/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "sde_hwio.h" #include "sde_hw_catalog.h" #include "sde_hw_top.h" #include "sde_dbg.h" #define SSPP_SPARE 0x28 #define FLD_SPLIT_DISPLAY_CMD BIT(1) #define FLD_SMART_PANEL_FREE_RUN BIT(2) #define FLD_INTF_1_SW_TRG_MUX BIT(4) #define FLD_INTF_2_SW_TRG_MUX BIT(8) #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF #define DANGER_STATUS 0x360 #define SAFE_STATUS 0x364 #define TE_LINE_INTERVAL 0x3F4 #define TRAFFIC_SHAPER_EN BIT(31) #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4)) #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4)) #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4 static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp, struct split_pipe_cfg *cfg) { struct sde_hw_blk_reg_map *c = &mdp->hw; u32 upper_pipe = 0; u32 lower_pipe = 0; if (!mdp || !cfg) return; /* The SPLIT registers are only for DSI interfaces */ if ((cfg->intf != INTF_1) && (cfg->intf != INTF_2)) return; if (cfg->en) { if (cfg->mode == INTF_MODE_CMD) { lower_pipe = FLD_SPLIT_DISPLAY_CMD; /* interface controlling sw trigger */ if (cfg->intf == INTF_2) lower_pipe |= FLD_INTF_1_SW_TRG_MUX; else lower_pipe |= FLD_INTF_2_SW_TRG_MUX; /* free run */ if (cfg->pp_split_slave != INTF_MAX) lower_pipe = FLD_SMART_PANEL_FREE_RUN; upper_pipe = lower_pipe; } else { if (cfg->intf == INTF_2) { lower_pipe = FLD_INTF_1_SW_TRG_MUX; upper_pipe = FLD_INTF_2_SW_TRG_MUX; } else { lower_pipe = FLD_INTF_2_SW_TRG_MUX; upper_pipe = FLD_INTF_1_SW_TRG_MUX; } } } SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0); SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe); SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe); SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1); } static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp, struct split_pipe_cfg *cfg) { u32 ppb_config = 0x0; u32 ppb_control = 0x0; if (!mdp || !cfg) return; if (cfg->en && cfg->pp_split_slave != INTF_MAX) { ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20; ppb_config |= BIT(16); /* split enable */ ppb_control = BIT(5); /* horz split*/ } if (cfg->pp_split_index) { SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0); SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0); SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config); SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control); } else { SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config); SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control); SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0); SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0); } } static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp, struct cdm_output_cfg *cfg) { struct sde_hw_blk_reg_map *c = &mdp->hw; u32 out_ctl = 0; if (cfg->wb_en) out_ctl |= BIT(24); else if (cfg->intf_en) out_ctl |= BIT(19); SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl); } static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp, enum sde_clk_ctrl_type clk_ctrl, bool enable) { struct sde_hw_blk_reg_map *c = &mdp->hw; u32 reg_off, bit_off; u32 reg_val, new_val; bool clk_forced_on; if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX) return false; reg_off = mdp->cap->clk_ctrls[clk_ctrl].reg_off; bit_off = mdp->cap->clk_ctrls[clk_ctrl].bit_off; reg_val = SDE_REG_READ(c, reg_off); if (enable) new_val = reg_val | BIT(bit_off); else new_val = reg_val & ~BIT(bit_off); SDE_REG_WRITE(c, reg_off, new_val); clk_forced_on = !(reg_val & BIT(bit_off)); return clk_forced_on; } static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp, struct sde_danger_safe_status *status) { struct sde_hw_blk_reg_map *c = &mdp->hw; u32 value; value = SDE_REG_READ(c, DANGER_STATUS); status->mdp = (value >> 0) & 0x3; status->sspp[SSPP_VIG0] = (value >> 4) & 0x3; status->sspp[SSPP_VIG1] = (value >> 6) & 0x3; status->sspp[SSPP_VIG2] = (value >> 8) & 0x3; status->sspp[SSPP_VIG3] = (value >> 10) & 0x3; status->sspp[SSPP_RGB0] = (value >> 12) & 0x3; status->sspp[SSPP_RGB1] = (value >> 14) & 0x3; status->sspp[SSPP_RGB2] = (value >> 16) & 0x3; status->sspp[SSPP_RGB3] = (value >> 18) & 0x3; status->sspp[SSPP_DMA0] = (value >> 20) & 0x3; status->sspp[SSPP_DMA1] = (value >> 22) & 0x3; status->sspp[SSPP_DMA2] = (value >> 28) & 0x3; status->sspp[SSPP_DMA3] = (value >> 30) & 0x3; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3; status->wb[WB_0] = 0; status->wb[WB_1] = 0; status->wb[WB_2] = (value >> 2) & 0x3; status->wb[WB_3] = 0; } static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp, struct sde_danger_safe_status *status) { struct sde_hw_blk_reg_map *c = &mdp->hw; u32 value; value = SDE_REG_READ(c, SAFE_STATUS); status->mdp = (value >> 0) & 0x1; status->sspp[SSPP_VIG0] = (value >> 4) & 0x1; status->sspp[SSPP_VIG1] = (value >> 6) & 0x1; status->sspp[SSPP_VIG2] = (value >> 8) & 0x1; status->sspp[SSPP_VIG3] = (value >> 10) & 0x1; status->sspp[SSPP_RGB0] = (value >> 12) & 0x1; status->sspp[SSPP_RGB1] = (value >> 14) & 0x1; status->sspp[SSPP_RGB2] = (value >> 16) & 0x1; status->sspp[SSPP_RGB3] = (value >> 18) & 0x1; status->sspp[SSPP_DMA0] = (value >> 20) & 0x1; status->sspp[SSPP_DMA1] = (value >> 22) & 0x1; status->sspp[SSPP_DMA2] = (value >> 28) & 0x1; status->sspp[SSPP_DMA3] = (value >> 30) & 0x1; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1; status->wb[WB_0] = 0; status->wb[WB_1] = 0; status->wb[WB_2] = (value >> 2) & 0x1; status->wb[WB_3] = 0; } static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops, unsigned long cap) { ops->setup_split_pipe = sde_hw_setup_split_pipe; ops->setup_pp_split = sde_hw_setup_pp_split; ops->setup_cdm_output = sde_hw_setup_cdm_output; ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl; ops->get_danger_status = sde_hw_get_danger_status; ops->get_safe_status = sde_hw_get_safe_status; } static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp, const struct sde_mdss_cfg *m, void __iomem *addr, struct sde_hw_blk_reg_map *b) { int i; for (i = 0; i < m->mdp_count; i++) { if (mdp == m->mdp[i].id) { b->base_off = addr; b->blk_off = m->mdp[i].base; b->length = m->mdp[i].len; b->hwversion = m->hwversion; b->log_mask = SDE_DBG_MASK_TOP; return &m->mdp[i]; } } return ERR_PTR(-EINVAL); } struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx, void __iomem *addr, const struct sde_mdss_cfg *m) { struct sde_hw_mdp *mdp; const struct sde_mdp_cfg *cfg; mdp = kzalloc(sizeof(*mdp), GFP_KERNEL); if (!mdp) return ERR_PTR(-ENOMEM); cfg = _top_offset(idx, m, addr, &mdp->hw); if (IS_ERR_OR_NULL(cfg)) { kfree(mdp); return ERR_PTR(-EINVAL); } /* * Assign ops */ mdp->idx = idx; mdp->cap = cfg; _setup_mdp_ops(&mdp->ops, mdp->cap->features); sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length, mdp->hw.xin_id); sde_dbg_set_sde_top_offset(mdp->hw.blk_off); return mdp; } void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp) { kfree(mdp); }