| Commit message (Collapse) | Author |
|
Change-Id: Ieb1067c5e276f872ed4c722b7d1fabecbdad87e7
|
|
(from https://patchwork.kernel.org/patch/9895261/)
This patch adds a parameter to select_task_rq, sibling_count_hint
allowing the caller, where it has this information, to inform the
sched_class the number of tasks that are being woken up as part of
the same event.
The wake_q mechanism is one case where this information is available.
select_task_rq_fair can then use the information to detect that it
needs to widen the search space for task placement in order to avoid
overloading the last-level cache domain's CPUs.
* * *
The reason I am investigating this change is the following use case
on ARM big.LITTLE (asymmetrical CPU capacity): 1 task per CPU, which
all repeatedly do X amount of work then
pthread_barrier_wait (i.e. sleep until the last task finishes its X
and hits the barrier). On big.LITTLE, the tasks which get a "big" CPU
finish faster, and then those CPUs pull over the tasks that are still
running:
v CPU v ->time->
-------------
0 (big) 11111 /333
-------------
1 (big) 22222 /444|
-------------
2 (LITTLE) 333333/
-------------
3 (LITTLE) 444444/
-------------
Now when task 4 hits the barrier (at |) and wakes the others up,
there are 4 tasks with prev_cpu=<big> and 0 tasks with
prev_cpu=<little>. want_affine therefore means that we'll only look
in CPUs 0 and 1 (sd_llc), so tasks will be unnecessarily coscheduled
on the bigs until the next load balance, something like this:
v CPU v ->time->
------------------------
0 (big) 11111 /333 31313\33333
------------------------
1 (big) 22222 /444|424\4444444
------------------------
2 (LITTLE) 333333/ \222222
------------------------
3 (LITTLE) 444444/ \1111
------------------------
^^^
underutilization
So, I'm trying to get want_affine = 0 for these tasks.
I don't _think_ any incarnation of the wakee_flips mechanism can help
us here because which task is waker and which tasks are wakees
generally changes with each iteration.
However pthread_barrier_wait (or more accurately FUTEX_WAKE) has the
nice property that we know exactly how many tasks are being woken, so
we can cheat.
It might be a disadvantage that we "widen" _every_ task that's woken in
an event, while select_idle_sibling would work fine for the first
sd_llc_size - 1 tasks.
IIUC, if wake_affine() behaves correctly this trick wouldn't be
necessary on SMP systems, so it might be best guarded by the presence
of SD_ASYM_CPUCAPACITY?
* * *
Final note..
In order to observe "perfect" behaviour for this use case, I also had
to disable the TTWU_QUEUE sched feature. Suppose during the wakeup
above we are working through the work queue and have placed tasks 3
and 2, and are about to place task 1:
v CPU v ->time->
--------------
0 (big) 11111 /333 3
--------------
1 (big) 22222 /444|4
--------------
2 (LITTLE) 333333/ 2
--------------
3 (LITTLE) 444444/ <- Task 1 should go here
--------------
If TTWU_QUEUE is enabled, we will not yet have enqueued task
2 (having instead sent a reschedule IPI) or attached its load to CPU
2. So we are likely to also place task 1 on cpu 2. Disabling
TTWU_QUEUE means that we enqueue task 2 before placing task 1,
solving this issue. TTWU_QUEUE is there to minimise rq lock
contention, and I guess that this contention is less of an issue on
big.LITTLE systems since they have relatively few CPUs, which
suggests the trade-off makes sense here.
Change-Id: I2080302839a263e0841a89efea8589ea53bbda9c
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
|
|
use a window based view of time in order to track task
demand and CPU utilization in the scheduler.
Window Assisted Load Tracking (WALT) implementation credits:
Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
Pavan Kumar Kondeti, Olav Haugan
2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
and Todd Kjos
Change-Id: I21408236836625d4e7d7de1843d20ed5ff36c708
Includes fixes for issues:
eas/walt: Use walt_ktime_clock() instead of ktime_get_ns() to avoid a
race resulting in watchdog resets
BUG: 29353986
Change-Id: Ic1820e22a136f7c7ebd6f42e15f14d470f6bbbdb
Handle walt accounting anomoly during resume
During resume, there is a corner case where on wakeup, a task's
prev_runnable_sum can go negative. This is a workaround that
fixes the condition and warns (instead of crashing).
BUG: 29464099
Change-Id: I173e7874324b31a3584435530281708145773508
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
[jstultz: fwdported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
use a window based view of time in order to track task
demand and CPU utilization in the scheduler.
Window Assisted Load Tracking (WALT) implementation credits:
Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
Pavan Kumar Kondeti, Olav Haugan
2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
and Todd Kjos
Change-Id: I21408236836625d4e7d7de1843d20ed5ff36c708
Includes fixes for issues:
eas/walt: Use walt_ktime_clock() instead of ktime_get_ns() to avoid a
race resulting in watchdog resets
BUG: 29353986
Change-Id: Ic1820e22a136f7c7ebd6f42e15f14d470f6bbbdb
Handle walt accounting anomoly during resume
During resume, there is a corner case where on wakeup, a task's
prev_runnable_sum can go negative. This is a workaround that
fixes the condition and warns (instead of crashing).
BUG: 29464099
Change-Id: I173e7874324b31a3584435530281708145773508
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
[jstultz: fwdported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Current window based load tracking only saves history for five
windows. A historically heavy task's heavy load will be completely
forgotten after five windows of light load. Even before the five
window expires, a heavy task wakes up on same CPU it used to run won't
trigger any frequency change until end of the window. It would starve
for the entire window. It also adds one "small" load window to
history because it's accumulating load at a low frequency, further
reducing the tracked load for this heavy task.
Ideally, scheduler should be able to identify such tasks and notify
governor to increase frequency immediately after it wakes up.
Add a histogram for each task to track a much longer load history. A
prediction will be made based on runtime of previous or current
window, histogram data and load tracked in recent windows. Prediction
of all tasks that is currently running or runnable on a CPU is
aggregated and reported to CPUFreq governor in sched_get_cpus_busy().
sched_get_cpus_busy() now returns predicted busy time in addition
to previous window busy time and new task busy time, scaled to
the CPU maximum possible frequency.
Tunables:
- /proc/sys/kernel/sched_gov_alert_freq (KHz)
This tunable can be used to further filter the notifications.
Frequency alert notification is sent only when the predicted
load exceeds previous window load by sched_gov_alert_freq converted to
load.
Change-Id: If29098cd2c5499163ceaff18668639db76ee8504
Suggested-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Junjie Wu <junjiew@codeaurora.org>
[joonwoop@codeaurora.org: fixed merge conflicts around __migrate_task()
and removed changes for CONFIG_SCHED_QHMP.]
|
|
The commit 392edf4969d20 ("sched: avoid stale cumulative_runnable_avg
HMP statistics) introduced the callback function fixup_hmp_sched_stats()
so update_history() can avoid decrement and increment pair of HMP stat.
However the commit also made fixup function to do obscure p->ravg.demand
update which isn't the cleanest way.
Revise the function fixup_hmp_sched_stats() so the caller can update
p->ravg.demand directly.
Change-Id: Id54667d306495d2109c26362813f80f08a1385ad
[joonwoop@codeaurora.org: stripped out CONFIG_SCHED_QHMP.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
When a new window starts for a task and the task is on a rq, scheduler
decreases rq's cumulative_runnable_avg momentarily, re-account task's
demand and increases rq's cumulative_runnable_avg with newly accounted
task's demand. Therefore there is short time period that rq's
cumulative_runnable_avg is less than what it's supposed to be.
Meanwhile, there is chance that other CPU is in search of best CPU to place
a task and makes suboptimal decision with momentarily stale
cumulative_runnable_avg.
Fix such issue by adding or subtracting of delta between task's old
and new demand instead of decrementing and incrementing of entire task's
load.
Change-Id: I3c9329961e6f96e269fa13359e7d1c39c4973ff2
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
Key hmp stats (nr_big_tasks, nr_small_tasks and
cumulative_runnable_average) are currently maintained per-cpu in
'struct rq'. Merge those stats in their own structure (struct
hmp_sched_stats) and modify impacted functions to deal with the newly
introduced structure. This cleanup is required for a subsequent patch
which fixes various issues with use of CFS_BANDWIDTH feature in HMP
scheduler.
Change-Id: Ieffc10a3b82a102f561331bc385d042c15a33998
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in __update_load_avg().]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
|
|
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Chris bisected a NULL pointer deference in task_sched_runtime() to
commit 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime()
inconsistency'.
Chris observed crashes in atop or other /proc walking programs when he
started fork bombs on his machine. He assumed that this is a new exit
race, but that does not make any sense when looking at that commit.
What's interesting is that, the commit provides update_curr callbacks
for all scheduling classes except stop_task and idle_task.
While nothing can ever hit that via the clock_nanosleep() and
clock_gettime() interfaces, which have been the target of the commit in
question, the author obviously forgot that there are other code paths
which invoke task_sched_runtime()
do_task_stat(()
thread_group_cputime_adjusted()
thread_group_cputime()
task_cputime()
task_sched_runtime()
if (task_current(rq, p) && task_on_rq_queued(p)) {
update_rq_clock(rq);
up->sched_class->update_curr(rq);
}
If the stats are read for a stomp machine task, aka 'migration/N' and
that task is current on its cpu, this will happily call the NULL pointer
of stop_task->update_curr. Ooops.
Chris observation that this happens faster when he runs the fork bomb
makes sense as the fork bomb will kick migration threads more often so
the probability to hit the issue will increase.
Add the missing update_curr callbacks to the scheduler classes stop_task
and idle_task. While idle tasks cannot be monitored via /proc we have
other means to hit the idle case.
Fixes: 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency'
Reported-by: Chris Mason <clm@fb.com>
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.
The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.
Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Dan Carpenter reported:
> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)
Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.
Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.
A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.
We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().
Fixes: 38033c37faab ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.
Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.
Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.
The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.
The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.
To summarize, this patch:
- introduces the data structures, constants and symbols needed;
- implements the core logic of the scheduling algorithm in the new
scheduling class file;
- provides all the glue code between the new scheduling class and
the core scheduler and refines the interactions between sched/dl
and the other existing scheduling classes.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.
I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.
The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Make stop scheduler class do the same accounting as other classes,
Migration threads can be caught in the act while doing exec balancing,
leading to the below due to use of unmaintained ->se.exec_start. The
load that triggered this particular instance was an apparently out of
control heavily threaded application that does system monitoring in
what equated to an exec bomb, with one of the VERY frequently migrated
tasks being ps.
%CPU PID USER CMD
99.3 45 root [migration/10]
97.7 53 root [migration/12]
97.0 57 root [migration/13]
90.1 49 root [migration/11]
89.6 65 root [migration/15]
88.7 17 root [migration/3]
80.4 37 root [migration/8]
78.1 41 root [migration/9]
44.2 13 root [migration/2]
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344051854.6739.19.camel@marge.simpson.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Since once needs to do something at conferences and fixing compile
warnings doesn't actually require much if any attention I decided
to break up the sched.c #include "*.c" fest.
This further modularizes the scheduler code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-x0fcd3mnp8f9c99grcpewmhi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Introduce hierarchical task accounting for the group scheduling case in CFS, as
well as promoting the responsibility for maintaining rq->nr_running to the
scheduling classes.
The primary motivation for this is that with scheduling classes supporting
bandwidth throttling it is possible for entities participating in throttled
sub-trees to not have root visible changes in rq->nr_running across activate
and de-activate operations. This in turn leads to incorrect idle and
weight-per-task load balance decisions.
This also allows us to make a small fixlet to the fastpath in pick_next_task()
under group scheduling.
Note: this issue also exists with the existing sched_rt throttling mechanism.
This patch does not address that.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184756.878333391@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
In preparation of calling select_task_rq() without rq->lock held, drop
the dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.031077745@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Provide a generic p->on_rq because the p->se.on_rq semantics are
unfavourable for lockless wakeups but needed for sched_fair.
In particular, p->on_rq is only cleared when we actually dequeue the
task in schedule() and not on any random dequeue as done by things
like __migrate_task() and __sched_setscheduler().
This also allows us to remove p->se usage from !sched_fair code.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.949545047@chello.nl
|
|
Correct ->dequeue_tree() thinko into sched_class->dequeue_task
and drop all references to ->task_new() since it is obviously
gone.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <1300815978-16618-1-git-send-email-bp@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
When a task is taken out of the fair class we must ensure the vruntime
is properly normalized because when we put it back in it will assume
to be normalized.
The case that goes wrong is when changing away from the fair class
while sleeping. Sleeping tasks have non-normalized vruntime in order
to make sleeper-fairness work. So treat the switch away from fair as a
wakeup and preserve the relative vruntime.
Also update sysrq-n to call the ->switch_{to,from} methods.
Reported-by: Onkalo Samu <samu.p.onkalo@nokia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Instead of dealing with sched classes inside each check_preempt_curr()
implementation, pull out this logic into the generic wakeup preemption
path.
This fixes a hang in KVM (and others) where we are waiting for the
stop machine thread to run ...
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Tested-by: Marcelo Tosatti <mtosatti@redhat.com>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1288891946.2039.31.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Heiko reported that the TASK_RUNNING check is not sufficient for
CONFIG_PREEMPT=y since we can get preempted with !TASK_RUNNING.
He suggested adding a ->se.on_rq test to the existing TASK_RUNNING
one, however TASK_RUNNING will always have ->se.on_rq, so we might as
well reduce that to a single test.
[ stop tasks should never get preempted, but its good to handle
this case correctly should this ever happen ]
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
In order to separate the stop/migrate work thread from the SCHED_FIFO
implementation, create a special class for it that is of higher priority than
SCHED_FIFO itself.
This currently solves a problem where cpu-hotplug consumes so much cpu-time
that the SCHED_FIFO class gets throttled, but has the bandwidth replenishment
timer pending on the now dead cpu.
It is also required for when we add the planned deadline scheduling class above
SCHED_FIFO, as the stop/migrate thread still needs to transcent those tasks.
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1285165776.2275.1022.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|