| Commit message (Collapse) | Author | Age |
| ... | |
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_new_ltk() function is not used and
so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_read_local_oob_data_reply_complete() function
is not used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_set_local_name_complete() function is
not used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_set_class_of_dev_complete() function is
not used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_ssp_enable_complete() function is not
used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_auth_enable_complete() function is not
used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_auth_failed() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_pin_code_neg_reply_complete() function is
not used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_pin_code_reply_complete() function is not
used and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_pin_code_request() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The A2MP client for L2CAP channels needs to use l2cap_chan_no_resume
empty stub function.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The wait_ack code has a heavy dependency on the socket data structures
and, as of now, it won't be worthless change it to use non-socket
structures as the only user of such feature is a socket.
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We need to remove all direct access of struct sock from L2CAP core.
This change is pretty simple and just add a new L2CAP channel callback to
do the work in the L2CAP socket side.
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
As part of the work to remove struct sock from l2cap_core.c and make it
more generic we remove in this commit the direct access to sk->sk_sndtimeo
member. This objective of this change is purely remove sk usage from
l2cap_core.c
Now we have a new l2cap ops to get the current value of sk->sndtimeo. A
l2cap_chan_no_get_sndtimeo was added for users of L2CAP that doesn't need
to set a timeout.
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Instead of creating an new function pointer to report errors we are just
reusing state_change for that and there is a simple reason for this, one
place in the l2cap_core.c code needs, in a locked sk, set both the sk_state
and sk_err. If we create two different functions for this we would need to
release the lock between the two operation putting the socket in non
desired state.
The change is transparent to the l2cap_core.c code, user that only needs
to set the state won't need any modification.
This is another step of an ongoing work to make l2cap_core.c totally
independent from l2cap's struct sock.
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
When the discoverable timeout triggers and limited discoverable mode
was used, then the class of device needs to be updated to remove
the limited discoverable bit.
To keep the class of device logic in a central place, expose a new
function mgmt_discoverable_timeout that can be called from the
timeout callback. In case the class of device value needs updating,
it will add the HCI command to the transaction.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The eir_get_length() function is only used from hci_event.c and so
instead of having a public function move it to the location where
it is used.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The eir_append_data() function is only used from mgmt.c and so
instead of having a public function move it to the location where
it is used.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_new_link_key() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This patch just adds the HCI command structure for configuring the
current IAC LAP setting. The length of the command is variable and
supports more than two IAC. However since there is only general
discoverable and limited discoverable modes, this can be limited
to two possible IACs.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_write_scan_failed() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_connectable() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The return value of mgmt_discoverable() function is not used
and so just change it to return void.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add a new flag that can be set when in limited discoverable mode. This
flag will cause the limited discoverable bit in the class of device
value to bet set.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Magically updating the advertising data when some random command enables
advertising in the controller is not really a good idea. It also caused
a bit of complicated code with the exported hci_udpate_ad function that
is shared from many places.
This patch consolidates the advertising data update into the management
core. It also makes sure that when powering on with LE enabled or later
on enabling LE the controller has a good default for advertising data.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
|
| | |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211-next
Conflicts:
net/wireless/reg.c
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
This can be used by a driver to prepare skbs for transmission, which were
obtained via functions such as ieee80211_probereq_get or
ieee80211_nullfunc_get.
This is useful for drivers that want to send those frames directly, but
need rate control information to be prepared first.
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Drivers can now use this to parse the regulatory request and
be more verbose when needed.
Signed-off-by: Luis R. Rodriguez <mcgrof@do-not-panic.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Document the IEEE80211_HW_SUPPORTS_HT_CCK_RATES flag.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
To use DFS in IBSS mode, userspace is required to react to radar events.
It can inform nl80211 that it is capable of doing so by adding a
NL80211_ATTR_HANDLE_DFS attribute when joining the IBSS.
This attribute is supplied to let the kernelspace know that the
userspace application can and will handle radar events, e.g. by
intiating channel switches to a valid channel. DFS channels may
only be used if this attribute is supplied and the driver supports
it. Driver support will be checked even if a channel without DFS
will be initially joined, as a DFS channel may be chosen later.
Signed-off-by: Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
Signed-off-by: Mathias Kretschmer <mathias.kretschmer@fokus.fraunhofer.de>
[fix attribute name in commit message]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
The information of the peer's supported channels and supported operating
classes are required for the driver to perform TDLS off channel
operations. This commit enhances the function nl80211_(new)set_station
to pass this information of the peer to the driver.
Signed-off-by: Sunil Dutt <c_duttus@qti.qualcomm.com>
[return errors for malformed tuples]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
This function has usage beside IPsec so move it to the core skbuff code.
While doing so, give it some documentation and change its return type to
'unsigned char *' to be in line with skb_put().
Signed-off-by: Mathias Krause <mathias.krause@secunet.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Just an unnecessary semicolon that should be removed...
Whitespace neatening of macro too.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | |_|_|_|_|/
|/| | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Sockets marked with IP_PMTUDISC_INTERFACE won't do path mtu discovery,
their sockets won't accept and install new path mtu information and they
will always use the interface mtu for outgoing packets. It is guaranteed
that the packet is not fragmented locally. But we won't set the DF-Flag
on the outgoing frames.
Florian Weimer had the idea to use this flag to ensure DNS servers are
never generating outgoing fragments. They may well be fragmented on the
path, but the server never stores or usees path mtu values, which could
well be forged in an attack.
(The root of the problem with path MTU discovery is that there is
no reliable way to authenticate ICMP Fragmentation Needed But DF Set
messages because they are sent from intermediate routers with their
source addresses, and the IMCP payload will not always contain sufficient
information to identify a flow.)
Recent research in the DNS community showed that it is possible to
implement an attack where DNS cache poisoning is feasible by spoofing
fragments. This work was done by Amir Herzberg and Haya Shulman:
<https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf>
This issue was previously discussed among the DNS community, e.g.
<http://www.ietf.org/mail-archive/web/dnsext/current/msg01204.html>,
without leading to fixes.
This patch depends on the patch "ipv4: fix DO and PROBE pmtu mode
regarding local fragmentation with UFO/CORK" for the enforcement of the
non-fragmentable checks. If other users than ip_append_page/data should
use this semantic too, we have to add a new flag to IPCB(skb)->flags to
suppress local fragmentation and check for this in ip_finish_output.
Many thanks to Florian Weimer for the idea and feedback while implementing
this patch.
Cc: David S. Miller <davem@davemloft.net>
Suggested-by: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| |\ \ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next
John W. Linville says:
====================
Please accept the following pull request intended for the 3.13 tree...
I had intended to pass most of these to you as much as two weeks ago.
Unfortunately, I failed to account for the effects of bad Internet
connections and my own fatique/laziness while traveling. On the bright
side, at least these have been baking in linux-next for some time!
For the mac80211 bits, Johannes says:
"This time I have two fixes for P2P (which requires not using CCK rates)
and a workaround for APs with broken WMM information."
For the iwlwifi bits, Johannes says:
"I have a few fixes for warnings/issues: one from Alex, fixing scan
timings, one from Emmanuel fixing a WARN_ON in the DVM driver, one from
Stanislaw removing a trigger-happy WARN_ON in the MVM driver and a
change from myself to try to recover when the device isn't processing
commands quickly."
And:
"For this round, I have a lot of changes:
* power management improvements
* BT coexistence improvements/updates
* new device support
* VHT support
* IBSS support (though due to a small bug it requires new firmware)
* various other fixes/improvements."
For the Bluetooth bits, Gustavo says:
"More patches for 3.12, busy times for Bluetooth. More than a 100 commits since
the last pull. The bulk of work comes from Johan and Marcel, they are doing
fixes and improvements all over the Bluetooth subsystem, as the diffstat can
show."
For the ath10k and ath6kl bits, Kalle says:
"Bartosz added support to ath10k for our 10.x AP firmware branch, which
gives us AP specific features and fixes. We still support the main
firmware branch as well just like before, ath10k detects runtime what
firmware is used. Unfortunately the firmware interface in 10.x branch is
somewhat different so there was quite a lot of changes in ath10k for
this.
Michal and Sujith did some performance improvements in ath10k. Vladimir
fixed a compiler warning and Fengguang removed an extra semicolon."
For the NFC bits, Samuel says:
"It's a fairly big one, with the following highlights:
- NFC digital layer implementation: Most NFC chipsets implement the NFC
digital layer in firmware, but others have more basic functionalities
and expect the host to implement the digital layer. This layer sits
below the NFC core.
- Sony's port100 support: This is "soft" NFC USB dongle that expects the
digital layer to be implemented on the host. This is the first user of
our NFC digital stack implementation.
- Secure element API: We now provide a netlink API for enabling,
disabling and discovering NFC attached (embedded or UICC ones) secure
elements. With some userspace help, this allows us to support NFC
payments.
Only the pn544 driver currently supports that API.
- NCI SPI fixes and improvements: In order to support NCI devices over
SPI, we fixed and improved our NCI/SPI implementation. The currently
most deployed NFC NCI chipset, Broadcom's bcm2079x, supports that mode
and we're planning to use our NCI/SPI framework to implement a
driver for it.
- pn533 fragmentation support in target mode: This was the only missing
feature from our pn533 impementation. We now support fragmentation in
both Tx and Rx modes, in target mode."
On top of all that, brcmfmac and rt2x00 both get the usual flurry
of updates. A few other drivers get hit here or there as well.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | |\| | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next into for-davem
Conflicts:
drivers/net/wireless/brcm80211/brcmfmac/sdio_host.h
|
| | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Drivers can now use this to parse the regulatory request and
be more verbose when needed.
Signed-off-by: Luis R. Rodriguez <mcgrof@do-not-panic.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
| | | |\ \ \ \ \
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-next
Samuel Ortiz <sameo@linux.intel.com> says:
"This is the first NFC pull request for the 3.13 kernel.
It's a fairly big one, with the following highlights:
- NFC digital layer implementation: Most NFC chipsets implement the NFC
digital layer in firmware, but others have more basic functionalities
and expect the host to implement the digital layer. This layer sits
below the NFC core.
- Sony's port100 support: This is "soft" NFC USB dongle that expects the
digital layer to be implemented on the host. This is the first user of
our NFC digital stack implementation.
- Secure element API: We now provide a netlink API for enabling,
disabling and discovering NFC attached (embedded or UICC ones) secure
elements. With some userspace help, this allows us to support NFC
payments.
Only the pn544 driver currently supports that API.
- NCI SPI fixes and improvements: In order to support NCI devices over
SPI, we fixed and improved our NCI/SPI implementation. The currently
most deployed NFC NCI chipset, Broadcom's bcm2079x, supports that mode
and we're planning to use our NCI/SPI framework to implement a
driver for it.
- pn533 fragmentation support in target mode: This was the only missing
feature from our pn533 impementation. We now support fragmentation in
both Tx and Rx modes, in target mode."
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
The NFC Forum NCI specification defines both a hardware and software
protocol when using a SPI physical transport to connect an NFC NCI
Chipset. The hardware requirement is that, after having raised the chip
select line, the SPI driver must wait for an INT line from the NFC
chipset to raise before it sends the data. The chip select must be
raised first though, because this is the signal that the NFC chipset
will detect to wake up and then raise its INT line. If the INT line
doesn't raise in a timely fashion, the SPI driver should abort
operation.
When data is transferred from Device host (DH) to NFC Controller (NFCC),
the signaling sequence is the following:
Data Transfer from DH to NFCC
• 1-Master asserts SPI_CSN
• 2-Slave asserts SPI_INT
• 3-Master sends NCI-over-SPI protocol header and payload data
• 4-Slave deasserts SPI_INT
• 5-Master deasserts SPI_CSN
When data must be transferred from NFCC to DH, things are a little bit
different.
Data Transfer from NFCC to DH
• 1-Slave asserts SPI_INT -> NFC chipset irq handler called -> process
reading from SPI
• 2-Master asserts SPI_CSN
• 3-Master send 2-octet NCI-over-SPI protocol header
• 4-Slave sends 2-octet NCI-over-SPI protocol payload length
• 5-Slave sends NCI-over-SPI protocol payload
• 6-Master deasserts SPI_CSN
In this case, SPI driver should function normally as it does today. Note
that the INT line can and will be lowered anytime between beginning of
step 3 and end of step 5. A low INT is therefore valid after chip select
has been raised.
This would be easily implemented in a single driver. Unfortunately, we
don't write the SPI driver and I had to imagine some workaround trick to
get the SPI and NFC drivers to work in a synchronized fashion. The trick
is the following:
- send an empty spi message: this will raise the chip select line, and
send nothing. We expect the /CS line will stay arisen because we asked
for it in the spi_transfer cs_change field
- wait for a completion, that will be completed by the NFC driver IRQ
handler when it knows we are in the process of sending data (NFC spec
says that we use SPI in a half duplex mode, so we are either sending or
receiving).
- when completed, proceed with the normal data send.
This has been tested and verified to work very consistently on a Nexus
10 (spi-s3c64xx driver). It may not work the same with other spi
drivers.
The previously defined nci_spi_ops{} whose intended purpose were to
address this problem are not used anymore and therefore totally removed.
The nci_spi_send() takes a new optional write_handshake_completion
completion pointer. If non NULL, the nci spi layer will run the above
trick when sending data to the NFC Chip. If NULL, the data is sent
normally all at once and it is then the NFC driver responsibility to
know what it's doing.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Previously, nci_spi_recv_frame() would directly transmit incoming frames
to the NCI Core. However, it turns out that some NFC NCI Chips will add
additional proprietary headers that must be handled/removed before NCI
Core gets a chance to handle the frame. With this modification, the chip
phy or driver are now responsible to transmit incoming frames to NCI
Core after proper treatment, and NCI SPI becomes a driver helper instead
of sitting between the NFC driver and NCI Core.
As a general rule in NFC, *_recv_frame() APIs are used to deliver an
incoming frame to an upper layer. To better suit the actual purpose of
nci_spi_recv_frame(), and go along with its nci_spi_send()
counterpart, the function is renamed to nci_spi_read()
The skb is returned as the function result
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
In order to send and receive ISO7816 APDUs to and from NFC embedded
secure elements, we define a specific netlink command.
On a typical SE use case, host applications will send very few APDUs
(Less than 10) per transaction. This is why we decided to go for a
simple netlink API. Defining another NFC socket protocol for such low
traffic would have been overengineered.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
SENS_RES has no specific endiannes attached to it, the kernel ABI is the
following one: Byte 2 (As described by the NFC Forum Digital spec) is
the u16 most significant byte.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
This adds support for NFC-A technology at 106 kbits/s. The stack can
detect tags of type 1 and 2. There is no support for collision
detection. Tags can be read and written by using a user space
application or a daemon like neard.
The flow of polling operations for NFC-A detection is as follow:
1 - The digital stack sends the SENS_REQ command to the NFC device.
2 - The NFC device receives a SENS_RES response from a peer device and
passes it to the digital stack.
3 - If the SENS_RES response identifies a type 1 tag, detection ends.
NFC core is notified through nfc_targets_found().
4 - Otherwise, the digital stack sets the cascade level of NFCID1 to
CL1 and sends the SDD_REQ command.
5 - The digital stack selects SEL_CMD and SEL_PAR according to the
cascade level and sends the SDD_REQ command.
4 - The digital stack receives a SDD_RES response for the cascade level
passed in the SDD_REQ command.
5 - The digital stack analyses (part of) NFCID1 and verify BCC.
6 - The digital stack sends the SEL_REQ command with the NFCID1
received in the SDD_RES.
6 - The peer device replies with a SEL_RES response
7 - Detection ends if NFCID1 is complete. NFC core notified of new
target by nfc_targets_found().
8 - If NFCID1 is not complete, the cascade level is incremented (up
to and including CL3) and the execution continues at step 5 to
get the remaining bytes of NFCID1.
Once target detection is done, type 1 and 2 tag commands must be
handled by a user space application (i.e neard) through the NFC core.
Responses for type 1 tag are returned directly to user space via NFC
core.
Responses of type 2 commands are handled differently. The digital stack
doesn't analyse the type of commands sent through im_transceive() and
must differentiate valid responses from error ones.
The response process flow is as follow:
1 - If the response length is 16 bytes, it is a valid response of a
READ command. the packet is returned to the NFC core through the
callback passed to im_transceive(). Processing stops.
2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a
valid response of a WRITE command for example. First packet byte
is set to 0 for no-error and passed back to the NFC core.
Processing stops.
3 - Any other response is treated as an error and -EIO error code is
returned to the NFC core through the response callback.
Moreover, since the driver can't differentiate success response from a
NACK response, the digital stack has to handle CRC calculation.
Thus, this patch also adds support for CRC calculation. If the driver
doesn't handle it, the digital stack will calculate CRC and will add it
to sent frames. CRC will also be checked and removed from received
frames. Pointers to the correct CRC calculation functions are stored in
the digital stack device structure when a target is detected. This
avoids the need to check the current target type for every call to
im_transceive() and for every response received from a peer device.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
This implements the mechanism used to send commands to the driver in
initiator mode through in_send_cmd().
Commands are serialized and sent to the driver by using a work item
on the system workqueue. Responses are handled asynchronously by
another work item. Once the digital stack receives the response through
the command_complete callback, the next command is sent to the driver.
This also implements the polling mechanism. It's handled by a work item
cycling on all supported protocols. The start poll command for a given
protocol is sent to the driver using the mechanism described above.
The process continues until a peer is discovered or stop_poll is
called. This patch implements the poll function for NFC-A that sends a
SENS_REQ command and waits for the SENS_RES response.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
This is the initial commit of the NFC Digital Protocol stack
implementation.
It offers an interface for devices that don't have an embedded NFC
Digital protocol stack. The driver instantiates the digital stack by
calling nfc_digital_allocate_device(). Within the nfc_digital_ops
structure, the driver specifies a set of function pointers for driver
operations. These functions must be implemented by the driver and are:
in_configure_hw:
Hardware configuration for RF technology and communication framing in
initiator mode. This is a synchronous function.
in_send_cmd:
Initiator mode data exchange using RF technology and framing previously
set with in_configure_hw. The peer response is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.
tg_configure_hw:
Hardware configuration for RF technology and communication framing in
target mode. This is a synchronous function.
tg_send_cmd:
Target mode data exchange using RF technology and framing previously
set with tg_configure_hw. The peer next command is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.
tg_listen:
Put the device in listen mode waiting for data from the peer device.
This is an asynchronous function.
tg_listen_mdaa:
If supported, put the device in automatic listen mode with mode
detection and automatic anti-collision. In this mode, the device
automatically detects the RF technology and executes the
anti-collision detection using the command responses specified in
mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and
SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and
424F. The driver returns the NFC-DEP ATR_REQ command through cb. The
digital stack deducts the RF tech by analyzing the SoD of the frame
containing the ATR_REQ command. This is an asynchronous function.
switch_rf:
Turns device radio on or off. The stack does not call explicitly
switch_rf to turn the radio on. A call to in|tg_configure_hw must turn
the device radio on.
abort_cmd:
Discard the last sent command.
Then the driver registers itself against the digital stack by using
nfc_digital_register_device() which in turn registers the digital stack
against the NFC core layer. The digital stack implements common NFC
operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc.
This patch is only a skeleton and NFC operations are just stubs.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
NCI SPI layer should not manage the nci dev, this is the job of the nci
chipset driver. This layer should be limited to frame/deframe nci
packets, and optionnaly check integrity (crc) and manage the ack/nak
protocol.
The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are
therefore renamed to a simple spi for more clarity.
The header and crc sizes are moved to nci.h so that drivers can use
them to reserve space in outgoing skbs.
nci_spi_send() is exported to be accessible by drivers.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
struct nfc_phy_ops is not an HCI structure only, it can also be used by
NCI or direct NFC Core drivers.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
An hci dev is an hdev. An nci dev is an ndev. Calling an nci spi dev an
ndev is misleading since it's not the same thing. The nci dev contained
in the nci spi dev is also named inconsistently.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Use a more standard kernel style macro logging name.
Standardize the spacing of the "NFC: " prefix.
Add \n to uses, remove from macro.
Fix the defective uses that already had a \n.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Use the generic kernel function instead of a home-grown
one that does the same thing.
Add \n to uses not at the macro. Don't add \n where
the nfc_dev_dbg macro mistakenly had them already.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|