, + cpus[cpu].suspend_max_freq); + + if (devices && devices->cpufreq_dev[cpu]) { + cpu_dev = devices->cpufreq_dev[cpu]; + mutex_lock(&cpu_dev->clnt_lock); + max_freq_req = min(max_freq_req, + cpu_dev->active_req.freq.max_freq); + min_freq_req = + cpu_dev->active_req.freq.min_freq; + mutex_unlock(&cpu_dev->clnt_lock); + } + + if ((max_freq_req == cpus[cpu].limited_max_freq) + && (min_freq_req == + cpus[cpu].limited_min_freq)) + goto reset_threshold; + + changed = 0; + if (max_freq_req != cpus[cpu].limited_max_freq) + changed |= FREQ_LIMIT_MAX; + if (min_freq_req != cpus[cpu].limited_min_freq) + changed |= FREQ_LIMIT_MIN; + + cpus[cpu].limited_max_freq = max_freq_req; + cpus[cpu].limited_min_freq = min_freq_req; +reset_threshold: + if (devices && devices->cpufreq_dev[cpu]) { + union device_request req; + + req.freq.max_freq = max_freq_req; + req.freq.min_freq = min_freq_req; + cpu_dev = devices->cpufreq_dev[cpu]; + mutex_lock(&cpu_dev->clnt_lock); + list_for_each_entry(clnt, + &cpu_dev->client_list, + clnt_ptr) { + if (clnt->callback) + clnt->callback(clnt, + &req, + clnt->usr_data); + } + mutex_unlock(&cpu_dev->clnt_lock); + } + if (freq_mitigation_enabled && + cpus[cpu].freq_thresh_clear) { + ret = + sensor_mgr_set_threshold(cpus[cpu].sensor_id, + &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]); + + if (cpus[cpu].max_freq + && !IS_LOW_THRESHOLD_SET(ret)) { + cpus[cpu].max_freq = false; + complete(&freq_mitigation_complete); + } + cpus[cpu].freq_thresh_clear = false; + } + } + update_cluster_freq(); + } + return ret; +} + +static int freq_mitigation_notify(enum thermal_trip_type type, + int temp, void *data) +{ + struct cpu_info *cpu_node = (struct cpu_info *) data; + + pr_debug("%s reached temp threshold: %d\n", + cpu_node->sensor_type, temp); + + if (!(msm_thermal_info.freq_mitig_control_mask & + BIT(cpu_node->cpu))) + return 0; + + switch (type) { + case THERMAL_TRIP_CONFIGURABLE_HI: + if (!cpu_node->max_freq) { + pr_info_ratelimited( + "Mitigating CPU%d frequency to %d\n", + cpu_node->cpu, msm_thermal_info.freq_limit); + + cpu_node->max_freq = true; + } + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + if (cpu_node->max_freq) { + pr_info_ratelimited( + "Removing frequency mitigation for CPU%d\n", + cpu_node->cpu); + + cpu_node->max_freq = false; + } + break; + default: + break; + } + + if (freq_mitigation_task) { + cpu_node->freq_thresh_clear = true; + complete(&freq_mitigation_complete); + } else { + pr_err("Frequency mitigation task is not initialized\n"); + } + + return 0; +} + +static void freq_mitigation_init(void) +{ + uint32_t cpu = 0; + struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL; + + if (freq_mitigation_task) + return; + if (!freq_mitigation_enabled) + goto init_freq_thread; + + for_each_possible_cpu(cpu) { + /* + * Hotplug may not be enabled, + * make sure core sensor id is initialized. + */ + cpus[cpu].sensor_id = + sensor_get_id((char *)cpus[cpu].sensor_type); + cpus[cpu].id_type = THERM_ZONE_ID; + if (!(msm_thermal_info.freq_mitig_control_mask & BIT(cpu))) + continue; + hi_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]; + low_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_LOW]; + + hi_thresh->temp = msm_thermal_info.freq_mitig_temp_degc + * tsens_scaling_factor; + hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI; + low_thresh->temp = (msm_thermal_info.freq_mitig_temp_degc - + msm_thermal_info.freq_mitig_temp_hysteresis_degc) + * tsens_scaling_factor; + low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW; + hi_thresh->notify = low_thresh->notify = + freq_mitigation_notify; + hi_thresh->data = low_thresh->data = (void *)&cpus[cpu]; + + sensor_mgr_set_threshold(cpus[cpu].sensor_id, hi_thresh); + } +init_freq_thread: + init_completion(&freq_mitigation_complete); + freq_mitigation_task = kthread_run(do_freq_mitigation, NULL, + "msm_thermal:freq_mitig"); + + if (IS_ERR(freq_mitigation_task)) { + pr_err("Failed to create frequency mitigation thread. err:%ld\n", + PTR_ERR(freq_mitigation_task)); + return; + } else { + complete(&freq_mitigation_complete); + } +} + +int msm_thermal_get_freq_plan_size(uint32_t cluster, unsigned int *table_len) +{ + uint32_t i = 0; + struct cluster_info *cluster_ptr = NULL; + + if (!core_ptr) { + pr_err("Topology ptr not initialized\n"); + return -ENODEV; + } + if (!table_len) { + pr_err("Invalid input\n"); + return -EINVAL; + } + if (!freq_table_get) + check_freq_table(); + + for (; i < core_ptr->entity_count; i++) { + cluster_ptr = &core_ptr->child_entity_ptr[i]; + if (cluster_ptr->cluster_id == cluster) { + if (!cluster_ptr->freq_table) { + pr_err("Cluster%d clock plan not initialized\n", + cluster); + return -EINVAL; + } + *table_len = cluster_ptr->freq_idx_high + 1; + return 0; + } + } + + pr_err("Invalid cluster ID:%d\n", cluster); + return -EINVAL; +} + +int msm_thermal_get_cluster_voltage_plan(uint32_t cluster, uint32_t *table_ptr) +{ + int i = 0, corner = 0; + struct dev_pm_opp *opp = NULL; + unsigned int table_len = 0; + struct device *cpu_dev = NULL; + struct cluster_info *cluster_ptr = NULL; + + if (!core_ptr) { + pr_err("Topology ptr not initialized\n"); + return -ENODEV; + } + if (!table_ptr) { + pr_err("Invalid input\n"); + return -EINVAL; + } + if (!freq_table_get) + check_freq_table(); + + for (i = 0; i < core_ptr->entity_count; i++) { + cluster_ptr = &core_ptr->child_entity_ptr[i]; + if (cluster_ptr->cluster_id == cluster) + break; + } + if (i == core_ptr->entity_count) { + pr_err("Invalid cluster ID:%d\n", cluster); + return -EINVAL; + } + if (!cluster_ptr->freq_table) { + pr_err("Cluster%d clock plan not initialized\n", cluster); + return -EINVAL; + } + + cpu_dev = get_cpu_device(cpumask_first(&cluster_ptr->cluster_cores)); + table_len = cluster_ptr->freq_idx_high + 1; + + rcu_read_lock(); + for (i = 0; i < table_len; i++) { + opp = dev_pm_opp_find_freq_exact(cpu_dev, + cluster_ptr->freq_table[i].frequency * 1000, true); + if (IS_ERR(opp)) { + pr_err("Error on OPP freq :%d\n", + cluster_ptr->freq_table[i].frequency); + return -EINVAL; + } + corner = dev_pm_opp_get_voltage(opp); + if (corner == 0) { + pr_err("Bad voltage corner for OPP freq :%d\n", + cluster_ptr->freq_table[i].frequency); + return -EINVAL; + } + table_ptr[i] = corner / 1000; + pr_debug("Cluster:%d freq:%d Khz voltage:%d mV\n", + cluster, cluster_ptr->freq_table[i].frequency, + table_ptr[i]); + } + rcu_read_unlock(); + + return 0; +} + +int msm_thermal_get_cluster_freq_plan(uint32_t cluster, unsigned int *table_ptr) +{ + uint32_t i = 0; + struct cluster_info *cluster_ptr = NULL; + + if (!core_ptr) { + pr_err("Topology ptr not initialized\n"); + return -ENODEV; + } + if (!table_ptr) { + pr_err("Invalid input\n"); + return -EINVAL; + } + if (!freq_table_get) + check_freq_table(); + + for (; i < core_ptr->entity_count; i++) { + cluster_ptr = &core_ptr->child_entity_ptr[i]; + if (cluster_ptr->cluster_id == cluster) + break; + } + if (i == core_ptr->entity_count) { + pr_err("Invalid cluster ID:%d\n", cluster); + return -EINVAL; + } + if (!cluster_ptr->freq_table) { + pr_err("Cluster%d clock plan not initialized\n", cluster); + return -EINVAL; + } + + for (i = 0; i <= cluster_ptr->freq_idx_high; i++) + table_ptr[i] = cluster_ptr->freq_table[i].frequency; + + return 0; +} + +int msm_thermal_set_cluster_freq(uint32_t cluster, uint32_t freq, bool is_max) +{ + int ret = 0; + uint32_t i = 0; + struct cluster_info *cluster_ptr = NULL; + bool notify = false; + + if (!mitigation) { + pr_err("Thermal Mitigations disabled.\n"); + return -ENODEV; + } + + if (!core_ptr) { + pr_err("Topology ptr not initialized\n"); + return -ENODEV; + } + + for (; i < core_ptr->entity_count; i++) { + cluster_ptr = &core_ptr->child_entity_ptr[i]; + if (cluster_ptr->cluster_id != cluster) + continue; + pr_debug("Update Cluster%d %s frequency to %d\n", + cluster, (is_max) ? "max" : "min", freq); + break; + } + if (i == core_ptr->entity_count) { + pr_err("Invalid cluster ID:%d\n", cluster); + return -EINVAL; + } + + for_each_cpu(i, &cluster_ptr->cluster_cores) { + uint32_t *freq_ptr = (is_max) ? &cpus[i].user_max_freq + : &cpus[i].user_min_freq; + if (*freq_ptr == freq) + continue; + notify = true; + *freq_ptr = freq; + } + + if (freq_mitigation_task) { + if (notify) + complete(&freq_mitigation_complete); + } else { + pr_err("Frequency mitigation task is not initialized\n"); + return -ESRCH; + } + + return ret; +} + +int msm_thermal_set_frequency(uint32_t cpu, uint32_t freq, bool is_max) +{ + int ret = 0; + + if (!mitigation) { + pr_err("Thermal Mitigations disabled.\n"); + goto set_freq_exit; + } + + if (cpu >= num_possible_cpus()) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto set_freq_exit; + } + + pr_debug("Userspace requested %s frequency %u for CPU%u\n", + (is_max) ? "Max" : "Min", freq, cpu); + if (is_max) { + if (cpus[cpu].user_max_freq == freq) + goto set_freq_exit; + + cpus[cpu].user_max_freq = freq; + } else { + if (cpus[cpu].user_min_freq == freq) + goto set_freq_exit; + + cpus[cpu].user_min_freq = freq; + } + + if (freq_mitigation_task) { + complete(&freq_mitigation_complete); + } else { + pr_err("Frequency mitigation task is not initialized\n"); + ret = -ESRCH; + goto set_freq_exit; + } + +set_freq_exit: + return ret; +} + +int therm_set_threshold(struct threshold_info *thresh_inp) +{ + int ret = 0, i = 0, err = 0; + struct therm_threshold *thresh_ptr; + + if (!thresh_inp) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto therm_set_exit; + } + + thresh_inp->thresh_triggered = false; + for (i = 0; i < thresh_inp->thresh_ct; i++) { + thresh_ptr = &thresh_inp->thresh_list[i]; + thresh_ptr->trip_triggered = -1; + err = sensor_mgr_set_threshold(thresh_ptr->sensor_id, + thresh_ptr->threshold); + if (err < 0) { + ret = err; + err = 0; + } + } + +therm_set_exit: + return ret; +} + +static void cx_phase_ctrl_notify(struct therm_threshold *trig_thresh) +{ + static uint32_t cx_sens_status; + int ret = 0; + + if (!cx_phase_ctrl_enabled) + return; + + if (trig_thresh->trip_triggered < 0) + goto cx_phase_ctrl_exit; + + mutex_lock(&cx_mutex); + pr_debug("sensor:%d reached %s thresh for CX\n", + tsens_id_map[trig_thresh->sensor_id], + (trig_thresh->trip_triggered == THERMAL_TRIP_CONFIGURABLE_HI) ? + "hot critical" : "warm"); + + switch (trig_thresh->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + cx_sens_status |= BIT(trig_thresh->sensor_id); + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + if (cx_sens_status & BIT(trig_thresh->sensor_id)) + cx_sens_status ^= BIT(trig_thresh->sensor_id); + break; + default: + pr_err("Unsupported trip type\n"); + goto cx_phase_unlock_exit; + break; + } + + if ((cx_sens_status && (curr_cx_band == MSM_HOT_CRITICAL)) || + (!cx_sens_status && (curr_cx_band == MSM_WARM))) + goto cx_phase_unlock_exit; + ret = send_temperature_band(MSM_CX_PHASE_CTRL, (cx_sens_status) ? + MSM_HOT_CRITICAL : MSM_WARM); + if (!ret) + curr_cx_band = (cx_sens_status) ? MSM_HOT_CRITICAL : MSM_WARM; + +cx_phase_unlock_exit: + mutex_unlock(&cx_mutex); +cx_phase_ctrl_exit: + if (trig_thresh->cur_state != trig_thresh->trip_triggered) { + sensor_mgr_set_threshold(trig_thresh->sensor_id, + trig_thresh->threshold); + trig_thresh->cur_state = trig_thresh->trip_triggered; + } + return; +} + +static void gfx_phase_ctrl_notify(struct therm_threshold *trig_thresh) +{ + uint32_t new_req_band = curr_gfx_band; + int ret = 0; + + if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled) + return; + + if (trig_thresh->trip_triggered < 0) + goto gfx_phase_ctrl_exit; + + mutex_lock(&gfx_mutex); + if (gfx_crit_phase_ctrl_enabled) { + switch ( + thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + new_req_band = MSM_HOT_CRITICAL; + pr_debug( + "sensor:%d reached hot critical thresh for GFX\n", + tsens_id_map[trig_thresh->sensor_id]); + goto notify_new_band; + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + new_req_band = MSM_WARM; + pr_debug("sensor:%d reached warm thresh for GFX\n", + tsens_id_map[trig_thresh->sensor_id]); + goto notify_new_band; + break; + default: + break; + } + } + if (gfx_warm_phase_ctrl_enabled) { + switch ( + thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + new_req_band = MSM_WARM; + pr_debug("sensor:%d reached warm thresh for GFX\n", + tsens_id_map[trig_thresh->sensor_id]); + goto notify_new_band; + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + new_req_band = MSM_NORMAL; + pr_debug("sensor:%d reached normal thresh for GFX\n", + tsens_id_map[trig_thresh->sensor_id]); + goto notify_new_band; + break; + default: + break; + } + } + +notify_new_band: + if (new_req_band != curr_gfx_band) { + ret = send_temperature_band(MSM_GFX_PHASE_CTRL, new_req_band); + if (!ret) + curr_gfx_band = new_req_band; + } + mutex_unlock(&gfx_mutex); +gfx_phase_ctrl_exit: + switch (curr_gfx_band) { + case MSM_HOT_CRITICAL: + if (gfx_crit_phase_ctrl_enabled) + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]); + break; + case MSM_NORMAL: + if (gfx_warm_phase_ctrl_enabled) + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]); + break; + case MSM_WARM: + default: + if (gfx_crit_phase_ctrl_enabled) + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]); + if (gfx_warm_phase_ctrl_enabled) + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]); + break; + } + return; +} + +static void vdd_restriction_notify(struct therm_threshold *trig_thresh) +{ + int ret = 0; + static uint32_t vdd_sens_status; + + if (!vdd_rstr_enabled) + return; + if (!trig_thresh) { + pr_err("Invalid input\n"); + return; + } + if (trig_thresh->trip_triggered < 0) + goto set_and_exit; + + mutex_lock(&vdd_rstr_mutex); + pr_debug("sensor:%d reached %s thresh for Vdd restriction\n", + tsens_id_map[trig_thresh->sensor_id], + (trig_thresh->trip_triggered == THERMAL_TRIP_CONFIGURABLE_HI) ? + "high" : "low"); + switch (trig_thresh->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + if (vdd_sens_status & BIT(trig_thresh->sensor_id)) + vdd_sens_status ^= BIT(trig_thresh->sensor_id); + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + vdd_sens_status |= BIT(trig_thresh->sensor_id); + break; + default: + pr_err("Unsupported trip type\n"); + goto unlock_and_exit; + break; + } + + ret = vdd_restriction_apply_all((vdd_sens_status) ? 1 : 0); + if (ret) { + pr_err("%s vdd rstr votlage for all failed\n", + (vdd_sens_status) ? + "Enable" : "Disable"); + goto unlock_and_exit; + } + +unlock_and_exit: + mutex_unlock(&vdd_rstr_mutex); +set_and_exit: + if (trig_thresh->cur_state != trig_thresh->trip_triggered) { + sensor_mgr_set_threshold(trig_thresh->sensor_id, + trig_thresh->threshold); + trig_thresh->cur_state = trig_thresh->trip_triggered; + } + return; +} + +static void ocr_notify(struct therm_threshold *trig_thresh) +{ + int ret = 0; + static uint32_t ocr_sens_status; + + if (!ocr_enabled) + return; + if (!trig_thresh) { + pr_err("Invalid input\n"); + return; + } + if (trig_thresh->trip_triggered < 0) + goto set_and_exit; + + mutex_lock(&ocr_mutex); + pr_debug("sensor%d reached %d thresh for Optimum current request\n", + tsens_id_map[trig_thresh->sensor_id], + trig_thresh->trip_triggered); + switch (trig_thresh->trip_triggered) { + case THERMAL_TRIP_CONFIGURABLE_HI: + ocr_sens_status |= BIT(trig_thresh->sensor_id); + break; + case THERMAL_TRIP_CONFIGURABLE_LOW: + if (ocr_sens_status & BIT(trig_thresh->sensor_id)) + ocr_sens_status ^= BIT(trig_thresh->sensor_id); + break; + default: + pr_err("Unsupported trip type\n"); + goto unlock_and_exit; + break; + } + + ret = ocr_set_mode_all(ocr_sens_status ? OPTIMUM_CURRENT_MAX : + OPTIMUM_CURRENT_MIN); + if (ret) { + pr_err("%s Optimum current mode for all failed. err:%d\n", + (ocr_sens_status) ? + "Enable" : "Disable", ret); + goto unlock_and_exit; + } + +unlock_and_exit: + mutex_unlock(&ocr_mutex); +set_and_exit: + if (trig_thresh->cur_state != trig_thresh->trip_triggered) { + sensor_mgr_set_threshold(trig_thresh->sensor_id, + trig_thresh->threshold); + trig_thresh->cur_state = trig_thresh->trip_triggered; + } + return; +} + +static __ref int do_thermal_monitor(void *data) +{ + int ret = 0, j; + struct therm_threshold *sensor_list; + struct threshold_info *thresholds = NULL; + + while (!kthread_should_stop()) { + while (wait_for_completion_interruptible( + &thermal_monitor_complete) != 0) + ; + reinit_completion(&thermal_monitor_complete); + + mutex_lock(&threshold_mutex); + list_for_each_entry(thresholds, &thresholds_list, list_ptr) { + if (!thresholds->thresh_triggered) + continue; + thresholds->thresh_triggered = false; + for (j = 0; j < thresholds->thresh_ct; j++) { + sensor_list = &thresholds->thresh_list[j]; + if (sensor_list->trip_triggered < 0) + continue; + sensor_list->notify(sensor_list); + sensor_list->trip_triggered = -1; + } + } + mutex_unlock(&threshold_mutex); + } + return ret; +} + +static int vdd_rstr_apss_freq_dev_init(void) +{ + int idx = 0, ret = 0; + char device_str[DEVM_NAME_MAX] = ""; + struct rail *r = NULL; + + for (idx = 0; idx < rails_cnt; idx++) { + if (rails[idx].freq_req) { + r = &rails[idx]; + break; + } + } + if (!r) { + pr_err("APSS rail not initialized\n"); + return -ENODEV; + } + + for_each_possible_cpu(idx) { + if (r->device_handle[idx]) + continue; + snprintf(device_str, DEVM_NAME_MAX, CPU_DEVICE, idx); + r->device_handle[idx] + = devmgr_register_mitigation_client( + &msm_thermal_info.pdev->dev, + device_str, NULL); + if (IS_ERR(r->device_handle[idx])) { + ret = PTR_ERR(r->device_handle[idx]); + pr_err("Error registering %s handle. err:%d\n", + device_str, ret); + goto freq_init_exit; + } + r->request[idx].freq.max_freq = CPUFREQ_MAX_NO_MITIGATION; + r->request[idx].freq.min_freq = CPUFREQ_MIN_NO_MITIGATION; + } + +freq_init_exit: + if (ret) { + for_each_possible_cpu(idx) { + devmgr_unregister_mitigation_client( + &msm_thermal_info.pdev->dev, + r->device_handle[idx]); + r->device_handle[idx] = NULL; + } + } + return ret; +} + +static int convert_to_zone_id(struct threshold_info *thresh_inp) +{ + int ret = 0, i, zone_id; + struct therm_threshold *thresh_array; + + if (!thresh_inp) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto convert_to_exit; + } + thresh_array = thresh_inp->thresh_list; + + for (i = 0; i < thresh_inp->thresh_ct; i++) { + char tsens_name[TSENS_NAME_MAX] = ""; + + if (thresh_array[i].id_type == THERM_ZONE_ID) + continue; + snprintf(tsens_name, TSENS_NAME_MAX, TSENS_NAME_FORMAT, + thresh_array[i].sensor_id); + zone_id = sensor_get_id(tsens_name); + if (zone_id < 0) { + pr_err("Error getting zone id for %s. err:%d\n", + tsens_name, ret); + ret = zone_id; + goto convert_to_exit; + } + thresh_array[i].sensor_id = zone_id; + thresh_array[i].id_type = THERM_ZONE_ID; + } + +convert_to_exit: + return ret; +} + +int sensor_mgr_convert_id_and_set_threshold(struct threshold_info *thresh_inp) +{ + int ret = 0; + + if (!thresh_inp) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto therm_set_exit; + } + ret = convert_to_zone_id(thresh_inp); + if (ret) + goto therm_set_exit; + ret = therm_set_threshold(thresh_inp); + +therm_set_exit: + return ret; +} + +static void thermal_monitor_init(void) +{ + if (thermal_monitor_task) + return; + + init_completion(&thermal_monitor_complete); + thermal_monitor_task = kthread_run(do_thermal_monitor, NULL, + "msm_thermal:therm_monitor"); + if (IS_ERR(thermal_monitor_task)) { + pr_err("Failed to create thermal monitor thread. err:%ld\n", + PTR_ERR(thermal_monitor_task)); + goto init_exit; + } + + if (therm_reset_enabled && + !(convert_to_zone_id(&thresh[MSM_THERM_RESET]))) + therm_set_threshold(&thresh[MSM_THERM_RESET]); + + if ((cx_phase_ctrl_enabled) && + !(convert_to_zone_id(&thresh[MSM_CX_PHASE_CTRL_HOT]))) + therm_set_threshold(&thresh[MSM_CX_PHASE_CTRL_HOT]); + + if (vdd_rstr_enabled) { + if (vdd_rstr_apss_freq_dev_init()) + pr_err("vdd APSS mitigation device init failed\n"); + else if (!(convert_to_zone_id(&thresh[MSM_VDD_RESTRICTION]))) + therm_set_threshold(&thresh[MSM_VDD_RESTRICTION]); + } + + if ((gfx_warm_phase_ctrl_enabled) && + !(convert_to_zone_id(&thresh[MSM_GFX_PHASE_CTRL_WARM]))) { + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]); + } + + if ((gfx_crit_phase_ctrl_enabled) && + !(convert_to_zone_id(&thresh[MSM_GFX_PHASE_CTRL_HOT]))) { + therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]); + } + + if ((ocr_enabled) && + !(convert_to_zone_id(&thresh[MSM_OCR]))) + therm_set_threshold(&thresh[MSM_OCR]); + + if (vdd_mx_enabled && + !(convert_to_zone_id(&thresh[MSM_VDD_MX_RESTRICTION]))) + therm_set_threshold(&thresh[MSM_VDD_MX_RESTRICTION]); + +init_exit: + return; +} + +static int msm_thermal_notify(enum thermal_trip_type type, int temp, void *data) +{ + struct therm_threshold *thresh_data = (struct therm_threshold *)data; + + if (thermal_monitor_task) { + thresh_data->trip_triggered = type; + thresh_data->parent->thresh_triggered = true; + complete(&thermal_monitor_complete); + } else { + pr_err("Thermal monitor task is not initialized\n"); + } + return 0; +} + +int sensor_mgr_init_threshold(struct threshold_info *thresh_inp, + int sensor_id, int32_t high_temp, int32_t low_temp, + void (*callback)(struct therm_threshold *)) +{ + int ret = 0, i; + struct therm_threshold *thresh_ptr; + + if (!callback || !thresh_inp + || sensor_id == -ENODEV) { + pr_err("Invalid input\n"); + ret = -EINVAL; + goto init_thresh_exit; + } + if (thresh_inp->thresh_list) { + pr_info("threshold id already initialized\n"); + goto init_thresh_exit; + } + + thresh_inp->thresh_ct = (sensor_id == MONITOR_ALL_TSENS) ? + max_tsens_num : 1; + thresh_inp->thresh_triggered = false; + thresh_inp->thresh_list = kzalloc(sizeof(struct therm_threshold) * + thresh_inp->thresh_ct, GFP_KERNEL); + if (!thresh_inp->thresh_list) { + pr_err("kzalloc failed for thresh\n"); + ret = -ENOMEM; + goto init_thresh_exit; + } + + thresh_ptr = thresh_inp->thresh_list; + if (sensor_id == MONITOR_ALL_TSENS) { + for (i = 0; i < max_tsens_num; i++) { + thresh_ptr[i].sensor_id = tsens_id_map[i]; + thresh_ptr[i].id_type = THERM_TSENS_ID; + thresh_ptr[i].notify = callback; + thresh_ptr[i].trip_triggered = -1; + thresh_ptr[i].parent = thresh_inp; + thresh_ptr[i].cur_state = -1; + thresh_ptr[i].threshold[0].temp = + high_temp * tsens_scaling_factor; + thresh_ptr[i].threshold[0].trip = + THERMAL_TRIP_CONFIGURABLE_HI; + thresh_ptr[i].threshold[1].temp = + low_temp * tsens_scaling_factor; + thresh_ptr[i].threshold[1].trip = + THERMAL_TRIP_CONFIGURABLE_LOW; + thresh_ptr[i].threshold[0].notify = + thresh_ptr[i].threshold[1].notify = msm_thermal_notify; + thresh_ptr[i].threshold[0].data = + thresh_ptr[i].threshold[1].data = + (void *)&thresh_ptr[i]; + } + } else { + thresh_ptr->sensor_id = sensor_id; + thresh_ptr->id_type = THERM_TSENS_ID; + thresh_ptr->notify = callback; + thresh_ptr->trip_triggered = -1; + thresh_ptr->parent = thresh_inp; + thresh_ptr->cur_state = -1; + thresh_ptr->threshold[0].temp = high_temp * tsens_scaling_factor; + thresh_ptr->threshold[0].trip = + THERMAL_TRIP_CONFIGURABLE_HI; + thresh_ptr->threshold[1].temp = low_temp * tsens_scaling_factor; + thresh_ptr->threshold[1].trip = + THERMAL_TRIP_CONFIGURABLE_LOW; + thresh_ptr->threshold[0].notify = + thresh_ptr->threshold[1].notify = msm_thermal_notify; + thresh_ptr->threshold[0].data = + thresh_ptr->threshold[1].data = (void *)thresh_ptr; + } + mutex_lock(&threshold_mutex); + list_add_tail(&thresh_inp->list_ptr, &thresholds_list); + mutex_unlock(&threshold_mutex); + +init_thresh_exit: + return ret; +} + +void sensor_mgr_disable_threshold(struct threshold_info *thresh_inp) +{ + int i; + struct therm_threshold *thresh_ptr; + + mutex_lock(&threshold_mutex); + for (i = 0; i < thresh_inp->thresh_ct; i++) { + thresh_ptr = &thresh_inp->thresh_list[i]; + thresh_ptr->trip_triggered = -1; + sensor_cancel_trip(thresh_ptr->sensor_id, + &thresh_ptr->threshold[0]); + sensor_cancel_trip(thresh_ptr->sensor_id, + &thresh_ptr->threshold[1]); + } + thresh_inp->thresh_triggered = false; + mutex_unlock(&threshold_mutex); +} + +void sensor_mgr_remove_threshold(struct threshold_info *thresh_inp) +{ + sensor_mgr_disable_threshold(thresh_inp); + mutex_lock(&threshold_mutex); + kfree(thresh_inp->thresh_list); + thresh_inp->thresh_list = NULL; + thresh_inp->thresh_ct = 0; + list_del(&thresh_inp->list_ptr); + mutex_unlock(&threshold_mutex); +} + +static int msm_thermal_add_gfx_nodes(void) +{ + struct kobject *module_kobj = NULL; + struct kobject *gfx_kobj = NULL; + int ret = 0; + + if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled) + return -EINVAL; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + ret = -ENOENT; + goto gfx_node_exit; + } + + gfx_kobj = kobject_create_and_add("gfx_phase_ctrl", module_kobj); + if (!gfx_kobj) { + pr_err("cannot create gfx kobject\n"); + ret = -ENOMEM; + goto gfx_node_exit; + } + + gfx_attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 2, GFP_KERNEL); + if (!gfx_attr_gp.attrs) { + pr_err("kzalloc failed\n"); + ret = -ENOMEM; + goto gfx_node_fail; + } + + PHASE_RW_ATTR(gfx, temp_band, gfx_mode_attr, 0, gfx_attr_gp); + gfx_attr_gp.attrs[1] = NULL; + + ret = sysfs_create_group(gfx_kobj, &gfx_attr_gp); + if (ret) { + pr_err("cannot create GFX attribute group. err:%d\n", ret); + goto gfx_node_fail; + } + +gfx_node_fail: + if (ret) { + kobject_put(gfx_kobj); + kfree(gfx_attr_gp.attrs); + gfx_attr_gp.attrs = NULL; + } +gfx_node_exit: + return ret; +} + +static int msm_thermal_add_cx_nodes(void) +{ + struct kobject *module_kobj = NULL; + struct kobject *cx_kobj = NULL; + int ret = 0; + + if (!cx_phase_ctrl_enabled) + return -EINVAL; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + ret = -ENOENT; + goto cx_node_exit; + } + + cx_kobj = kobject_create_and_add("cx_phase_ctrl", module_kobj); + if (!cx_kobj) { + pr_err("cannot create cx kobject\n"); + ret = -ENOMEM; + goto cx_node_exit; + } + + cx_attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 2, GFP_KERNEL); + if (!cx_attr_gp.attrs) { + pr_err("kzalloc failed\n"); + ret = -ENOMEM; + goto cx_node_fail; + } + + PHASE_RW_ATTR(cx, temp_band, cx_mode_attr, 0, cx_attr_gp); + cx_attr_gp.attrs[1] = NULL; + + ret = sysfs_create_group(cx_kobj, &cx_attr_gp); + if (ret) { + pr_err("cannot create CX attribute group. err:%d\n", ret); + goto cx_node_fail; + } + +cx_node_fail: + if (ret) { + kobject_put(cx_kobj); + kfree(cx_attr_gp.attrs); + cx_attr_gp.attrs = NULL; + } +cx_node_exit: + return ret; +} + +/* + * We will reset the cpu frequencies limits here. The core online/offline + * status will be carried over to the process stopping the msm_thermal, as + * we dont want to online a core and bring in the thermal issues. + */ +static void __ref disable_msm_thermal(void) +{ + uint32_t cpu = 0; + + /* make sure check_temp is no longer running */ + cancel_delayed_work_sync(&check_temp_work); + + get_online_cpus(); + for_each_possible_cpu(cpu) { + if (cpus[cpu].limited_max_freq == UINT_MAX && + cpus[cpu].limited_min_freq == 0) + continue; + pr_info("Max frequency reset for CPU%d\n", cpu); + cpus[cpu].limited_max_freq = UINT_MAX; + cpus[cpu].vdd_max_freq = UINT_MAX; + cpus[cpu].limited_min_freq = 0; + } + update_cluster_freq(); + put_online_cpus(); +} + +static void interrupt_mode_init(void) +{ + if (!msm_thermal_probed) + return; + + if (polling_enabled) { + polling_enabled = 0; + create_sensor_zone_id_map(); + disable_msm_thermal(); + hotplug_init(); + freq_mitigation_init(); + thermal_monitor_init(); + msm_thermal_add_cx_nodes(); + msm_thermal_add_gfx_nodes(); + } +} + +static int __ref set_enabled(const char *val, const struct kernel_param *kp) +{ + int ret = 0; + + ret = param_set_bool(val, kp); + if (!enabled) + interrupt_mode_init(); + else + pr_info("no action for enabled = %d\n", + enabled); + + pr_info("enabled = %d\n", enabled); + + return ret; +} + +static struct kernel_param_ops module_ops = { + .set = set_enabled, + .get = param_get_bool, +}; + +module_param_cb(enabled, &module_ops, &enabled, 0644); +MODULE_PARM_DESC(enabled, "enforce thermal limit on cpu"); + +static ssize_t show_cc_enabled(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%d\n", core_control_enabled); +} + +static ssize_t __ref store_cc_enabled(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int val = 0; + uint32_t cpu = 0; + + if (!mitigation) { + pr_err("Thermal Mitigations disabled.\n"); + goto done_store_cc; + } + + ret = kstrtoint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s. err:%d\n", buf, ret); + goto done_store_cc; + } + + if (core_control_enabled == !!val) + goto done_store_cc; + + core_control_enabled = !!val; + if (core_control_enabled) { + pr_info("Core control enabled\n"); + cpus_previously_online_update(); + register_cpu_notifier(&msm_thermal_cpu_notifier); + /* + * Re-evaluate thermal core condition, update current status + * and set threshold for all cpus. + */ + hotplug_init_cpu_offlined(); + mutex_lock(&core_control_mutex); + update_offline_cores(cpus_offlined); + if (hotplug_enabled) { + for_each_possible_cpu(cpu) { + if (!(msm_thermal_info.core_control_mask & + BIT(cpus[cpu].cpu))) + continue; + sensor_mgr_set_threshold(cpus[cpu].sensor_id, + &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]); + } + } + mutex_unlock(&core_control_mutex); + } else { + pr_info("Core control disabled\n"); + unregister_cpu_notifier(&msm_thermal_cpu_notifier); + } + +done_store_cc: + return count; +} + +static ssize_t show_cpus_offlined(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%d\n", cpus_offlined); +} + +static ssize_t __ref store_cpus_offlined(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + uint32_t val = 0; + uint32_t cpu; + + if (!mitigation) { + pr_err("Thermal Mitigations disabled.\n"); + goto done_cc; + } + mutex_lock(&core_control_mutex); + ret = kstrtouint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s. err:%d\n", buf, ret); + goto done_cc; + } + + if (polling_enabled) { + pr_err("Ignoring request; polling thread is enabled.\n"); + goto done_cc; + } + + for_each_possible_cpu(cpu) { + if (!(msm_thermal_info.core_control_mask & BIT(cpu))) + continue; + cpus[cpu].user_offline = !!(val & BIT(cpu)); + pr_debug("\"%s\"(PID:%i) requests %s CPU%d.\n", current->comm, + current->pid, (cpus[cpu].user_offline) ? "offline" : + "online", cpu); + } + + if (hotplug_task) + complete(&hotplug_notify_complete); + else + pr_err("Hotplug task is not initialized\n"); +done_cc: + mutex_unlock(&core_control_mutex); + return count; +} + +static __refdata struct kobj_attribute cc_enabled_attr = +__ATTR(enabled, 0644, show_cc_enabled, store_cc_enabled); + +static __refdata struct kobj_attribute cpus_offlined_attr = +__ATTR(cpus_offlined, 0644, show_cpus_offlined, store_cpus_offlined); + +static __refdata struct attribute *cc_attrs[] = { + &cc_enabled_attr.attr, + &cpus_offlined_attr.attr, + NULL, +}; + +static __refdata struct attribute_group cc_attr_group = { + .attrs = cc_attrs, +}; +static __init int msm_thermal_add_cc_nodes(void) +{ + struct kobject *module_kobj = NULL; + int ret = 0; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + ret = -ENOENT; + goto done_cc_nodes; + } + + cc_kobj = kobject_create_and_add("core_control", module_kobj); + if (!cc_kobj) { + pr_err("cannot create core control kobj\n"); + ret = -ENOMEM; + goto done_cc_nodes; + } + + ret = sysfs_create_group(cc_kobj, &cc_attr_group); + if (ret) { + pr_err("cannot create sysfs group. err:%d\n", ret); + goto done_cc_nodes; + } + + return 0; + +done_cc_nodes: + if (cc_kobj) + kobject_del(cc_kobj); + return ret; +} + +static ssize_t show_mx_enabled(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%d\n", vdd_mx_enabled); +} + +static ssize_t __ref store_mx_enabled(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + int val = 0; + + ret = kstrtoint(buf, 10, &val); + if (ret) { + pr_err("Invalid input %s\n", buf); + goto done_store_mx; + } + + if (vdd_mx_enabled == !!val) + goto done_store_mx; + + vdd_mx_enabled = !!val; + + mutex_lock(&vdd_mx_mutex); + if (!vdd_mx_enabled) + remove_vdd_mx_restriction(); + else if (!(convert_to_zone_id(&thresh[MSM_VDD_MX_RESTRICTION]))) + therm_set_threshold(&thresh[MSM_VDD_MX_RESTRICTION]); + mutex_unlock(&vdd_mx_mutex); + +done_store_mx: + return count; +} + +static __init int msm_thermal_add_mx_nodes(void) +{ + struct kobject *module_kobj = NULL; + int ret = 0; + + if (!vdd_mx_enabled) + return -EINVAL; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject for module\n"); + ret = -ENOENT; + goto done_mx_nodes; + } + + mx_kobj = kobject_create_and_add("vdd_mx", module_kobj); + if (!mx_kobj) { + pr_err("cannot create mx restriction kobj\n"); + ret = -ENOMEM; + goto done_mx_nodes; + } + + mx_attr_group.attrs = kzalloc(sizeof(struct attribute *) * 2, + GFP_KERNEL); + if (!mx_attr_group.attrs) { + ret = -ENOMEM; + pr_err("cannot allocate memory for mx_attr_group.attrs"); + goto done_mx_nodes; + } + + MX_RW_ATTR(mx_enabled_attr, enabled, mx_attr_group); + mx_attr_group.attrs[1] = NULL; + + ret = sysfs_create_group(mx_kobj, &mx_attr_group); + if (ret) { + pr_err("cannot create group\n"); + goto done_mx_nodes; + } + +done_mx_nodes: + if (ret) { + if (mx_kobj) + kobject_del(mx_kobj); + kfree(mx_attr_group.attrs); + } + return ret; +} + +static void msm_thermal_panic_notifier_init(struct device *dev) +{ + int i; + + tsens_temp_at_panic = devm_kzalloc(dev, sizeof(int) * max_tsens_num, + GFP_KERNEL); + if (!tsens_temp_at_panic) { + pr_err("kzalloc failed\n"); + return; + } + + for (i = 0; i < max_tsens_num; i++) + tsens_temp_at_panic[i] = INT_MIN; + + atomic_notifier_chain_register(&panic_notifier_list, + &msm_thermal_panic_notifier); +} + +static int msm_thermal_pre_init(struct device *dev) +{ + int ret = 0; + + if (tsens_is_ready() <= 0) { + pr_err("Tsens driver is not ready yet\n"); + return -EPROBE_DEFER; + } + + ret = tsens_get_max_sensor_num(&max_tsens_num); + if (ret < 0) { + pr_err("failed to get max sensor number, err:%d\n", ret); + return ret; + } + + if (create_sensor_id_map(dev)) { + pr_err("Creating sensor id map failed\n"); + ret = -EINVAL; + goto pre_init_exit; + } + + if (!thresh) { + thresh = kzalloc( + sizeof(struct threshold_info) * MSM_LIST_MAX_NR, + GFP_KERNEL); + if (!thresh) { + pr_err("kzalloc failed\n"); + ret = -ENOMEM; + goto pre_init_exit; + } + memset(thresh, 0, sizeof(struct threshold_info) * + MSM_LIST_MAX_NR); + } + mit_config = devm_kzalloc(dev, + sizeof(struct msm_thermal_debugfs_thresh_config) + * (MSM_LIST_MAX_NR + MAX_CPU_CONFIG), GFP_KERNEL); + if (!mit_config) { + pr_err("kzalloc failed\n"); + ret = -ENOMEM; + goto pre_init_exit; + } + +pre_init_exit: + return ret; +} + +static int devmgr_devices_init(struct platform_device *pdev) +{ + int ret = 0; + uint32_t cpu; + struct device_manager_data *dev_mgr = NULL; + + devices = devm_kzalloc(&pdev->dev, + sizeof(struct devmgr_devices), + GFP_KERNEL); + if (!devices) { + pr_err("Malloc failed for devmgr devices\n"); + ret = -ENOMEM; + goto device_exit; + } + if (num_possible_cpus() > 1) { + /* Add hotplug device */ + dev_mgr = devm_kzalloc(&pdev->dev, + sizeof(struct device_manager_data), + GFP_KERNEL); + if (!dev_mgr) { + pr_err("Malloc failed for hotplug device\n"); + ret = -ENOMEM; + goto device_exit; + } + snprintf(dev_mgr->device_name, + TSENS_NAME_MAX, HOTPLUG_DEVICE); + dev_mgr->request_validate = + devmgr_hotplug_client_request_validate_and_update; + dev_mgr->update = devmgr_client_hotplug_update; + HOTPLUG_NO_MITIGATION(&dev_mgr->active_req.offline_mask); + mutex_init(&dev_mgr->clnt_lock); + INIT_LIST_HEAD(&dev_mgr->client_list); + list_add_tail(&dev_mgr->dev_ptr, &devices_list); + devices->hotplug_dev = dev_mgr; + } + /* Add cpu devices */ + for_each_possible_cpu(cpu) { + dev_mgr = devm_kzalloc(&pdev->dev, + sizeof(struct device_manager_data), + GFP_KERNEL); + if (!dev_mgr) { + pr_err("Malloc failed for cpu%d device\n", cpu); + ret = -ENOMEM; + goto device_exit; + } + snprintf(dev_mgr->device_name, TSENS_NAME_MAX, CPU_DEVICE, cpu); + dev_mgr->request_validate = + devmgr_cpufreq_client_request_validate_and_update; + dev_mgr->update = devmgr_client_cpufreq_update; + dev_mgr->active_req.freq.max_freq = CPUFREQ_MAX_NO_MITIGATION; + dev_mgr->active_req.freq.min_freq = CPUFREQ_MIN_NO_MITIGATION; + mutex_init(&dev_mgr->clnt_lock); + INIT_LIST_HEAD(&dev_mgr->client_list); + list_add_tail(&dev_mgr->dev_ptr, &devices_list); + devices->cpufreq_dev[cpu] = dev_mgr; + } +device_exit: + if (ret) { + if (devices) { + if (devices->hotplug_dev) + devm_kfree(&pdev->dev, + devices->hotplug_dev); + for_each_possible_cpu(cpu) { + if (devices->cpufreq_dev[cpu]) + devm_kfree(&pdev->dev, + devices->cpufreq_dev[cpu]); + } + } + } + return ret; +} + +static void msm_thermal_init_cpu_mit(enum cpu_mit_type cpu_mit) +{ + uint32_t cpu; + + for_each_possible_cpu(cpu) { + cpus[cpu].cpu = cpu; + if (cpu_mit & CPU_HOTPLUG_MITIGATION) { + cpus[cpu].offline = 0; + cpus[cpu].user_offline = 0; + cpus[cpu].hotplug_thresh_clear = false; + } + if (cpu_mit & CPU_FREQ_MITIGATION) { + cpus[cpu].max_freq = false; + cpus[cpu].user_max_freq = UINT_MAX; + cpus[cpu].shutdown_max_freq = UINT_MAX; + cpus[cpu].suspend_max_freq = UINT_MAX; + cpus[cpu].vdd_max_freq = UINT_MAX; + cpus[cpu].user_min_freq = 0; + cpus[cpu].limited_max_freq = UINT_MAX; + cpus[cpu].limited_min_freq = 0; + cpus[cpu].freq_thresh_clear = false; + } + } +} + +int msm_thermal_init(struct msm_thermal_data *pdata) +{ + int ret = 0; + + msm_thermal_ioctl_init(); + ret = devmgr_devices_init(pdata->pdev); + if (ret) + pr_err("cannot initialize devm devices. err:%d\n", ret); + + msm_thermal_init_cpu_mit(CPU_FREQ_MITIGATION | CPU_HOTPLUG_MITIGATION); + BUG_ON(!pdata); + memcpy(&msm_thermal_info, pdata, sizeof(struct msm_thermal_data)); + + if (check_sensor_id(msm_thermal_info.sensor_id)) { + pr_err("Invalid sensor:%d for polling\n", + msm_thermal_info.sensor_id); + return -EINVAL; + } + + enabled = 1; + polling_enabled = 1; + ret = cpufreq_register_notifier(&msm_thermal_cpufreq_notifier, + CPUFREQ_POLICY_NOTIFIER); + if (ret) + pr_err("cannot register cpufreq notifier. err:%d\n", ret); + + if (!lmh_dcvs_available) { + register_reboot_notifier(&msm_thermal_reboot_notifier); + pm_notifier(msm_thermal_suspend_callback, 0); + } + INIT_DELAYED_WORK(&retry_hotplug_work, retry_hotplug); + + if (num_possible_cpus() > 1) { + cpus_previously_online_update(); + register_cpu_notifier(&msm_thermal_cpu_notifier); + } + + INIT_DELAYED_WORK(&check_temp_work, check_temp); + schedule_delayed_work(&check_temp_work, 0); + msm_thermal_panic_notifier_init(&pdata->pdev->dev); + + return ret; +} + +static int ocr_reg_init(struct platform_device *pdev) +{ + int ret = 0; + int i, j; + + for (i = 0; i < ocr_rail_cnt; i++) { + /* Check if vdd_restriction has already initialized any + * regualtor handle. If so use the same handle.*/ + for (j = 0; j < rails_cnt; j++) { + if (!strcmp(ocr_rails[i].name, rails[j].name)) { + if (rails[j].reg == NULL) + break; + ocr_rails[i].phase_reg = rails[j].reg; + goto reg_init; + } + + } + ocr_rails[i].phase_reg = devm_regulator_get(&pdev->dev, + ocr_rails[i].name); + if (IS_ERR_OR_NULL(ocr_rails[i].phase_reg)) { + ret = PTR_ERR(ocr_rails[i].phase_reg); + if (ret != -EPROBE_DEFER) { + pr_err("Could not get regulator: %s, err:%d\n", + ocr_rails[i].name, ret); + ocr_rails[i].phase_reg = NULL; + ocr_rails[i].mode = 0; + ocr_rails[i].init = 0; + } + return ret; + } +reg_init: + ocr_rails[i].mode = OPTIMUM_CURRENT_MIN; + } + return ret; +} + +static int vdd_restriction_reg_init(struct platform_device *pdev) +{ + int ret = 0; + int i; + + for (i = 0; i < rails_cnt; i++) { + if (rails[i].freq_req == 1) { + usefreq |= BIT(i); + } else { + rails[i].reg = devm_regulator_get(&pdev->dev, + rails[i].name); + if (IS_ERR_OR_NULL(rails[i].reg)) { + ret = PTR_ERR(rails[i].reg); + if (ret != -EPROBE_DEFER) { + pr_err( \ + "could not get regulator: %s. err:%d\n", + rails[i].name, ret); + rails[i].reg = NULL; + rails[i].curr_level = -2; + return ret; + } + pr_info("Defer regulator %s probe\n", + rails[i].name); + return ret; + } + } + } + + return ret; +} + +static int psm_reg_init(struct platform_device *pdev) +{ + int ret = 0; + int i = 0; + int j = 0; + + for (i = 0; i < psm_rails_cnt; i++) { + psm_rails[i].reg = rpm_regulator_get(&pdev->dev, + psm_rails[i].name); + if (IS_ERR_OR_NULL(psm_rails[i].reg)) { + ret = PTR_ERR(psm_rails[i].reg); + if (ret != -EPROBE_DEFER) { + pr_err("couldn't get rpm regulator %s. err%d\n", + psm_rails[i].name, ret); + psm_rails[i].reg = NULL; + goto psm_reg_exit; + } + pr_info("Defer regulator %s probe\n", + psm_rails[i].name); + return ret; + } + /* Apps default vote for PWM mode */ + psm_rails[i].init = PMIC_PWM_MODE; + ret = rpm_regulator_set_mode(psm_rails[i].reg, + psm_rails[i].init); + if (ret) { + pr_err("Cannot set PMIC PWM mode. err:%d\n", ret); + return ret; + } else + psm_rails[i].mode = PMIC_PWM_MODE; + } + + return ret; + +psm_reg_exit: + if (ret) { + for (j = 0; j < i; j++) { + if (psm_rails[j].reg != NULL) + rpm_regulator_put(psm_rails[j].reg); + } + } + + return ret; +} + +static ssize_t bucket_info_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t count) +{ + int ret = 0; + uint32_t val = 0; + + ret = kstrtouint(buf, 10, &val); + if (ret) { + pr_err("Invalid input:%s. ret:%d", buf, ret); + goto done_store; + } + + bucket = val & 0xff; + pr_debug("\"%s\"(PID:%i) request cluster:%d bucket:%d\n", + current->comm, current->pid, (bucket & 0xf0) >> 4, + bucket & 0xf); + +done_store: + return count; +} + +static ssize_t bucket_info_show( + struct kobject *kobj, struct kobj_attribute *attr, char *buf) +{ + return snprintf(buf, PAGE_SIZE, "%d\n", bucket); +} + +static struct kobj_attribute bucket_info_attr = + __ATTR_RW(bucket_info); +static int msm_thermal_add_bucket_info_nodes(void) +{ + struct kobject *module_kobj = NULL; + int ret = 0; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + return -ENOENT; + } + sysfs_attr_init(&bucket_info_attr.attr); + ret = sysfs_create_file(module_kobj, &bucket_info_attr.attr); + if (ret) { + pr_err( + "cannot create bucket info kobject attribute. err:%d\n", ret); + return ret; + } + + return ret; +} + +static struct kobj_attribute sensor_info_attr = + __ATTR_RO(sensor_info); +static int msm_thermal_add_sensor_info_nodes(void) +{ + struct kobject *module_kobj = NULL; + int ret = 0; + + if (!sensor_info_probed) { + sensor_info_nodes_called = true; + return ret; + } + if (sensor_info_probed && sensor_cnt == 0) + return ret; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + return -ENOENT; + } + sysfs_attr_init(&sensor_info_attr.attr); + ret = sysfs_create_file(module_kobj, &sensor_info_attr.attr); + if (ret) { + pr_err( + "cannot create sensor info kobject attribute. err:%d\n", + ret); + return ret; + } + + return ret; +} + +static int msm_thermal_add_vdd_rstr_nodes(void) +{ + struct kobject *module_kobj = NULL; + struct kobject *vdd_rstr_kobj = NULL; + struct kobject *vdd_rstr_reg_kobj[MAX_RAILS] = {0}; + int rc = 0; + int i = 0; + + if (!vdd_rstr_probed) { + vdd_rstr_nodes_called = true; + return rc; + } + + if (vdd_rstr_probed && rails_cnt == 0) + return rc; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + rc = -ENOENT; + goto thermal_sysfs_add_exit; + } + + vdd_rstr_kobj = kobject_create_and_add("vdd_restriction", module_kobj); + if (!vdd_rstr_kobj) { + pr_err("cannot create vdd_restriction kobject\n"); + rc = -ENOMEM; + goto thermal_sysfs_add_exit; + } + + rc = sysfs_create_group(vdd_rstr_kobj, &vdd_rstr_en_attribs_gp); + if (rc) { + pr_err("cannot create kobject attribute group. err:%d\n", rc); + rc = -ENOMEM; + goto thermal_sysfs_add_exit; + } + + for (i = 0; i < rails_cnt; i++) { + vdd_rstr_reg_kobj[i] = kobject_create_and_add(rails[i].name, + vdd_rstr_kobj); + if (!vdd_rstr_reg_kobj[i]) { + pr_err("cannot create kobject for %s\n", + rails[i].name); + rc = -ENOMEM; + goto thermal_sysfs_add_exit; + } + + rails[i].attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 3, + GFP_KERNEL); + if (!rails[i].attr_gp.attrs) { + pr_err("kzalloc failed\n"); + rc = -ENOMEM; + goto thermal_sysfs_add_exit; + } + + VDD_RES_RW_ATTRIB(rails[i], rails[i].level_attr, 0, level); + VDD_RES_RO_ATTRIB(rails[i], rails[i].value_attr, 1, value); + rails[i].attr_gp.attrs[2] = NULL; + + rc = sysfs_create_group(vdd_rstr_reg_kobj[i], + &rails[i].attr_gp); + if (rc) { + pr_err("cannot create attribute group for %s. err:%d\n", + rails[i].name, rc); + goto thermal_sysfs_add_exit; + } + } + + return rc; + +thermal_sysfs_add_exit: + if (rc) { + for (i = 0; i < rails_cnt; i++) { + kobject_del(vdd_rstr_reg_kobj[i]); + kfree(rails[i].attr_gp.attrs); + } + if (vdd_rstr_kobj) + kobject_del(vdd_rstr_kobj); + } + return rc; +} + +static int msm_thermal_add_ocr_nodes(void) +{ + struct kobject *module_kobj = NULL; + struct kobject *ocr_kobj = NULL; + struct kobject *ocr_reg_kobj[MAX_RAILS] = {0}; + int rc = 0; + int i = 0; + + if (!ocr_probed) { + ocr_nodes_called = true; + return rc; + } + + if (ocr_probed && ocr_rail_cnt == 0) + return rc; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("Cannot find kobject\n"); + rc = -ENOENT; + goto ocr_node_exit; + } + + ocr_kobj = kobject_create_and_add("opt_curr_req", module_kobj); + if (!ocr_kobj) { + pr_err("Cannot create ocr kobject\n"); + rc = -ENOMEM; + goto ocr_node_exit; + } + + for (i = 0; i < ocr_rail_cnt; i++) { + ocr_reg_kobj[i] = kobject_create_and_add(ocr_rails[i].name, + ocr_kobj); + if (!ocr_reg_kobj[i]) { + pr_err("Cannot create kobject for %s\n", + ocr_rails[i].name); + rc = -ENOMEM; + goto ocr_node_exit; + } + ocr_rails[i].attr_gp.attrs = kzalloc( + sizeof(struct attribute *) * 2, GFP_KERNEL); + if (!ocr_rails[i].attr_gp.attrs) { + pr_err("Fail to allocate memory for attribute for %s\n", + ocr_rails[i].name); + rc = -ENOMEM; + goto ocr_node_exit; + } + + OCR_RW_ATTRIB(ocr_rails[i], ocr_rails[i].mode_attr, 0, mode); + ocr_rails[i].attr_gp.attrs[1] = NULL; + + rc = sysfs_create_group(ocr_reg_kobj[i], &ocr_rails[i].attr_gp); + if (rc) { + pr_err("Cannot create attribute group for %s. err:%d\n", + ocr_rails[i].name, rc); + goto ocr_node_exit; + } + } + +ocr_node_exit: + if (rc) { + for (i = 0; i < ocr_rail_cnt; i++) { + if (ocr_reg_kobj[i]) + kobject_del(ocr_reg_kobj[i]); + kfree(ocr_rails[i].attr_gp.attrs); + ocr_rails[i].attr_gp.attrs = NULL; + } + if (ocr_kobj) + kobject_del(ocr_kobj); + } + return rc; +} + +static int msm_thermal_add_psm_nodes(void) +{ + struct kobject *module_kobj = NULL; + struct kobject *psm_kobj = NULL; + struct kobject *psm_reg_kobj[MAX_RAILS] = {0}; + int rc = 0; + int i = 0; + + if (!psm_probed) { + psm_nodes_called = true; + return rc; + } + + if (psm_probed && psm_rails_cnt == 0) + return rc; + + module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); + if (!module_kobj) { + pr_err("cannot find kobject\n"); + rc = -ENOENT; + goto psm_node_exit; + } + + psm_kobj = kobject_create_and_add("pmic_sw_mode", module_kobj); + if (!psm_kobj) { + pr_err("cannot create psm kobject\n"); + rc = -ENOMEM; + goto psm_node_exit; + } + + for (i = 0; i < psm_rails_cnt; i++) { + psm_reg_kobj[i] = kobject_create_and_add(psm_rails[i].name, + psm_kobj); + if (!psm_reg_kobj[i]) { + pr_err("cannot create kobject for %s\n", + psm_rails[i].name); + rc = -ENOMEM; + goto psm_node_exit; + } + psm_rails[i].attr_gp.attrs = kzalloc( \ + sizeof(struct attribute *) * 2, GFP_KERNEL); + if (!psm_rails[i].attr_gp.attrs) { + pr_err("kzalloc failed\n"); + rc = -ENOMEM; + goto psm_node_exit; + } + + PSM_RW_ATTRIB(psm_rails[i], psm_rails[i].mode_attr, 0, mode); + psm_rails[i].attr_gp.attrs[1] = NULL; + + rc = sysfs_create_group(psm_reg_kobj[i], &psm_rails[i].attr_gp); + if (rc) { + pr_err("cannot create attribute group for %s. err:%d\n", + psm_rails[i].name, rc); + goto psm_node_exit; + } + } + + return rc; + +psm_node_exit: + if (rc) { + for (i = 0; i < psm_rails_cnt; i++) { + kobject_del(psm_reg_kobj[i]); + kfree(psm_rails[i].attr_gp.attrs); + } + if (psm_kobj) + kobject_del(psm_kobj); + } + return rc; +} + +static void thermal_cpu_freq_mit_disable(void) +{ + uint32_t cpu = 0, th_cnt = 0; + struct device_manager_data *dev_mgr = NULL; + struct device_clnt_data *clnt = NULL; + char device_name[TSENS_NAME_MAX] = {0}; + + freq_mitigation_enabled = 0; + msm_thermal_init_cpu_mit(CPU_FREQ_MITIGATION); + for_each_possible_cpu(cpu) { + for (th_cnt = FREQ_THRESHOLD_HIGH; + th_cnt <= FREQ_THRESHOLD_LOW; th_cnt++) + sensor_cancel_trip(cpus[cpu].sensor_id, + &cpus[cpu].threshold[th_cnt]); + + snprintf(device_name, TSENS_NAME_MAX, CPU_DEVICE, cpu); + dev_mgr = find_device_by_name(device_name); + if (!dev_mgr) { + pr_err("Invalid device %s\n", device_name); + return; + } + mutex_lock(&dev_mgr->clnt_lock); + list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) { + if (!clnt->req_active) + continue; + clnt->request.freq.max_freq + = CPUFREQ_MAX_NO_MITIGATION; + clnt->request.freq.min_freq + = CPUFREQ_MIN_NO_MITIGATION; + } + dev_mgr->active_req.freq.max_freq = CPUFREQ_MAX_NO_MITIGATION; + dev_mgr->active_req.freq.min_freq = CPUFREQ_MIN_NO_MITIGATION; + mutex_unlock(&dev_mgr->clnt_lock); + } + if (freq_mitigation_task) + complete(&freq_mitigation_complete); + else + pr_err("Freq mit task is not initialized\n"); +} + +static void thermal_cpu_hotplug_mit_disable(void) +{ + uint32_t cpu = 0, th_cnt = 0; + struct device_manager_data *dev_mgr = NULL; + struct device_clnt_data *clnt = NULL; + + mutex_lock(&core_control_mutex); + hotplug_enabled = 0; + msm_thermal_init_cpu_mit(CPU_HOTPLUG_MITIGATION); + for_each_possible_cpu(cpu) { + if (!(msm_thermal_info.core_control_mask & BIT(cpu))) + continue; + + for (th_cnt = HOTPLUG_THRESHOLD_HIGH; + th_cnt <= HOTPLUG_THRESHOLD_LOW; th_cnt++) + sensor_cancel_trip(cpus[cpu].sensor_id, + &cpus[cpu].threshold[th_cnt]); + } + + dev_mgr = find_device_by_name(HOTPLUG_DEVICE); + if (!dev_mgr) { + pr_err("Invalid device %s\n", HOTPLUG_DEVICE); + mutex_unlock(&core_control_mutex); + return; + } + mutex_lock(&dev_mgr->clnt_lock); + list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) { + if (!clnt->req_active) + continue; + HOTPLUG_NO_MITIGATION(&clnt->request.offline_mask); + } + HOTPLUG_NO_MITIGATION(&dev_mgr->active_req.offline_mask); + mutex_unlock(&dev_mgr->clnt_lock); + + if (hotplug_task) + complete(&hotplug_notify_complete); + else + pr_err("Hotplug task is not initialized\n"); + + mutex_unlock(&core_control_mutex); +} + +static void thermal_reset_disable(void) +{ + THERM_MITIGATION_DISABLE(therm_reset_enabled, MSM_THERM_RESET); +} + +static void thermal_mx_mit_disable(void) +{ + int ret = 0; + + THERM_MITIGATION_DISABLE(vdd_mx_enabled, MSM_VDD_MX_RESTRICTION); + ret = remove_vdd_mx_restriction(); + if (ret) + pr_err("Failed to remove vdd mx restriction\n"); +} + +static void thermal_vdd_mit_disable(void) +{ + int ret = 0; + + THERM_MITIGATION_DISABLE(vdd_rstr_enabled, MSM_VDD_RESTRICTION); + ret = vdd_restriction_apply_all(0); + if (ret) + pr_err("Disable vdd rstr for all failed. err:%d\n", ret); +} + +static void thermal_psm_mit_disable(void) +{ + int ret = 0; + + THERM_MITIGATION_DISABLE(psm_enabled, -1); + ret = psm_set_mode_all(PMIC_AUTO_MODE); + if (ret) + pr_err("Set auto mode for all failed. err:%d\n", ret); +} + +static void thermal_ocr_mit_disable(void) +{ + int ret = 0; + + THERM_MITIGATION_DISABLE(ocr_enabled, MSM_OCR); + ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX); + if (ret) + pr_err("Set max optimum current failed. err:%d\n", ret); +} + +static void thermal_cx_phase_ctrl_mit_disable(void) +{ + int ret = 0; + + THERM_MITIGATION_DISABLE(cx_phase_ctrl_enabled, MSM_CX_PHASE_CTRL_HOT); + ret = send_temperature_band(MSM_CX_PHASE_CTRL, MSM_WARM); + if (ret) + pr_err("cx band set to WARM failed. err:%d\n", ret); +} + +static void thermal_gfx_phase_warm_ctrl_mit_disable(void) +{ + int ret = 0; + + if (gfx_warm_phase_ctrl_enabled) { + THERM_MITIGATION_DISABLE(gfx_warm_phase_ctrl_enabled, + MSM_GFX_PHASE_CTRL_WARM); + ret = send_temperature_band(MSM_GFX_PHASE_CTRL, MSM_NORMAL); + if (!ret) + pr_err("gfx phase set to NORMAL failed. err:%d\n", + ret); + } +} + +static void thermal_gfx_phase_crit_ctrl_mit_disable(void) +{ + int ret = 0; + + if (gfx_crit_phase_ctrl_enabled) { + THERM_MITIGATION_DISABLE(gfx_crit_phase_ctrl_enabled, + MSM_GFX_PHASE_CTRL_HOT); + ret = send_temperature_band(MSM_GFX_PHASE_CTRL, MSM_NORMAL); + if (!ret) + pr_err("gfx phase set to NORMAL failed. err:%d\n", + ret); + } +} + +static int probe_vdd_mx(struct device_node *node, + struct msm_thermal_data *data, struct platform_device *pdev) +{ + int ret = 0; + char *key = NULL; + + key = "qcom,disable-vdd-mx"; + if (of_property_read_bool(node, key)) { + vdd_mx_enabled = false; + return ret; + } + + key = "qcom,mx-restriction-temp"; + ret = of_property_read_u32(node, key, &data->vdd_mx_temp_degC); + if (ret) + goto read_node_done; + + key = "qcom,mx-restriction-temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->vdd_mx_temp_hyst_degC); + if (ret) + goto read_node_done; + + key = "qcom,mx-retention-min"; + ret = of_property_read_u32(node, key, &data->vdd_mx_min); + if (ret) + goto read_node_done; + + /* + * Monitor only this sensor if defined, otherwise monitor all tsens + */ + key = "qcom,mx-restriction-sensor_id"; + if (of_property_read_u32(node, key, &data->vdd_mx_sensor_id)) + data->vdd_mx_sensor_id = MONITOR_ALL_TSENS; + + vdd_mx = devm_regulator_get(&pdev->dev, "vdd-mx"); + if (IS_ERR_OR_NULL(vdd_mx)) { + ret = PTR_ERR(vdd_mx); + if (ret != -EPROBE_DEFER) { + pr_err( + "Could not get regulator: vdd-mx, err:%d\n", ret); + } + goto read_node_done; + } + + key = "qcom,cx-retention-min"; + ret = of_property_read_u32(node, key, &data->vdd_cx_min); + if (!ret) { + vdd_cx = devm_regulator_get(&pdev->dev, "vdd-cx"); + if (IS_ERR_OR_NULL(vdd_cx)) { + ret = PTR_ERR(vdd_cx); + if (ret != -EPROBE_DEFER) { + pr_err( + "Could not get regulator: vdd-cx, err:%d\n", + ret); + } + goto read_node_done; + } + } + + ret = sensor_mgr_init_threshold(&thresh[MSM_VDD_MX_RESTRICTION], + data->vdd_mx_sensor_id, + data->vdd_mx_temp_degC + data->vdd_mx_temp_hyst_degC, + data->vdd_mx_temp_degC, vdd_mx_notify); + +read_node_done: + if (!ret) { + vdd_mx_enabled = true; + snprintf(mit_config[MSM_VDD_MX_RESTRICTION].config_name, + MAX_DEBUGFS_CONFIG_LEN, "mx"); + mit_config[MSM_VDD_MX_RESTRICTION].disable_config + = thermal_mx_mit_disable; + } else if (ret != -EPROBE_DEFER) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. KTM continues\n", + __func__, node->full_name, key); + } + + return ret; +} + +static int probe_vdd_rstr(struct device_node *node, + struct msm_thermal_data *data, struct platform_device *pdev) +{ + int ret = 0; + int i = 0; + int arr_size; + char *key = NULL; + struct device_node *child_node = NULL; + + rails = NULL; + + key = "qcom,disable-vdd-rstr"; + if (of_property_read_bool(node, key)) { + vdd_rstr_probed = true; + vdd_rstr_enabled = false; + rails_cnt = 0; + return ret; + } + + key = "qcom,vdd-restriction-temp"; + ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_degC); + if (ret) + goto read_node_fail; + + key = "qcom,vdd-restriction-temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_hyst_degC); + if (ret) + goto read_node_fail; + + for_each_child_of_node(node, child_node) { + rails_cnt++; + } + + if (rails_cnt == 0) + goto read_node_fail; + if (rails_cnt >= MAX_RAILS) { + pr_err("Too many rails:%d.\n", rails_cnt); + return -EFAULT; + } + + rails = kzalloc(sizeof(struct rail) * rails_cnt, + GFP_KERNEL); + if (!rails) { + pr_err("Fail to allocate memory for rails.\n"); + return -ENOMEM; + } + + i = 0; + for_each_child_of_node(node, child_node) { + key = "qcom,vdd-rstr-reg"; + ret = of_property_read_string(child_node, key, &rails[i].name); + if (ret) + goto read_node_fail; + + key = "qcom,levels"; + if (!of_get_property(child_node, key, &arr_size)) + goto read_node_fail; + rails[i].num_levels = arr_size/sizeof(__be32); + if (rails[i].num_levels > + sizeof(rails[i].levels)/sizeof(uint32_t)) { + pr_err("Array size:%d too large for index:%d\n", + rails[i].num_levels, i); + return -EFAULT; + } + ret = of_property_read_u32_array(child_node, key, + rails[i].levels, rails[i].num_levels); + if (ret) + goto read_node_fail; + + key = "qcom,freq-req"; + rails[i].freq_req = of_property_read_bool(child_node, key); + if (rails[i].freq_req) { + rails[i].min_level = 0; + key = "qcom,max-freq-level"; + ret = of_property_read_u32(child_node, key, + &rails[i].max_frequency_limit); + if (ret) + rails[i].max_frequency_limit + = UINT_MAX; + ret = 0; + } else { + key = "qcom,min-level"; + ret = of_property_read_u32(child_node, key, + &rails[i].min_level); + if (ret) + goto read_node_fail; + } + + rails[i].curr_level = -1; + rails[i].reg = NULL; + i++; + } + + if (rails_cnt) { + ret = vdd_restriction_reg_init(pdev); + if (ret) { + pr_err("Err regulator init. err:%d. KTM continues.\n", + ret); + goto read_node_fail; + } + ret = sensor_mgr_init_threshold(&thresh[MSM_VDD_RESTRICTION], + MONITOR_ALL_TSENS, + data->vdd_rstr_temp_hyst_degC, data->vdd_rstr_temp_degC, + vdd_restriction_notify); + if (ret) { + pr_err("Error in initializing thresholds. err:%d\n", + ret); + goto read_node_fail; + } + vdd_rstr_enabled = true; + snprintf(mit_config[MSM_VDD_RESTRICTION].config_name, + MAX_DEBUGFS_CONFIG_LEN, "vdd"); + mit_config[MSM_VDD_RESTRICTION].disable_config + = thermal_vdd_mit_disable; + } +read_node_fail: + vdd_rstr_probed = true; + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + __func__, node->full_name, key, ret); + kfree(rails); + rails_cnt = 0; + } + if (ret == -EPROBE_DEFER) + vdd_rstr_probed = false; + return ret; +} + +static int create_alias_name(int _cpu, struct device_node *limits, + struct platform_device *pdev) +{ + char device_name[DEVM_NAME_MAX] = ""; + int sensor_idx = 0, sensor_ct = 0, idx = 0, err = 0; + struct device_node *tsens = NULL; + const char *sensor_name = NULL; + + if (!sensors) { + pr_debug("sensor info not defined\n"); + return -ENOSYS; + } + snprintf(device_name, DEVM_NAME_MAX, CPU_DEVICE, _cpu); + + if (!of_get_property(limits, "qcom,temperature-sensor", &sensor_ct) + || sensor_ct <= 0) { + pr_err("Sensor not defined\n"); + return -ENODEV; + } + sensor_ct /= sizeof(__be32); + do { + tsens = of_parse_phandle(limits, "qcom,temperature-sensor", + idx); + if (!tsens) { + pr_err("No temperature sensor defined for CPU%d\n", + _cpu); + return -ENODEV; + } + + err = of_property_read_string(tsens, "qcom,sensor-name", + &sensor_name); + if (err) { + pr_err("Sensor name not populated for CPU%d. err:%d\n", + _cpu, err); + return -ENODEV; + } + for (sensor_idx = 0; sensor_idx < sensor_cnt; sensor_idx++) { + char cat_str[DEVM_NAME_MAX] = ""; + + if (strcmp(sensors[sensor_idx].name, sensor_name)) + continue; + if (!sensors[sensor_idx].alias) { + sensors[sensor_idx].alias = devm_kzalloc( + &pdev->dev, DEVM_NAME_MAX, GFP_KERNEL); + if (!sensors[sensor_idx].alias) { + pr_err("Memory alloc failed\n"); + return -ENOMEM; + } + strlcpy((char *)sensors[sensor_idx].alias, + device_name, DEVM_NAME_MAX); + if (sensor_ct > 1) { + /* Multiple sensor monitoring + * single device */ + snprintf(cat_str, DEVM_NAME_MAX, "_%d", + idx); + strlcat((char *) + sensors[sensor_idx].alias, + cat_str, DEVM_NAME_MAX); + } + } else { + /* Single sensor monitoring multiple devices */ + snprintf(cat_str, DEVM_NAME_MAX, + "-"CPU_DEVICE, _cpu); + strlcat((char *)sensors[sensor_idx].alias, + cat_str, DEVM_NAME_MAX); + } + break; + } + idx++; + } while (idx < sensor_ct); + + return 0; +} + +static int fetch_cpu_mitigaiton_info(struct msm_thermal_data *data, + struct platform_device *pdev) +{ + + int _cpu = 0, err = 0; + struct device_node *cpu_node = NULL, *limits = NULL, *tsens = NULL; + char *key = NULL; + struct device_node *node = pdev->dev.of_node; + + key = "qcom,sensor-id"; + err = of_property_read_u32(node, key, &data->sensor_id); + if (err) + goto fetch_mitig_exit; + + key = "qcom,poll-ms"; + err = of_property_read_u32(node, key, &data->poll_ms); + if (err) + goto fetch_mitig_exit; + + for_each_possible_cpu(_cpu) { + const char *sensor_name = NULL; + + cpu_node = of_get_cpu_node(_cpu, NULL); + if (!cpu_node) { + pr_err("No CPU phandle for CPU%d\n", _cpu); + __WARN(); + continue; + } + limits = of_parse_phandle(cpu_node, "qcom,limits-info", 0); + if (!limits) { + pr_err("No mitigation info defined for CPU%d\n", _cpu); + continue; + } + VALIDATE_AND_SET_MASK(limits, "qcom,boot-frequency-mitigate", + data->bootup_freq_control_mask, _cpu); + VALIDATE_AND_SET_MASK(limits, + "qcom,emergency-frequency-mitigate", + data->freq_mitig_control_mask, _cpu); + VALIDATE_AND_SET_MASK(limits, "qcom,hotplug-mitigation-enable", + data->core_control_mask, _cpu); + + tsens = of_parse_phandle(limits, "qcom,temperature-sensor", 0); + if (!tsens) { + pr_err("No temperature sensor defined for CPU%d\n", + _cpu); + continue; + } + + err = of_property_read_string(tsens, "qcom,sensor-name", + &sensor_name); + if (err) { + pr_err("Sensor name not populated for CPU%d. err:%d\n", + _cpu, err); + continue; + } + cpus[_cpu].sensor_type = devm_kzalloc(&pdev->dev, + strlen(sensor_name) + 1, GFP_KERNEL); + if (!cpus[_cpu].sensor_type) { + pr_err("Memory alloc failed\n"); + err = -ENOMEM; + goto fetch_mitig_exit; + } + strlcpy((char *) cpus[_cpu].sensor_type, sensor_name, + strlen(sensor_name) + 1); + create_alias_name(_cpu, limits, pdev); + } + +fetch_mitig_exit: + return err; +} + +static void probe_sensor_info(struct device_node *node, + struct msm_thermal_data *data, struct platform_device *pdev) +{ + int err = 0; + int i = 0; + char *key = NULL; + struct device_node *child_node = NULL; + struct device_node *np = NULL; + int scale_tsens_found = 0; + + key = "qcom,disable-sensor-info"; + if (of_property_read_bool(node, key)) { + sensor_info_probed = true; + return; + } + + np = of_find_compatible_node(NULL, NULL, "qcom,sensor-information"); + if (!np) { + dev_info(&pdev->dev, + "%s:unable to find DT for sensor-information.KTM continues\n", + __func__); + sensor_info_probed = true; + return; + } + sensor_cnt = of_get_child_count(np); + if (sensor_cnt == 0) { + err = -ENODEV; + goto read_node_fail; + } + + sensors = devm_kzalloc(&pdev->dev, + sizeof(struct msm_sensor_info) * sensor_cnt, + GFP_KERNEL); + if (!sensors) { + pr_err("Fail to allocate memory for sensor_info.\n"); + err = -ENOMEM; + goto read_node_fail; + } + + for_each_child_of_node(np, child_node) { + const char *alias_name = NULL; + + key = "qcom,sensor-type"; + err = of_property_read_string(child_node, + key, &sensors[i].type); + if (err) + goto read_node_fail; + + key = "qcom,sensor-name"; + err = of_property_read_string(child_node, + key, &sensors[i].name); + if (err) + goto read_node_fail; + + key = "qcom,alias-name"; + of_property_read_string(child_node, key, &alias_name); + if (alias_name && !strnstr(alias_name, "cpu", + strlen(alias_name))) + sensors[i].alias = alias_name; + + key = "qcom,scaling-factor"; + err = of_property_read_u32(child_node, key, + &sensors[i].scaling_factor); + if (err || sensors[i].scaling_factor == 0) { + sensors[i].scaling_factor = SENSOR_SCALING_FACTOR; + err = 0; + } + if (scale_tsens_found == 0) { + if (!strcmp(sensors[i].type, "tsens")) { + scale_tsens_found = 1; + tsens_scaling_factor = + sensors[i].scaling_factor; + } + } + i++; + } + +read_node_fail: + sensor_info_probed = true; + if (err) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + __func__, np->full_name, key, err); + devm_kfree(&pdev->dev, sensors); + } +} + +static int probe_ocr(struct device_node *node, struct msm_thermal_data *data, + struct platform_device *pdev) +{ + int ret = 0; + int j = 0; + char *key = NULL; + + if (ocr_probed) { + pr_info("Nodes already probed\n"); + goto read_ocr_exit; + } + ocr_rails = NULL; + + key = "qcom,disable-ocr"; + if (of_property_read_bool(node, key)) { + ocr_probed = true; + ocr_enabled = false; + ocr_rail_cnt = 0; + goto read_ocr_exit; + } + + key = "qcom,pmic-opt-curr-temp"; + ret = of_property_read_u32(node, key, &data->ocr_temp_degC); + if (ret) + goto read_ocr_fail; + + key = "qcom,pmic-opt-curr-temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->ocr_temp_hyst_degC); + if (ret) + goto read_ocr_fail; + + key = "qcom,pmic-opt-curr-regs"; + ocr_rail_cnt = of_property_count_strings(node, key); + if (ocr_rail_cnt <= 0) { + pr_err("Invalid ocr rail count. err:%d\n", ocr_rail_cnt); + goto read_ocr_fail; + } + ocr_rails = kzalloc(sizeof(struct psm_rail) * ocr_rail_cnt, + GFP_KERNEL); + if (!ocr_rails) { + pr_err("Fail to allocate memory for ocr rails\n"); + ocr_rail_cnt = 0; + return -ENOMEM; + } + + for (j = 0; j < ocr_rail_cnt; j++) { + ret = of_property_read_string_index(node, key, j, + &ocr_rails[j].name); + if (ret) + goto read_ocr_fail; + ocr_rails[j].phase_reg = NULL; + ocr_rails[j].init = OPTIMUM_CURRENT_MAX; + } + + key = "qcom,pmic-opt-curr-sensor-id"; + ret = of_property_read_u32(node, key, &data->ocr_sensor_id); + if (ret) { + pr_info("ocr sensor is not configured, use all TSENS. err:%d\n", + ret); + data->ocr_sensor_id = MONITOR_ALL_TSENS; + } + + ret = ocr_reg_init(pdev); + if (ret) { + if (ret == -EPROBE_DEFER) { + ocr_reg_init_defer = true; + pr_info("ocr reg init is defered\n"); + } else { + pr_err( + "Failed to get regulators. KTM continues. err:%d\n", + ret); + goto read_ocr_fail; + } + } + + ret = sensor_mgr_init_threshold(&thresh[MSM_OCR], data->ocr_sensor_id, + data->ocr_temp_degC, + data->ocr_temp_degC - data->ocr_temp_hyst_degC, + ocr_notify); + if (ret) + goto read_ocr_fail; + + if (!ocr_reg_init_defer) + ocr_enabled = true; + ocr_nodes_called = false; + /* + * Vote for max optimum current by default until we have made + * our first temp reading + */ + if (ocr_enabled) { + ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX); + if (ret) { + pr_err("Set max optimum current failed. err:%d\n", + ret); + ocr_enabled = false; + } + } + +read_ocr_fail: + ocr_probed = true; + if (ret) { + if (ret == -EPROBE_DEFER) { + ret = 0; + goto read_ocr_exit; + } + dev_err( + &pdev->dev, + "%s:Failed reading node=%s, key=%s err:%d. KTM continues\n", + __func__, node->full_name, key, ret); + kfree(ocr_rails); + ocr_rails = NULL; + ocr_rail_cnt = 0; + } else { + snprintf(mit_config[MSM_OCR].config_name, + MAX_DEBUGFS_CONFIG_LEN, "ocr"); + mit_config[MSM_OCR].disable_config = thermal_ocr_mit_disable; + } + +read_ocr_exit: + return ret; +} + +static int probe_psm(struct device_node *node, struct msm_thermal_data *data, + struct platform_device *pdev) +{ + int ret = 0; + int j = 0; + char *key = NULL; + + psm_rails = NULL; + + key = "qcom,disable-psm"; + if (of_property_read_bool(node, key)) { + psm_probed = true; + psm_enabled = false; + psm_rails_cnt = 0; + return ret; + } + + key = "qcom,pmic-sw-mode-temp"; + ret = of_property_read_u32(node, key, &data->psm_temp_degC); + if (ret) + goto read_node_fail; + + key = "qcom,pmic-sw-mode-temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->psm_temp_hyst_degC); + if (ret) + goto read_node_fail; + + key = "qcom,pmic-sw-mode-regs"; + psm_rails_cnt = of_property_count_strings(node, key); + psm_rails = kzalloc(sizeof(struct psm_rail) * psm_rails_cnt, + GFP_KERNEL); + if (!psm_rails) { + pr_err("Fail to allocate memory for psm rails\n"); + psm_rails_cnt = 0; + return -ENOMEM; + } + + for (j = 0; j < psm_rails_cnt; j++) { + ret = of_property_read_string_index(node, key, j, + &psm_rails[j].name); + if (ret) + goto read_node_fail; + } + + if (psm_rails_cnt) { + ret = psm_reg_init(pdev); + if (ret) { + pr_err("Err regulator init. err:%d. KTM continues.\n", + ret); + goto read_node_fail; + } + psm_enabled = true; + } + +read_node_fail: + psm_probed = true; + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + __func__, node->full_name, key, ret); + kfree(psm_rails); + psm_rails_cnt = 0; + } + if (ret == -EPROBE_DEFER) + psm_probed = false; + return ret; +} + +static int probe_cc(struct device_node *node, struct msm_thermal_data *data, + struct platform_device *pdev) +{ + char *key = NULL; + int ret = 0; + + if (num_possible_cpus() > 1) { + core_control_enabled = 1; + hotplug_enabled = 1; + } + + key = "qcom,online-hotplug-core"; + if (of_property_read_bool(node, key)) + online_core = true; + else + online_core = false; + + key = "qcom,core-limit-temp"; + ret = of_property_read_u32(node, key, &data->core_limit_temp_degC); + if (ret) + goto read_node_fail; + + key = "qcom,core-temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->core_temp_hysteresis_degC); + if (ret) + goto read_node_fail; + + key = "qcom,hotplug-temp"; + ret = of_property_read_u32(node, key, &data->hotplug_temp_degC); + if (ret) + goto hotplug_node_fail; + + key = "qcom,hotplug-temp-hysteresis"; + ret = of_property_read_u32(node, key, + &data->hotplug_temp_hysteresis_degC); + if (ret) + goto hotplug_node_fail; + +read_node_fail: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + core_control_enabled = 0; + } else { + snprintf(mit_config[MSM_LIST_MAX_NR + HOTPLUG_CONFIG] + .config_name, MAX_DEBUGFS_CONFIG_LEN, + "hotplug"); + mit_config[MSM_LIST_MAX_NR + HOTPLUG_CONFIG].disable_config + = thermal_cpu_hotplug_mit_disable; + } + + return ret; + +hotplug_node_fail: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + hotplug_enabled = 0; + } + + return ret; +} + +static int probe_gfx_phase_ctrl(struct device_node *node, + struct msm_thermal_data *data, + struct platform_device *pdev) +{ + char *key = NULL; + const char *tmp_str = NULL; + int ret = 0; + + key = "qcom,disable-gfx-phase-ctrl"; + if (of_property_read_bool(node, key)) { + gfx_crit_phase_ctrl_enabled = false; + gfx_warm_phase_ctrl_enabled = false; + return ret; + } + + key = "qcom,gfx-sensor-id"; + ret = of_property_read_u32(node, key, + &data->gfx_sensor); + if (ret) + goto probe_gfx_exit; + + key = "qcom,gfx-phase-resource-key"; + ret = of_property_read_string(node, key, + &tmp_str); + if (ret) + goto probe_gfx_exit; + data->gfx_phase_request_key = msm_thermal_str_to_int(tmp_str); + + key = "qcom,gfx-phase-warm-temp"; + ret = of_property_read_u32(node, key, + &data->gfx_phase_warm_temp_degC); + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + data->gfx_phase_warm_temp_degC = INT_MIN; + goto probe_gfx_crit; + } + + key = "qcom,gfx-phase-warm-temp-hyst"; + ret = of_property_read_u32(node, key, + &data->gfx_phase_warm_temp_hyst_degC); + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + goto probe_gfx_crit; + } + + ret = sensor_mgr_init_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM], + data->gfx_sensor, + data->gfx_phase_warm_temp_degC, data->gfx_phase_warm_temp_degC - + data->gfx_phase_warm_temp_hyst_degC, + gfx_phase_ctrl_notify); + if (ret) { + pr_err("init WARM threshold failed. err:%d\n", ret); + goto probe_gfx_crit; + } + gfx_warm_phase_ctrl_enabled = true; + snprintf(mit_config[MSM_GFX_PHASE_CTRL_WARM].config_name, + MAX_DEBUGFS_CONFIG_LEN, "gfx_phase_warm"); + mit_config[MSM_GFX_PHASE_CTRL_WARM].disable_config + = thermal_gfx_phase_warm_ctrl_mit_disable; + +probe_gfx_crit: + key = "qcom,gfx-phase-hot-crit-temp"; + ret = of_property_read_u32(node, key, + &data->gfx_phase_hot_temp_degC); + if (ret) { + data->gfx_phase_hot_temp_degC = INT_MAX; + goto probe_gfx_exit; + } + + key = "qcom,gfx-phase-hot-crit-temp-hyst"; + ret = of_property_read_u32(node, key, + &data->gfx_phase_hot_temp_hyst_degC); + if (ret) + goto probe_gfx_exit; + + ret = sensor_mgr_init_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT], + data->gfx_sensor, + data->gfx_phase_hot_temp_degC, data->gfx_phase_hot_temp_degC - + data->gfx_phase_hot_temp_hyst_degC, + gfx_phase_ctrl_notify); + if (ret) { + pr_err("init HOT threshold failed. err:%d\n", ret); + goto probe_gfx_exit; + } + + gfx_crit_phase_ctrl_enabled = true; + snprintf(mit_config[MSM_GFX_PHASE_CTRL_HOT].config_name, + MAX_DEBUGFS_CONFIG_LEN, "gfx_phase_crit"); + mit_config[MSM_GFX_PHASE_CTRL_HOT].disable_config + = thermal_gfx_phase_crit_ctrl_mit_disable; + +probe_gfx_exit: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + } + return ret; +} + +static int probe_cx_phase_ctrl(struct device_node *node, + struct msm_thermal_data *data, + struct platform_device *pdev) +{ + char *key = NULL; + const char *tmp_str; + int ret = 0; + + key = "qcom,disable-cx-phase-ctrl"; + if (of_property_read_bool(node, key)) { + cx_phase_ctrl_enabled = false; + return ret; + } + + key = "qcom,rpm-phase-resource-type"; + ret = of_property_read_string(node, key, + &tmp_str); + if (ret) + goto probe_cx_exit; + data->phase_rpm_resource_type = msm_thermal_str_to_int(tmp_str); + + key = "qcom,rpm-phase-resource-id"; + ret = of_property_read_u32(node, key, + &data->phase_rpm_resource_id); + if (ret) + goto probe_cx_exit; + + key = "qcom,cx-phase-resource-key"; + ret = of_property_read_string(node, key, + &tmp_str); + if (ret) + goto probe_cx_exit; + data->cx_phase_request_key = msm_thermal_str_to_int(tmp_str); + + key = "qcom,cx-phase-hot-crit-temp"; + ret = of_property_read_u32(node, key, + &data->cx_phase_hot_temp_degC); + if (ret) + goto probe_cx_exit; + + key = "qcom,cx-phase-hot-crit-temp-hyst"; + ret = of_property_read_u32(node, key, + &data->cx_phase_hot_temp_hyst_degC); + if (ret) + goto probe_cx_exit; + + ret = sensor_mgr_init_threshold(&thresh[MSM_CX_PHASE_CTRL_HOT], + MONITOR_ALL_TSENS, + data->cx_phase_hot_temp_degC, data->cx_phase_hot_temp_degC - + data->cx_phase_hot_temp_hyst_degC, + cx_phase_ctrl_notify); + if (ret) { + pr_err("init HOT threshold failed. err:%d\n", ret); + goto probe_cx_exit; + } + + cx_phase_ctrl_enabled = true; + snprintf(mit_config[MSM_CX_PHASE_CTRL_HOT].config_name, + MAX_DEBUGFS_CONFIG_LEN, "cx_phase"); + mit_config[MSM_CX_PHASE_CTRL_HOT].disable_config + = thermal_cx_phase_ctrl_mit_disable; + +probe_cx_exit: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s err=%d. KTM continues\n", + KBUILD_MODNAME, node->full_name, key, ret); + cx_phase_ctrl_enabled = false; + } + return ret; +} + +static int probe_therm_reset(struct device_node *node, + struct msm_thermal_data *data, + struct platform_device *pdev) +{ + char *key = NULL; + int ret = 0; + + key = "qcom,therm-reset-temp"; + ret = of_property_read_u32(node, key, &data->therm_reset_temp_degC); + if (ret) + goto PROBE_RESET_EXIT; + + ret = sensor_mgr_init_threshold(&thresh[MSM_THERM_RESET], + MONITOR_ALL_TSENS, + data->therm_reset_temp_degC, data->therm_reset_temp_degC - 10, + therm_reset_notify); + if (ret) { + pr_err("Therm reset data structure init failed\n"); + goto PROBE_RESET_EXIT; + } + + therm_reset_enabled = true; + snprintf(mit_config[MSM_THERM_RESET].config_name, + MAX_DEBUGFS_CONFIG_LEN, "reset"); + mit_config[MSM_THERM_RESET].disable_config + = thermal_reset_disable; + +PROBE_RESET_EXIT: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s err=%d. KTM continues\n", + __func__, node->full_name, key, ret); + therm_reset_enabled = false; + } + return ret; +} + +static int probe_freq_mitigation(struct device_node *node, + struct msm_thermal_data *data, + struct platform_device *pdev) +{ + char *key = NULL; + int ret = 0; + + key = "qcom,limit-temp"; + ret = of_property_read_u32(node, key, &data->limit_temp_degC); + if (ret) + goto PROBE_FREQ_EXIT; + + key = "qcom,temp-hysteresis"; + ret = of_property_read_u32(node, key, &data->temp_hysteresis_degC); + if (ret) + goto PROBE_FREQ_EXIT; + + key = "qcom,freq-step"; + ret = of_property_read_u32(node, key, &data->bootup_freq_step); + if (ret) + goto PROBE_FREQ_EXIT; + boot_freq_mitig_enabled = true; + + key = "qcom,freq-mitigation-temp"; + ret = of_property_read_u32(node, key, &data->freq_mitig_temp_degc); + if (ret) + goto PROBE_FREQ_EXIT; + + key = "qcom,freq-mitigation-temp-hysteresis"; + ret = of_property_read_u32(node, key, + &data->freq_mitig_temp_hysteresis_degc); + if (ret) + goto PROBE_FREQ_EXIT; + + key = "qcom,freq-mitigation-value"; + ret = of_property_read_u32(node, key, &data->freq_limit); + if (ret) + goto PROBE_FREQ_EXIT; + + freq_mitigation_enabled = 1; + snprintf(mit_config[MSM_LIST_MAX_NR + CPUFREQ_CONFIG].config_name, + MAX_DEBUGFS_CONFIG_LEN, "cpufreq"); + mit_config[MSM_LIST_MAX_NR + CPUFREQ_CONFIG].disable_config + = thermal_cpu_freq_mit_disable; + +PROBE_FREQ_EXIT: + if (ret) { + dev_info(&pdev->dev, + "%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n", + __func__, node->full_name, key, ret); + freq_mitigation_enabled = 0; + } + return ret; +} + +static void thermal_boot_config_read(struct seq_file *m, void *data) +{ + + seq_puts(m, "---------Boot Mitigation------------\n"); + seq_printf(m, "tsens sensor:tsens_tz_sensor%d\n", + msm_thermal_info.sensor_id); + seq_printf(m, "polling rate:%d ms\n", msm_thermal_info.poll_ms); + seq_printf(m, "frequency threshold:%d degC\n", + msm_thermal_info.limit_temp_degC); + seq_printf(m, "frequency threshold clear:%d degC\n", + msm_thermal_info.limit_temp_degC + - msm_thermal_info.temp_hysteresis_degC); + seq_printf(m, "frequency step:%d\n", + msm_thermal_info.bootup_freq_step); + seq_printf(m, "frequency mask:0x%x\n", + msm_thermal_info.bootup_freq_control_mask); + seq_printf(m, "hotplug threshold:%d degC\n", + msm_thermal_info.core_limit_temp_degC); + seq_printf(m, "hotplug threshold clear:%d degC\n", + msm_thermal_info.core_limit_temp_degC + - msm_thermal_info.core_temp_hysteresis_degC); + seq_printf(m, "hotplug mask:0x%x\n", + msm_thermal_info.core_control_mask); + seq_printf(m, "reset threshold:%d degC\n", + msm_thermal_info.therm_reset_temp_degC); +} + +static void thermal_emergency_config_read(struct seq_file *m, void *data) +{ + int cpu = 0; + + seq_puts(m, "\n---------Emergency Mitigation------------\n"); + for_each_possible_cpu(cpu) + seq_printf(m, "cpu%d sensor:%s\n", cpu, cpus[cpu].sensor_type); + seq_printf(m, "frequency threshold:%d degC\n", + msm_thermal_info.freq_mitig_temp_degc); + seq_printf(m, "frequency threshold clr:%d degC\n", + msm_thermal_info.freq_mitig_temp_degc + - msm_thermal_info.freq_mitig_temp_hysteresis_degc); + seq_printf(m, "frequency value:%d KHz\n", + msm_thermal_info.freq_limit); + seq_printf(m, "frequency mask:0x%x\n", + msm_thermal_info.freq_mitig_control_mask); + seq_printf(m, "hotplug threshold:%d degC\n", + msm_thermal_info.hotplug_temp_degC); + seq_printf(m, "hotplug threshold clr:%d degC\n", + msm_thermal_info.hotplug_temp_degC + - msm_thermal_info.hotplug_temp_hysteresis_degC); + seq_printf(m, "hotplug mask:0x%x\n", + msm_thermal_info.core_control_mask); + seq_printf(m, "online hotplug core:%s\n", online_core + ? "true" : "false"); + +} + +static void thermal_mx_config_read(struct seq_file *m, void *data) +{ + if (vdd_mx_enabled) { + seq_puts(m, "\n---------Mx Retention------------\n"); + seq_printf(m, "threshold:%d degC\n", + msm_thermal_info.vdd_mx_temp_degC); + seq_printf(m, "threshold clear:%d degC\n", + msm_thermal_info.vdd_mx_temp_degC + + msm_thermal_info.vdd_mx_temp_hyst_degC); + seq_printf(m, "mx retention value:%d\n", + msm_thermal_info.vdd_mx_min); + if (vdd_cx) + seq_printf(m, "cx retention value:%d\n", + msm_thermal_info.vdd_cx_min); + if (msm_thermal_info.vdd_mx_sensor_id != MONITOR_ALL_TSENS) + seq_printf(m, "tsens sensor:tsens_tz_sensor%d\n", + msm_thermal_info.vdd_mx_sensor_id); + } +} + +static void thermal_vdd_config_read(struct seq_file *m, void *data) +{ + int i = 0; + + if (vdd_rstr_enabled) { + seq_puts(m, "\n---------VDD restriction------------\n"); + seq_printf(m, "threshold:%d degC\n", + msm_thermal_info.vdd_rstr_temp_degC); + seq_printf(m, "threshold clear:%d degC\n", + msm_thermal_info.vdd_rstr_temp_hyst_degC); + for (i = 0; i < rails_cnt; i++) { + if (!strcmp(rails[i].name, "vdd-dig") + && rails[i].num_levels) + seq_printf(m, "vdd_dig restriction value:%d\n", + rails[i].levels[0]); + if (!strcmp(rails[i].name, "vdd-gfx") + && rails[i].num_levels) + seq_printf(m, "vdd_gfx restriction value:%d\n", + rails[i].levels[0]); + if (!strcmp(rails[i].name, "vdd-apps") + && rails[i].num_levels) + seq_printf(m, + "vdd_apps restriction value:%d KHz\n", + rails[i].levels[0]); + } + } +} + +static void thermal_psm_config_read(struct seq_file *m, void *data) +{ + if (psm_enabled) { + seq_puts(m, "\n------PMIC Software Mode(PSM)-------\n"); + seq_printf(m, "threshold:%d degC\n", + msm_thermal_info.psm_temp_degC); + seq_printf(m, "threshold clear:%d degC\n", + msm_thermal_info.psm_temp_degC + - msm_thermal_info.psm_temp_hyst_degC); + } +} + +static void thermal_ocr_config_read(struct seq_file *m, void *data) +{ + if (ocr_enabled) { + seq_puts(m, "\n-----Optimum Current Request(OCR)-----\n"); + seq_printf(m, "threshold:%d degC\n", + msm_thermal_info.ocr_temp_degC); + seq_printf(m, "threshold clear:%d degC\n", + msm_thermal_info.ocr_temp_degC + - msm_thermal_info.ocr_temp_hyst_degC); + seq_printf(m, "tsens sensor:tsens_tz_sensor%d\n", + msm_thermal_info.ocr_sensor_id); + } +} + +static void thermal_phase_ctrl_config_read(struct seq_file *m, void *data) +{ + if (cx_phase_ctrl_enabled) { + seq_puts(m, "\n---------Phase control------------\n"); + seq_printf(m, "cx hot critical threshold:%d degC\n", + msm_thermal_info.cx_phase_hot_temp_degC); + seq_printf(m, "cx hot critical threshold clear:%d degC\n", + msm_thermal_info.cx_phase_hot_temp_degC + - msm_thermal_info.cx_phase_hot_temp_hyst_degC); + } + if (gfx_crit_phase_ctrl_enabled) { + seq_printf(m, "gfx hot critical threshold:%d degC\n", + msm_thermal_info.gfx_phase_hot_temp_degC); + seq_printf(m, "gfx hot critical threshold clear:%d degC\n", + msm_thermal_info.gfx_phase_hot_temp_degC + - msm_thermal_info.gfx_phase_hot_temp_hyst_degC); + } + if (gfx_warm_phase_ctrl_enabled) { + seq_printf(m, "gfx warm threshold:%d degC\n", + msm_thermal_info.gfx_phase_warm_temp_degC); + seq_printf(m, "gfx warm threshold clear:%d degC\n", + msm_thermal_info.gfx_phase_warm_temp_degC + - msm_thermal_info.gfx_phase_warm_temp_hyst_degC); + } + if (gfx_crit_phase_ctrl_enabled || gfx_warm_phase_ctrl_enabled) + seq_printf(m, "gfx tsens sensor:tsens_tz_sensor%d\n", + msm_thermal_info.gfx_sensor); +} + +static void thermal_disable_all_mitigation(void) +{ + thermal_cpu_freq_mit_disable(); + thermal_cpu_hotplug_mit_disable(); + thermal_reset_disable(); + thermal_mx_mit_disable(); + thermal_vdd_mit_disable(); + thermal_psm_mit_disable(); + thermal_ocr_mit_disable(); + thermal_cx_phase_ctrl_mit_disable(); + thermal_gfx_phase_warm_ctrl_mit_disable(); + thermal_gfx_phase_crit_ctrl_mit_disable(); +} + +static void enable_config(int config_id) +{ + switch (config_id) { + case MSM_THERM_RESET: + therm_reset_enabled = 1; + break; + case MSM_VDD_RESTRICTION: + vdd_rstr_enabled = 1; + break; + case MSM_CX_PHASE_CTRL_HOT: + cx_phase_ctrl_enabled = 1; + break; + case MSM_GFX_PHASE_CTRL_WARM: + gfx_warm_phase_ctrl_enabled = 1; + break; + case MSM_GFX_PHASE_CTRL_HOT: + gfx_crit_phase_ctrl_enabled = 1; + break; + case MSM_OCR: + ocr_enabled = 1; + break; + case MSM_VDD_MX_RESTRICTION: + vdd_mx_enabled = 1; + break; + case MSM_LIST_MAX_NR + HOTPLUG_CONFIG: + hotplug_enabled = 1; + break; + case MSM_LIST_MAX_NR + CPUFREQ_CONFIG: + freq_mitigation_enabled = 1; + break; + default: + pr_err("Bad config:%d\n", config_id); + break; + } +} + +static void thermal_update_mit_threshold( + struct msm_thermal_debugfs_thresh_config *config, int max_mit) +{ + int idx = 0, i = 0; + + for (idx = 0; idx < max_mit; idx++) { + if (!config[idx].update) + continue; + config[idx].disable_config(); + enable_config(idx); + if (idx >= MSM_LIST_MAX_NR) { + if (idx == MSM_LIST_MAX_NR + HOTPLUG_CONFIG) + UPDATE_CPU_CONFIG_THRESHOLD( + msm_thermal_info.core_control_mask, + HOTPLUG_THRESHOLD_HIGH, + config[idx].thresh, + config[idx].thresh_clr); + else if (idx == MSM_LIST_MAX_NR + CPUFREQ_CONFIG) + UPDATE_CPU_CONFIG_THRESHOLD( + msm_thermal_info + .freq_mitig_control_mask, + FREQ_THRESHOLD_HIGH, + config[idx].thresh, + config[idx].thresh_clr); + } else { + for (i = 0; i < thresh[idx].thresh_ct; i++) { + thresh[idx].thresh_list[i].threshold[0].temp + = config[idx].thresh + * tsens_scaling_factor; + thresh[idx].thresh_list[i].threshold[1].temp + = config[idx].thresh_clr + * tsens_scaling_factor; + set_and_activate_threshold( + thresh[idx].thresh_list[i].sensor_id, + &thresh[idx].thresh_list[i] + .threshold[0]); + set_and_activate_threshold( + thresh[idx].thresh_list[i].sensor_id, + &thresh[idx].thresh_list[i] + .threshold[1]); + } + } + config[idx].update = 0; + } +} + +static ssize_t thermal_config_debugfs_write(struct file *file, + const char __user *buffer, size_t count, loff_t *ppos) +{ + int ret = 0; + char config_string[MAX_DEBUGFS_CONFIG_LEN] = { '\0' }; + + if (!mitigation || count > (MAX_DEBUGFS_CONFIG_LEN - 1)) { + pr_err("Invalid parameters\n"); + return -EINVAL; + } + + if (copy_from_user(config_string, buffer, count)) { + pr_err("Error reading debugfs command\n"); + ret = -EFAULT; + goto exit_debugfs_write; + } + pr_debug("Debugfs config command string: %s\n", config_string); + if (!strcmp(config_string, DEBUGFS_DISABLE_ALL_MIT)) { + mitigation = 0; + pr_err("KTM mitigations disabled via debugfs\n"); + thermal_disable_all_mitigation(); + } else if (!strcmp(config_string, DEBUGFS_CONFIG_UPDATE)) { + thermal_update_mit_threshold(mit_config, MSM_LIST_MAX_NR + + MAX_CPU_CONFIG); + } + +exit_debugfs_write: + if (!ret) + return count; + return ret; +} + +static int thermal_config_debugfs_read(struct seq_file *m, void *data) +{ + if (!mitigation) { + seq_puts(m, "KTM Mitigations Disabled\n"); + return 0; + } + thermal_boot_config_read(m, data); + thermal_emergency_config_read(m, data); + thermal_mx_config_read(m, data); + thermal_vdd_config_read(m, data); + thermal_psm_config_read(m, data); + thermal_ocr_config_read(m, data); + thermal_phase_ctrl_config_read(m, data); + + return 0; +} + +static void msm_thermal_late_sysfs_init(void) +{ + /* + * In case sysfs add nodes get called before probe function. + * Need to make sure sysfs node is created again + */ + if (psm_nodes_called) { + msm_thermal_add_psm_nodes(); + psm_nodes_called = false; + } + if (vdd_rstr_nodes_called) { + msm_thermal_add_vdd_rstr_nodes(); + vdd_rstr_nodes_called = false; + } + if (sensor_info_nodes_called) { + msm_thermal_add_sensor_info_nodes(); + sensor_info_nodes_called = false; + } + if (ocr_nodes_called) { + msm_thermal_add_ocr_nodes(); + ocr_nodes_called = false; + } + if (cluster_info_nodes_called) { + create_cpu_topology_sysfs(); + cluster_info_nodes_called = false; + } +} + +static int probe_deferrable_properties(struct device_node *node, + struct msm_thermal_data *data, struct platform_device *pdev) +{ + int ret = 0; + + /* + * Probe optional properties below. Call probe_psm before + * probe_vdd_rstr because rpm_regulator_get has to be called + * before devm_regulator_get + * probe_ocr should be called after probe_vdd_rstr to reuse the + * regualtor handle. calling devm_regulator_get more than once + * will fail. + */ + ret = probe_psm(node, data, pdev); + if (ret == -EPROBE_DEFER) + return ret; + + ret = probe_vdd_rstr(node, data, pdev); + if (ret == -EPROBE_DEFER) + return ret; + + probe_ocr(node, data, pdev); + ret = probe_vdd_mx(node, data, pdev); + if (ret == -EPROBE_DEFER) + return ret; + + return 0; +} + +static int msm_thermal_dev_probe(struct platform_device *pdev) +{ + int ret = 0; + struct device_node *node = pdev->dev.of_node; + struct msm_thermal_data data; + + if (!mitigation) + return ret; + + memset(&data, 0, sizeof(struct msm_thermal_data)); + data.pdev = pdev; + + ret = msm_thermal_pre_init(&pdev->dev); + if (ret) { + pr_err("thermal pre init failed. err:%d\n", ret); + goto probe_exit; + } + ret = probe_deferrable_properties(node, &data, pdev); + if (ret) + goto probe_exit; + + probe_sensor_info(node, &data, pdev); + probe_cc(node, &data, pdev); + probe_freq_mitigation(node, &data, pdev); + probe_cx_phase_ctrl(node, &data, pdev); + probe_gfx_phase_ctrl(node, &data, pdev); + probe_therm_reset(node, &data, pdev); + update_cpu_topology(&pdev->dev); + ret = fetch_cpu_mitigaiton_info(&data, pdev); + if (ret) { + pr_err("Error fetching CPU mitigation information. err:%d\n", + ret); + goto probe_exit; + } + msm_thermal_late_sysfs_init(); + ret = msm_thermal_init(&data); + if (ret) + goto probe_exit; + msm_thermal_probed = true; + +probe_exit: + return ret; +} + +static int msm_thermal_dev_exit(struct platform_device *inp_dev) +{ + int i = 0; + uint32_t _cluster = 0; + struct cluster_info *cluster_ptr = NULL; + struct uio_info *info = dev_get_drvdata(&inp_dev->dev); + struct rail *r = NULL; + + uio_unregister_device(info); + unregister_reboot_notifier(&msm_thermal_reboot_notifier); + if (msm_therm_debugfs && msm_therm_debugfs->parent) + debugfs_remove_recursive(msm_therm_debugfs->parent); + msm_thermal_ioctl_cleanup(); + if (thresh) { + if (vdd_rstr_enabled) { + sensor_mgr_remove_threshold( + &thresh[MSM_VDD_RESTRICTION]); + kfree(thresh[MSM_VDD_RESTRICTION].thresh_list); + for (i = 0; i < rails_cnt; i++) { + if (!rails[i].freq_req) + continue; + r = &rails[i]; + for_each_possible_cpu(i) { + devmgr_unregister_mitigation_client( + &msm_thermal_info.pdev->dev, + r->device_handle[i]); + r->device_handle[i] = NULL; + } + } + kfree(rails); + } + if (cx_phase_ctrl_enabled) { + sensor_mgr_remove_threshold( + &thresh[MSM_CX_PHASE_CTRL_HOT]); + kfree(thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list); + } + if (gfx_warm_phase_ctrl_enabled) { + sensor_mgr_remove_threshold( + &thresh[MSM_GFX_PHASE_CTRL_WARM]); + kfree(thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list); + } + if (gfx_crit_phase_ctrl_enabled) { + sensor_mgr_remove_threshold( + &thresh[MSM_GFX_PHASE_CTRL_HOT]); + kfree(thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list); + } + if (ocr_enabled) { + for (i = 0; i < ocr_rail_cnt; i++) + kfree(ocr_rails[i].attr_gp.attrs); + kfree(ocr_rails); + ocr_rails = NULL; + sensor_mgr_remove_threshold( + &thresh[MSM_OCR]); + kfree(thresh[MSM_OCR].thresh_list); + } + if (vdd_mx_enabled) { + kfree(mx_kobj); + kfree(mx_attr_group.attrs); + sensor_mgr_remove_threshold( + &thresh[MSM_VDD_MX_RESTRICTION]); + kfree(thresh[MSM_VDD_MX_RESTRICTION].thresh_list); + } + kfree(thresh); + thresh = NULL; + } + kfree(table); + if (core_ptr) { + for (; _cluster < core_ptr->entity_count; _cluster++) { + cluster_ptr = &core_ptr->child_entity_ptr[_cluster]; + kfree(cluster_ptr->freq_table); + } + } + + return 0; +} + +static int __init ktm_params(char *str) +{ + if (str != NULL && !strcmp(str, "disable")) { + pr_info("KTM Disabled at Boot\n"); + mitigation = 0; + } + + return 0; +} + +early_param("qcomthermal", ktm_params); + +static struct of_device_id msm_thermal_match_table[] = { + {.compatible = "qcom,msm-thermal"}, + {}, +}; + +static struct platform_driver msm_thermal_device_driver = { + .probe = msm_thermal_dev_probe, + .driver = { + .name = "msm-thermal", + .owner = THIS_MODULE, + .of_match_table = msm_thermal_match_table, + }, + .remove = msm_thermal_dev_exit, +}; + +int __init msm_thermal_device_init(void) +{ + return platform_driver_register(&msm_thermal_device_driver); +} +arch_initcall(msm_thermal_device_init); + +int __init msm_thermal_late_init(void) +{ + if (!msm_thermal_probed) + return 0; + + if (num_possible_cpus() > 1) + msm_thermal_add_cc_nodes(); + msm_thermal_add_psm_nodes(); + msm_thermal_add_vdd_rstr_nodes(); + msm_thermal_add_sensor_info_nodes(); + if (ocr_reg_init_defer) { + if (!ocr_reg_init(msm_thermal_info.pdev)) { + ocr_enabled = true; + msm_thermal_add_ocr_nodes(); + } + } + msm_thermal_add_mx_nodes(); + create_cpu_topology_sysfs(); + create_thermal_debugfs(); + msm_thermal_add_bucket_info_nodes(); + uio_init(msm_thermal_info.pdev); + + return 0; +} +late_initcall(msm_thermal_late_init); |