aboutsummaryrefslogtreecommitdiff
path: root/circuitpython/extmod/ulab/docs/scipy-linalg.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'circuitpython/extmod/ulab/docs/scipy-linalg.ipynb')
-rw-r--r--circuitpython/extmod/ulab/docs/scipy-linalg.ipynb474
1 files changed, 474 insertions, 0 deletions
diff --git a/circuitpython/extmod/ulab/docs/scipy-linalg.ipynb b/circuitpython/extmod/ulab/docs/scipy-linalg.ipynb
new file mode 100644
index 0000000..6adaa11
--- /dev/null
+++ b/circuitpython/extmod/ulab/docs/scipy-linalg.ipynb
@@ -0,0 +1,474 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2021-01-13T18:54:58.722373Z",
+ "start_time": "2021-01-13T18:54:57.178438Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pylab inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Notebook magic"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2021-05-09T05:37:22.600510Z",
+ "start_time": "2021-05-09T05:37:22.595924Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
+ "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
+ "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
+ "import subprocess\n",
+ "import os"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2021-05-09T05:37:26.429136Z",
+ "start_time": "2021-05-09T05:37:26.403191Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "@magics_class\n",
+ "class PyboardMagic(Magics):\n",
+ " @cell_magic\n",
+ " @magic_arguments()\n",
+ " @argument('-skip')\n",
+ " @argument('-unix')\n",
+ " @argument('-pyboard')\n",
+ " @argument('-file')\n",
+ " @argument('-data')\n",
+ " @argument('-time')\n",
+ " @argument('-memory')\n",
+ " def micropython(self, line='', cell=None):\n",
+ " args = parse_argstring(self.micropython, line)\n",
+ " if args.skip: # doesn't care about the cell's content\n",
+ " print('skipped execution')\n",
+ " return None # do not parse the rest\n",
+ " if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
+ " with open('/dev/shm/micropython.py', 'w') as fout:\n",
+ " fout.write(cell)\n",
+ " proc = subprocess.Popen([\"../../micropython/ports/unix/micropython\", \"/dev/shm/micropython.py\"], \n",
+ " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
+ " print(proc.stdout.read().decode(\"utf-8\"))\n",
+ " print(proc.stderr.read().decode(\"utf-8\"))\n",
+ " return None\n",
+ " if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
+ " spaces = \" \"\n",
+ " try:\n",
+ " with open(args.file, 'w') as fout:\n",
+ " fout.write(cell.replace('\\t', spaces))\n",
+ " printf('written cell to {}'.format(args.file))\n",
+ " except:\n",
+ " print('Failed to write to disc!')\n",
+ " return None # do not parse the rest\n",
+ " if args.data: # can be used to load data from the pyboard directly into kernel space\n",
+ " message = pyb.exec(cell)\n",
+ " if len(message) == 0:\n",
+ " print('pyboard >>>')\n",
+ " else:\n",
+ " print(message.decode('utf-8'))\n",
+ " # register new variable in user namespace\n",
+ " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
+ " \n",
+ " if args.time: # measures the time of executions\n",
+ " pyb.exec('import utime')\n",
+ " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
+ " \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
+ " print(message.decode('utf-8'))\n",
+ " \n",
+ " if args.memory: # prints out memory information \n",
+ " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
+ " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
+ " message = pyb.exec(cell)\n",
+ " print(\">>> \", message.decode('utf-8'))\n",
+ " message = pyb.exec('print(mem_info())')\n",
+ " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
+ "\n",
+ " if args.pyboard:\n",
+ " message = pyb.exec(cell)\n",
+ " print(message.decode('utf-8'))\n",
+ "\n",
+ "ip = get_ipython()\n",
+ "ip.register_magics(PyboardMagic)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## pyboard"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-07T07:35:35.126401Z",
+ "start_time": "2020-05-07T07:35:35.105824Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import pyboard\n",
+ "pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
+ "pyb.enter_raw_repl()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-19T19:11:18.145548Z",
+ "start_time": "2020-05-19T19:11:18.137468Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "pyb.exit_raw_repl()\n",
+ "pyb.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2020-05-07T07:35:38.725924Z",
+ "start_time": "2020-05-07T07:35:38.645488Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -pyboard 1\n",
+ "\n",
+ "import utime\n",
+ "import ulab as np\n",
+ "\n",
+ "def timeit(n=1000):\n",
+ " def wrapper(f, *args, **kwargs):\n",
+ " func_name = str(f).split(' ')[1]\n",
+ " def new_func(*args, **kwargs):\n",
+ " run_times = np.zeros(n, dtype=np.uint16)\n",
+ " for i in range(n):\n",
+ " t = utime.ticks_us()\n",
+ " result = f(*args, **kwargs)\n",
+ " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
+ " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
+ " print('\\tbest: %d us'%np.min(run_times))\n",
+ " print('\\tworst: %d us'%np.max(run_times))\n",
+ " print('\\taverage: %d us'%np.mean(run_times))\n",
+ " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
+ " return result\n",
+ " return new_func\n",
+ " return wrapper\n",
+ "\n",
+ "def timeit(f, *args, **kwargs):\n",
+ " func_name = str(f).split(' ')[1]\n",
+ " def new_func(*args, **kwargs):\n",
+ " t = utime.ticks_us()\n",
+ " result = f(*args, **kwargs)\n",
+ " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
+ " return result\n",
+ " return new_func"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "__END_OF_DEFS__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# scipy.linalg\n",
+ "\n",
+ "`scipy`'s `linalg` module contains two functions, `solve_triangular`, and `cho_solve`. The functions can be called by prepending them by `scipy.linalg.`.\n",
+ "\n",
+ "1. [scipy.linalg.solve_cho](#cho_solve)\n",
+ "2. [scipy.linalg.solve_triangular](#solve_triangular)"
+ ]
+ },
+ {
+ "source": [
+ "## cho_solve\n",
+ "\n",
+ "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html\n",
+ "\n",
+ "Solve the linear equations \n",
+ "\n",
+ "\n",
+ "\\begin{equation}\n",
+ "\\mathbf{A}\\cdot\\mathbf{x} = \\mathbf{b}\n",
+ "\\end{equation}\n",
+ "\n",
+ "given the Cholesky factorization of $\\mathbf{A}$. As opposed to `scipy`, the function simply takes the Cholesky-factorised matrix, $\\mathbf{A}$, and $\\mathbf{b}$ as inputs."
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667], dtype=float64)\n\n\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -unix 1\n",
+ "\n",
+ "from ulab import numpy as np\n",
+ "from ulab import scipy as spy\n",
+ "\n",
+ "A = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])\n",
+ "b = np.array([4, 2, 4, 2])\n",
+ "\n",
+ "print(spy.linalg.cho_solve(A, b))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## solve_triangular\n",
+ "\n",
+ "`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html \n",
+ "\n",
+ "Solve the linear equation \n",
+ "\n",
+ "\\begin{equation}\n",
+ "\\mathbf{a}\\cdot\\mathbf{x} = \\mathbf{b}\n",
+ "\\end{equation}\n",
+ "\n",
+ "with the assumption that $\\mathbf{a}$ is a triangular matrix. The two position arguments are $\\mathbf{a}$, and $\\mathbf{b}$, and the optional keyword argument is `lower` with a default value of `False`. `lower` determines, whether data are taken from the lower, or upper triangle of $\\mathbf{a}$. \n",
+ "\n",
+ "Note that $\\mathbf{a}$ itself does not have to be a triangular matrix: if it is not, then the values are simply taken to be 0 in the upper or lower triangle, as dictated by `lower`. However, $\\mathbf{a}\\cdot\\mathbf{x}$ will yield $\\mathbf{b}$ only, when $\\mathbf{a}$ is triangular. You should keep this in mind, when trying to establish the validity of the solution by back substitution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2021-05-09T05:56:57.449996Z",
+ "start_time": "2021-05-09T05:56:57.422515Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a:\n",
+ "\n",
+ "array([[3.0, 0.0, 0.0, 0.0],\n",
+ " [2.0, 1.0, 0.0, 0.0],\n",
+ " [1.0, 0.0, 1.0, 0.0],\n",
+ " [1.0, 2.0, 1.0, 8.0]], dtype=float64)\n",
+ "\n",
+ "b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n",
+ "====================\n",
+ "x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)\n",
+ "\n",
+ "dot(a, x): array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -unix 1\n",
+ "\n",
+ "from ulab import numpy as np\n",
+ "from ulab import scipy as spy\n",
+ "\n",
+ "a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])\n",
+ "b = np.array([4, 2, 4, 2])\n",
+ "\n",
+ "print('a:\\n')\n",
+ "print(a)\n",
+ "print('\\nb: ', b)\n",
+ "\n",
+ "x = spy.linalg.solve_triangular(a, b, lower=True)\n",
+ "\n",
+ "print('='*20)\n",
+ "print('x: ', x)\n",
+ "print('\\ndot(a, x): ', np.dot(a, x))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "With get the same solution, $\\mathbf{x}$, with the following matrix, but the dot product of $\\mathbf{a}$, and $\\mathbf{x}$ is no longer $\\mathbf{b}$:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2021-05-09T06:03:30.853054Z",
+ "start_time": "2021-05-09T06:03:30.841500Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a:\n",
+ "\n",
+ "array([[3.0, 2.0, 1.0, 0.0],\n",
+ " [2.0, 1.0, 0.0, 1.0],\n",
+ " [1.0, 0.0, 1.0, 4.0],\n",
+ " [1.0, 2.0, 1.0, 8.0]], dtype=float64)\n",
+ "\n",
+ "b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)\n",
+ "====================\n",
+ "x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)\n",
+ "\n",
+ "dot(a, x): array([5.333333333333334, 1.916666666666666, 3.666666666666667, 2.0], dtype=float64)\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%micropython -unix 1\n",
+ "\n",
+ "from ulab import numpy as np\n",
+ "from ulab import scipy as spy\n",
+ "\n",
+ "a = np.array([[3, 2, 1, 0], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]])\n",
+ "b = np.array([4, 2, 4, 2])\n",
+ "\n",
+ "print('a:\\n')\n",
+ "print(a)\n",
+ "print('\\nb: ', b)\n",
+ "\n",
+ "x = spy.linalg.solve_triangular(a, b, lower=True)\n",
+ "\n",
+ "print('='*20)\n",
+ "print('x: ', x)\n",
+ "print('\\ndot(a, x): ', np.dot(a, x))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": true,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "382.797px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": true
+ },
+ "varInspector": {
+ "cols": {
+ "lenName": 16,
+ "lenType": 16,
+ "lenVar": 40
+ },
+ "kernels_config": {
+ "python": {
+ "delete_cmd_postfix": "",
+ "delete_cmd_prefix": "del ",
+ "library": "var_list.py",
+ "varRefreshCmd": "print(var_dic_list())"
+ },
+ "r": {
+ "delete_cmd_postfix": ") ",
+ "delete_cmd_prefix": "rm(",
+ "library": "var_list.r",
+ "varRefreshCmd": "cat(var_dic_list()) "
+ }
+ },
+ "types_to_exclude": [
+ "module",
+ "function",
+ "builtin_function_or_method",
+ "instance",
+ "_Feature"
+ ],
+ "window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+} \ No newline at end of file