| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 7298e3b0a149c91323b3205d325e942c3b3b9ef6 upstream.
Currently the calcuation of end_pfn can round up the pfn number to more
than the actual maximum number of pfns, causing an Oops. Fix this by
ensuring end_pfn is never more than max_pfn.
This can be easily triggered when on systems where the end_pfn gets
rounded up to more than max_pfn using the idle-page stress-ng stress test:
sudo stress-ng --idle-page 0
BUG: unable to handle kernel paging request at 00000000000020d8
#PF error: [normal kernel read fault]
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 1 PID: 11039 Comm: stress-ng-idle- Not tainted 5.0.0-5-generic #6-Ubuntu
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:page_idle_get_page+0xc8/0x1a0
Code: 0f b1 0a 75 7d 48 8b 03 48 89 c2 48 c1 e8 33 83 e0 07 48 c1 ea 36 48 8d 0c 40 4c 8d 24 88 49 c1 e4 07 4c 03 24 d5 00 89 c3 be <49> 8b 44 24 58 48 8d b8 80 a1 02 00 e8 07 d5 77 00 48 8b 53 08 48
RSP: 0018:ffffafd7c672fde8 EFLAGS: 00010202
RAX: 0000000000000005 RBX: ffffe36341fff700 RCX: 000000000000000f
RDX: 0000000000000284 RSI: 0000000000000275 RDI: 0000000001fff700
RBP: ffffafd7c672fe00 R08: ffffa0bc34056410 R09: 0000000000000276
R10: ffffa0bc754e9b40 R11: ffffa0bc330f6400 R12: 0000000000002080
R13: ffffe36341fff700 R14: 0000000000080000 R15: ffffa0bc330f6400
FS: 00007f0ec1ea5740(0000) GS:ffffa0bc7db00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000020d8 CR3: 0000000077d68000 CR4: 00000000000006e0
Call Trace:
page_idle_bitmap_write+0x8c/0x140
sysfs_kf_bin_write+0x5c/0x70
kernfs_fop_write+0x12e/0x1b0
__vfs_write+0x1b/0x40
vfs_write+0xab/0x1b0
ksys_write+0x55/0xc0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Link: http://lkml.kernel.org/r/20190618124352.28307-1-colin.king@canonical.com
Fixes: 33c3fc71c8cf ("mm: introduce idle page tracking")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|