diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 2900 |
1 files changed, 2900 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 000000000000..90cc450dff7e --- /dev/null +++ b/kernel/sched/sched.h @@ -0,0 +1,2900 @@ + +#include <linux/sched.h> +#include <linux/sched/sysctl.h> +#include <linux/sched/rt.h> +#include <linux/sched/smt.h> +#include <linux/sched/deadline.h> +#include <linux/mutex.h> +#include <linux/spinlock.h> +#include <linux/stop_machine.h> +#include <linux/irq_work.h> +#include <linux/tick.h> +#include <linux/slab.h> + +#include "cpupri.h" +#include "cpudeadline.h" +#include "cpuacct.h" + +struct rq; +struct cpuidle_state; + +/* task_struct::on_rq states: */ +#define TASK_ON_RQ_QUEUED 1 +#define TASK_ON_RQ_MIGRATING 2 + +extern __read_mostly int scheduler_running; + +extern unsigned long calc_load_update; +extern atomic_long_t calc_load_tasks; + +extern void calc_global_load_tick(struct rq *this_rq); + +extern long calc_load_fold_active(struct rq *this_rq); + +#ifdef CONFIG_SMP +extern void update_cpu_load_active(struct rq *this_rq); +#else +static inline void update_cpu_load_active(struct rq *this_rq) { } +#endif + +/* + * Helpers for converting nanosecond timing to jiffy resolution + */ +#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) + +/* + * Increase resolution of nice-level calculations for 64-bit architectures. + * The extra resolution improves shares distribution and load balancing of + * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup + * hierarchies, especially on larger systems. This is not a user-visible change + * and does not change the user-interface for setting shares/weights. + * + * We increase resolution only if we have enough bits to allow this increased + * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution + * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the + * increased costs. + */ +#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ +# define SCHED_LOAD_RESOLUTION 10 +# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) +# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) +#else +# define SCHED_LOAD_RESOLUTION 0 +# define scale_load(w) (w) +# define scale_load_down(w) (w) +#endif + +#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) +#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) + +#define NICE_0_LOAD SCHED_LOAD_SCALE +#define NICE_0_SHIFT SCHED_LOAD_SHIFT + +/* + * Single value that decides SCHED_DEADLINE internal math precision. + * 10 -> just above 1us + * 9 -> just above 0.5us + */ +#define DL_SCALE (10) + +/* + * These are the 'tuning knobs' of the scheduler: + */ + +/* + * single value that denotes runtime == period, ie unlimited time. + */ +#define RUNTIME_INF ((u64)~0ULL) + +static inline int idle_policy(int policy) +{ + return policy == SCHED_IDLE; +} +static inline int fair_policy(int policy) +{ + return policy == SCHED_NORMAL || policy == SCHED_BATCH; +} + +static inline int rt_policy(int policy) +{ + return policy == SCHED_FIFO || policy == SCHED_RR; +} + +static inline int dl_policy(int policy) +{ + return policy == SCHED_DEADLINE; +} +static inline bool valid_policy(int policy) +{ + return idle_policy(policy) || fair_policy(policy) || + rt_policy(policy) || dl_policy(policy); +} + +static inline int task_has_rt_policy(struct task_struct *p) +{ + return rt_policy(p->policy); +} + +static inline int task_has_dl_policy(struct task_struct *p) +{ + return dl_policy(p->policy); +} + +/* + * Tells if entity @a should preempt entity @b. + */ +static inline bool +dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) +{ + return dl_time_before(a->deadline, b->deadline); +} + +/* + * This is the priority-queue data structure of the RT scheduling class: + */ +struct rt_prio_array { + DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ + struct list_head queue[MAX_RT_PRIO]; +}; + +struct rt_bandwidth { + /* nests inside the rq lock: */ + raw_spinlock_t rt_runtime_lock; + ktime_t rt_period; + u64 rt_runtime; + struct hrtimer rt_period_timer; + unsigned int rt_period_active; +}; + +void __dl_clear_params(struct task_struct *p); + +/* + * To keep the bandwidth of -deadline tasks and groups under control + * we need some place where: + * - store the maximum -deadline bandwidth of the system (the group); + * - cache the fraction of that bandwidth that is currently allocated. + * + * This is all done in the data structure below. It is similar to the + * one used for RT-throttling (rt_bandwidth), with the main difference + * that, since here we are only interested in admission control, we + * do not decrease any runtime while the group "executes", neither we + * need a timer to replenish it. + * + * With respect to SMP, the bandwidth is given on a per-CPU basis, + * meaning that: + * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; + * - dl_total_bw array contains, in the i-eth element, the currently + * allocated bandwidth on the i-eth CPU. + * Moreover, groups consume bandwidth on each CPU, while tasks only + * consume bandwidth on the CPU they're running on. + * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw + * that will be shown the next time the proc or cgroup controls will + * be red. It on its turn can be changed by writing on its own + * control. + */ +struct dl_bandwidth { + raw_spinlock_t dl_runtime_lock; + u64 dl_runtime; + u64 dl_period; +}; + +static inline int dl_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} + +extern struct dl_bw *dl_bw_of(int i); + +struct dl_bw { + raw_spinlock_t lock; + u64 bw, total_bw; +}; + +static inline +void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) +{ + dl_b->total_bw -= tsk_bw; +} + +static inline +void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) +{ + dl_b->total_bw += tsk_bw; +} + +static inline +bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) +{ + return dl_b->bw != -1 && + dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; +} + +extern struct mutex sched_domains_mutex; + +#ifdef CONFIG_CGROUP_SCHED + +#include <linux/cgroup.h> + +struct cfs_rq; +struct rt_rq; + +extern struct list_head task_groups; + +struct cfs_bandwidth { +#ifdef CONFIG_CFS_BANDWIDTH + raw_spinlock_t lock; + ktime_t period; + u64 quota, runtime; + s64 hierarchical_quota; + u64 runtime_expires; + + int idle, period_active; + struct hrtimer period_timer, slack_timer; + struct list_head throttled_cfs_rq; + + /* statistics */ + int nr_periods, nr_throttled; + u64 throttled_time; + + bool distribute_running; +#endif +}; + +/* task group related information */ +struct task_group { + struct cgroup_subsys_state css; + +#ifdef CONFIG_SCHED_HMP + bool upmigrate_discouraged; +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED + /* schedulable entities of this group on each cpu */ + struct sched_entity **se; + /* runqueue "owned" by this group on each cpu */ + struct cfs_rq **cfs_rq; + unsigned long shares; + +#ifdef CONFIG_SMP + atomic_long_t load_avg; +#endif +#endif + +#ifdef CONFIG_RT_GROUP_SCHED + struct sched_rt_entity **rt_se; + struct rt_rq **rt_rq; + + struct rt_bandwidth rt_bandwidth; +#endif + + struct rcu_head rcu; + struct list_head list; + + struct task_group *parent; + struct list_head siblings; + struct list_head children; + +#ifdef CONFIG_SCHED_AUTOGROUP + struct autogroup *autogroup; +#endif + + struct cfs_bandwidth cfs_bandwidth; +}; + +#ifdef CONFIG_FAIR_GROUP_SCHED +#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD + +/* + * A weight of 0 or 1 can cause arithmetics problems. + * A weight of a cfs_rq is the sum of weights of which entities + * are queued on this cfs_rq, so a weight of a entity should not be + * too large, so as the shares value of a task group. + * (The default weight is 1024 - so there's no practical + * limitation from this.) + */ +#define MIN_SHARES (1UL << 1) +#define MAX_SHARES (1UL << 18) +#endif + +typedef int (*tg_visitor)(struct task_group *, void *); + +extern int walk_tg_tree_from(struct task_group *from, + tg_visitor down, tg_visitor up, void *data); + +/* + * Iterate the full tree, calling @down when first entering a node and @up when + * leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ +static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) +{ + return walk_tg_tree_from(&root_task_group, down, up, data); +} + +extern int tg_nop(struct task_group *tg, void *data); + +extern void free_fair_sched_group(struct task_group *tg); +extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); +extern void unregister_fair_sched_group(struct task_group *tg); +extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, + struct sched_entity *se, int cpu, + struct sched_entity *parent); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); + +extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); +extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); + +extern void free_rt_sched_group(struct task_group *tg); +extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); +extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, + struct sched_rt_entity *rt_se, int cpu, + struct sched_rt_entity *parent); + +extern struct task_group *sched_create_group(struct task_group *parent); +extern void sched_online_group(struct task_group *tg, + struct task_group *parent); +extern void sched_destroy_group(struct task_group *tg); +extern void sched_offline_group(struct task_group *tg); + +extern void sched_move_task(struct task_struct *tsk); + +#ifdef CONFIG_FAIR_GROUP_SCHED +extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); + +#ifdef CONFIG_SMP +extern void set_task_rq_fair(struct sched_entity *se, + struct cfs_rq *prev, struct cfs_rq *next); +#else /* !CONFIG_SMP */ +static inline void set_task_rq_fair(struct sched_entity *se, + struct cfs_rq *prev, struct cfs_rq *next) { } +#endif /* CONFIG_SMP */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +extern struct task_group *css_tg(struct cgroup_subsys_state *css); +#else /* CONFIG_CGROUP_SCHED */ + +struct cfs_bandwidth { }; + +#endif /* CONFIG_CGROUP_SCHED */ + +#ifdef CONFIG_SCHED_HMP + +#define NUM_TRACKED_WINDOWS 2 +#define NUM_LOAD_INDICES 1000 + +struct hmp_sched_stats { + int nr_big_tasks; + u64 cumulative_runnable_avg; + u64 pred_demands_sum; +}; + +struct load_subtractions { + u64 window_start; + u64 subs; + u64 new_subs; +}; + +struct group_cpu_time { + u64 curr_runnable_sum; + u64 prev_runnable_sum; + u64 nt_curr_runnable_sum; + u64 nt_prev_runnable_sum; +}; + +struct sched_cluster { + raw_spinlock_t load_lock; + struct list_head list; + struct cpumask cpus; + int id; + int max_power_cost; + int min_power_cost; + int max_possible_capacity; + int capacity; + int efficiency; /* Differentiate cpus with different IPC capability */ + int load_scale_factor; + unsigned int exec_scale_factor; + /* + * max_freq = user maximum + * max_mitigated_freq = thermal defined maximum + * max_possible_freq = maximum supported by hardware + */ + unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq; + unsigned int max_possible_freq; + bool freq_init_done; + int dstate, dstate_wakeup_latency, dstate_wakeup_energy; + unsigned int static_cluster_pwr_cost; + int notifier_sent; + bool wake_up_idle; + atomic64_t last_cc_update; + atomic64_t cycles; +}; + +extern unsigned long all_cluster_ids[]; + +static inline int cluster_first_cpu(struct sched_cluster *cluster) +{ + return cpumask_first(&cluster->cpus); +} + +struct related_thread_group { + int id; + raw_spinlock_t lock; + struct list_head tasks; + struct list_head list; + struct sched_cluster *preferred_cluster; + struct rcu_head rcu; + u64 last_update; +}; + +extern struct list_head cluster_head; +extern struct sched_cluster *sched_cluster[NR_CPUS]; + +struct cpu_cycle { + u64 cycles; + u64 time; +}; + +#define for_each_sched_cluster(cluster) \ + list_for_each_entry_rcu(cluster, &cluster_head, list) + +extern unsigned int sched_disable_window_stats; +#endif /* CONFIG_SCHED_HMP */ + +/* CFS-related fields in a runqueue */ +struct cfs_rq { + struct load_weight load; + unsigned int nr_running, h_nr_running; + + u64 exec_clock; + u64 min_vruntime; +#ifndef CONFIG_64BIT + u64 min_vruntime_copy; +#endif + + struct rb_root tasks_timeline; + struct rb_node *rb_leftmost; + + /* + * 'curr' points to currently running entity on this cfs_rq. + * It is set to NULL otherwise (i.e when none are currently running). + */ + struct sched_entity *curr, *next, *last, *skip; + +#ifdef CONFIG_SCHED_DEBUG + unsigned int nr_spread_over; +#endif + +#ifdef CONFIG_SMP + /* + * CFS load tracking + */ + struct sched_avg avg; + u64 runnable_load_sum; + unsigned long runnable_load_avg; +#ifdef CONFIG_FAIR_GROUP_SCHED + unsigned long tg_load_avg_contrib; + unsigned long propagate_avg; +#endif + atomic_long_t removed_load_avg, removed_util_avg; +#ifndef CONFIG_64BIT + u64 load_last_update_time_copy; +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED + /* + * h_load = weight * f(tg) + * + * Where f(tg) is the recursive weight fraction assigned to + * this group. + */ + unsigned long h_load; + u64 last_h_load_update; + struct sched_entity *h_load_next; +#endif /* CONFIG_FAIR_GROUP_SCHED */ +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_FAIR_GROUP_SCHED + struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ + + /* + * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in + * a hierarchy). Non-leaf lrqs hold other higher schedulable entities + * (like users, containers etc.) + * + * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This + * list is used during load balance. + */ + int on_list; + struct list_head leaf_cfs_rq_list; + struct task_group *tg; /* group that "owns" this runqueue */ + +#ifdef CONFIG_CFS_BANDWIDTH + +#ifdef CONFIG_SCHED_HMP + struct hmp_sched_stats hmp_stats; +#endif + + int runtime_enabled; + u64 runtime_expires; + s64 runtime_remaining; + + u64 throttled_clock, throttled_clock_task; + u64 throttled_clock_task_time; + int throttled, throttle_count, throttle_uptodate; + struct list_head throttled_list; +#endif /* CONFIG_CFS_BANDWIDTH */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ +}; + +static inline int rt_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} + +/* RT IPI pull logic requires IRQ_WORK */ +#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) +# define HAVE_RT_PUSH_IPI +#endif + +/* Real-Time classes' related field in a runqueue: */ +struct rt_rq { + struct rt_prio_array active; + unsigned int rt_nr_running; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + struct { + int curr; /* highest queued rt task prio */ +#ifdef CONFIG_SMP + int next; /* next highest */ +#endif + } highest_prio; +#endif +#ifdef CONFIG_SMP + unsigned long rt_nr_migratory; + unsigned long rt_nr_total; + int overloaded; + struct plist_head pushable_tasks; +#endif /* CONFIG_SMP */ + int rt_queued; + + int rt_throttled; + u64 rt_time; + u64 rt_runtime; + /* Nests inside the rq lock: */ + raw_spinlock_t rt_runtime_lock; + +#ifdef CONFIG_RT_GROUP_SCHED + unsigned long rt_nr_boosted; + + struct rq *rq; + struct task_group *tg; +#endif +}; + +/* Deadline class' related fields in a runqueue */ +struct dl_rq { + /* runqueue is an rbtree, ordered by deadline */ + struct rb_root rb_root; + struct rb_node *rb_leftmost; + + unsigned long dl_nr_running; + +#ifdef CONFIG_SMP + /* + * Deadline values of the currently executing and the + * earliest ready task on this rq. Caching these facilitates + * the decision wether or not a ready but not running task + * should migrate somewhere else. + */ + struct { + u64 curr; + u64 next; + } earliest_dl; + + unsigned long dl_nr_migratory; + int overloaded; + + /* + * Tasks on this rq that can be pushed away. They are kept in + * an rb-tree, ordered by tasks' deadlines, with caching + * of the leftmost (earliest deadline) element. + */ + struct rb_root pushable_dl_tasks_root; + struct rb_node *pushable_dl_tasks_leftmost; +#else + struct dl_bw dl_bw; +#endif + /* This is the "average utilization" for this runqueue */ + s64 avg_bw; +}; + +#ifdef CONFIG_SMP + +struct max_cpu_capacity { + raw_spinlock_t lock; + unsigned long val; + int cpu; +}; + +/* + * We add the notion of a root-domain which will be used to define per-domain + * variables. Each exclusive cpuset essentially defines an island domain by + * fully partitioning the member cpus from any other cpuset. Whenever a new + * exclusive cpuset is created, we also create and attach a new root-domain + * object. + * + */ +struct root_domain { + atomic_t refcount; + atomic_t rto_count; + struct rcu_head rcu; + cpumask_var_t span; + cpumask_var_t online; + + /* Indicate more than one runnable task for any CPU */ + bool overload; + + /* Indicate one or more cpus over-utilized (tipping point) */ + bool overutilized; + + /* + * The bit corresponding to a CPU gets set here if such CPU has more + * than one runnable -deadline task (as it is below for RT tasks). + */ + cpumask_var_t dlo_mask; + atomic_t dlo_count; + struct dl_bw dl_bw; + struct cpudl cpudl; + +#ifdef HAVE_RT_PUSH_IPI + /* + * For IPI pull requests, loop across the rto_mask. + */ + struct irq_work rto_push_work; + raw_spinlock_t rto_lock; + /* These are only updated and read within rto_lock */ + int rto_loop; + int rto_cpu; + /* These atomics are updated outside of a lock */ + atomic_t rto_loop_next; + atomic_t rto_loop_start; +#endif + /* + * The "RT overload" flag: it gets set if a CPU has more than + * one runnable RT task. + */ + cpumask_var_t rto_mask; + struct cpupri cpupri; + + /* Maximum cpu capacity in the system. */ + struct max_cpu_capacity max_cpu_capacity; + + /* First cpu with maximum and minimum original capacity */ + int max_cap_orig_cpu, min_cap_orig_cpu; +}; + +extern struct root_domain def_root_domain; +extern void sched_get_rd(struct root_domain *rd); +extern void sched_put_rd(struct root_domain *rd); + +#ifdef HAVE_RT_PUSH_IPI +extern void rto_push_irq_work_func(struct irq_work *work); +#endif +#endif /* CONFIG_SMP */ + +/* + * This is the main, per-CPU runqueue data structure. + * + * Locking rule: those places that want to lock multiple runqueues + * (such as the load balancing or the thread migration code), lock + * acquire operations must be ordered by ascending &runqueue. + */ +struct rq { + /* runqueue lock: */ + raw_spinlock_t lock; + + /* + * nr_running and cpu_load should be in the same cacheline because + * remote CPUs use both these fields when doing load calculation. + */ + unsigned int nr_running; +#ifdef CONFIG_NUMA_BALANCING + unsigned int nr_numa_running; + unsigned int nr_preferred_running; +#endif + #define CPU_LOAD_IDX_MAX 5 + unsigned long cpu_load[CPU_LOAD_IDX_MAX]; + unsigned long last_load_update_tick; + unsigned int misfit_task; +#ifdef CONFIG_NO_HZ_COMMON + u64 nohz_stamp; + unsigned long nohz_flags; +#endif +#ifdef CONFIG_NO_HZ_FULL + unsigned long last_sched_tick; +#endif + +#ifdef CONFIG_CPU_QUIET + /* time-based average load */ + u64 nr_last_stamp; + u64 nr_running_integral; + seqcount_t ave_seqcnt; +#endif + + /* capture load from *all* tasks on this cpu: */ + struct load_weight load; + unsigned long nr_load_updates; + u64 nr_switches; + + struct cfs_rq cfs; + struct rt_rq rt; + struct dl_rq dl; + +#ifdef CONFIG_FAIR_GROUP_SCHED + /* list of leaf cfs_rq on this cpu: */ + struct list_head leaf_cfs_rq_list; + struct list_head *tmp_alone_branch; +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + /* + * This is part of a global counter where only the total sum + * over all CPUs matters. A task can increase this counter on + * one CPU and if it got migrated afterwards it may decrease + * it on another CPU. Always updated under the runqueue lock: + */ + unsigned long nr_uninterruptible; + + struct task_struct *curr, *idle, *stop; + unsigned long next_balance; + struct mm_struct *prev_mm; + + unsigned int clock_skip_update; + u64 clock; + u64 clock_task; + + atomic_t nr_iowait; + +#ifdef CONFIG_SMP + struct root_domain *rd; + struct sched_domain *sd; + + unsigned long cpu_capacity; + unsigned long cpu_capacity_orig; + + struct callback_head *balance_callback; + + unsigned char idle_balance; + /* For active balancing */ + int active_balance; + int push_cpu; + struct task_struct *push_task; + struct cpu_stop_work active_balance_work; + /* cpu of this runqueue: */ + int cpu; + int online; + + struct list_head cfs_tasks; + + u64 rt_avg; + u64 age_stamp; + u64 idle_stamp; + u64 avg_idle; + + /* This is used to determine avg_idle's max value */ + u64 max_idle_balance_cost; +#endif + +#ifdef CONFIG_SCHED_HMP + struct sched_cluster *cluster; + struct cpumask freq_domain_cpumask; + struct hmp_sched_stats hmp_stats; + + int cstate, wakeup_latency, wakeup_energy; + u64 window_start; + u64 load_reported_window; + unsigned long hmp_flags; + + u64 cur_irqload; + u64 avg_irqload; + u64 irqload_ts; + unsigned int static_cpu_pwr_cost; + struct task_struct *ed_task; + struct cpu_cycle cc; + u64 old_busy_time, old_busy_time_group; + u64 old_estimated_time; + u64 curr_runnable_sum; + u64 prev_runnable_sum; + u64 nt_curr_runnable_sum; + u64 nt_prev_runnable_sum; + struct group_cpu_time grp_time; + struct load_subtractions load_subs[NUM_TRACKED_WINDOWS]; + DECLARE_BITMAP_ARRAY(top_tasks_bitmap, + NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES); + u8 *top_tasks[NUM_TRACKED_WINDOWS]; + u8 curr_table; + int prev_top; + int curr_top; +#endif + +#ifdef CONFIG_SCHED_WALT + u64 cumulative_runnable_avg; + u64 window_start; + u64 curr_runnable_sum; + u64 prev_runnable_sum; + u64 nt_curr_runnable_sum; + u64 nt_prev_runnable_sum; + u64 cur_irqload; + u64 avg_irqload; + u64 irqload_ts; + u64 cum_window_demand; +#endif /* CONFIG_SCHED_WALT */ + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + u64 prev_irq_time; +#endif +#ifdef CONFIG_PARAVIRT + u64 prev_steal_time; +#endif +#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING + u64 prev_steal_time_rq; +#endif + + /* calc_load related fields */ + unsigned long calc_load_update; + long calc_load_active; + +#ifdef CONFIG_SCHED_HRTICK +#ifdef CONFIG_SMP + int hrtick_csd_pending; + struct call_single_data hrtick_csd; +#endif + struct hrtimer hrtick_timer; +#endif + +#ifdef CONFIG_SCHEDSTATS + /* latency stats */ + struct sched_info rq_sched_info; + unsigned long long rq_cpu_time; + /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ + + /* sys_sched_yield() stats */ + unsigned int yld_count; + + /* schedule() stats */ + unsigned int sched_count; + unsigned int sched_goidle; + + /* try_to_wake_up() stats */ + unsigned int ttwu_count; + unsigned int ttwu_local; +#ifdef CONFIG_SMP + struct eas_stats eas_stats; +#endif +#endif + +#ifdef CONFIG_SMP + struct llist_head wake_list; +#endif + +#ifdef CONFIG_CPU_IDLE + /* Must be inspected within a rcu lock section */ + struct cpuidle_state *idle_state; + int idle_state_idx; +#endif +}; + +static inline int cpu_of(struct rq *rq) +{ +#ifdef CONFIG_SMP + return rq->cpu; +#else + return 0; +#endif +} + +DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) +#define this_rq() this_cpu_ptr(&runqueues) +#define task_rq(p) cpu_rq(task_cpu(p)) +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#define raw_rq() raw_cpu_ptr(&runqueues) + +static inline u64 __rq_clock_broken(struct rq *rq) +{ + return READ_ONCE(rq->clock); +} + +static inline u64 rq_clock(struct rq *rq) +{ + lockdep_assert_held(&rq->lock); + return rq->clock; +} + +static inline u64 rq_clock_task(struct rq *rq) +{ + lockdep_assert_held(&rq->lock); + return rq->clock_task; +} + +#define RQCF_REQ_SKIP 0x01 +#define RQCF_ACT_SKIP 0x02 + +static inline void rq_clock_skip_update(struct rq *rq, bool skip) +{ + lockdep_assert_held(&rq->lock); + if (skip) + rq->clock_skip_update |= RQCF_REQ_SKIP; + else + rq->clock_skip_update &= ~RQCF_REQ_SKIP; +} + +#ifdef CONFIG_NUMA +enum numa_topology_type { + NUMA_DIRECT, + NUMA_GLUELESS_MESH, + NUMA_BACKPLANE, +}; +extern enum numa_topology_type sched_numa_topology_type; +extern int sched_max_numa_distance; +extern bool find_numa_distance(int distance); +#endif + +#ifdef CONFIG_NUMA_BALANCING +/* The regions in numa_faults array from task_struct */ +enum numa_faults_stats { + NUMA_MEM = 0, + NUMA_CPU, + NUMA_MEMBUF, + NUMA_CPUBUF +}; +extern void sched_setnuma(struct task_struct *p, int node); +extern int migrate_task_to(struct task_struct *p, int cpu); +extern int migrate_swap(struct task_struct *, struct task_struct *); +#endif /* CONFIG_NUMA_BALANCING */ + +#ifdef CONFIG_SMP + +static inline void +queue_balance_callback(struct rq *rq, + struct callback_head *head, + void (*func)(struct rq *rq)) +{ + lockdep_assert_held(&rq->lock); + + if (unlikely(head->next)) + return; + + head->func = (void (*)(struct callback_head *))func; + head->next = rq->balance_callback; + rq->balance_callback = head; +} + +extern void sched_ttwu_pending(void); + +#define rcu_dereference_check_sched_domain(p) \ + rcu_dereference_check((p), \ + lockdep_is_held(&sched_domains_mutex)) + +/* + * The domain tree (rq->sd) is protected by RCU's quiescent state transition. + * See detach_destroy_domains: synchronize_sched for details. + * + * The domain tree of any CPU may only be accessed from within + * preempt-disabled sections. + */ +#define for_each_domain(cpu, __sd) \ + for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ + __sd; __sd = __sd->parent) + +#define for_each_lower_domain(sd) for (; sd; sd = sd->child) + +/** + * highest_flag_domain - Return highest sched_domain containing flag. + * @cpu: The cpu whose highest level of sched domain is to + * be returned. + * @flag: The flag to check for the highest sched_domain + * for the given cpu. + * + * Returns the highest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *highest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd, *hsd = NULL; + + for_each_domain(cpu, sd) { + if (!(sd->flags & flag)) + break; + hsd = sd; + } + + return hsd; +} + +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) { + if (sd->flags & flag) + break; + } + + return sd; +} + +DECLARE_PER_CPU(struct sched_domain *, sd_llc); +DECLARE_PER_CPU(int, sd_llc_size); +DECLARE_PER_CPU(int, sd_llc_id); +DECLARE_PER_CPU(struct sched_domain *, sd_numa); +DECLARE_PER_CPU(struct sched_domain *, sd_busy); +DECLARE_PER_CPU(struct sched_domain *, sd_asym); +DECLARE_PER_CPU(struct sched_domain *, sd_ea); +DECLARE_PER_CPU(struct sched_domain *, sd_scs); + +struct sched_group_capacity { + atomic_t ref; + /* + * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity + * for a single CPU. + */ + unsigned long capacity; + unsigned long max_capacity; /* Max per-cpu capacity in group */ + unsigned long min_capacity; /* Min per-CPU capacity in group */ + unsigned long next_update; + int imbalance; /* XXX unrelated to capacity but shared group state */ + /* + * Number of busy cpus in this group. + */ + atomic_t nr_busy_cpus; + + unsigned long cpumask[0]; /* iteration mask */ +}; + +struct sched_group { + struct sched_group *next; /* Must be a circular list */ + atomic_t ref; + + unsigned int group_weight; + struct sched_group_capacity *sgc; + const struct sched_group_energy *sge; + + /* + * The CPUs this group covers. + * + * NOTE: this field is variable length. (Allocated dynamically + * by attaching extra space to the end of the structure, + * depending on how many CPUs the kernel has booted up with) + */ + unsigned long cpumask[0]; +}; + +static inline struct cpumask *sched_group_cpus(struct sched_group *sg) +{ + return to_cpumask(sg->cpumask); +} + +/* + * cpumask masking which cpus in the group are allowed to iterate up the domain + * tree. + */ +static inline struct cpumask *sched_group_mask(struct sched_group *sg) +{ + return to_cpumask(sg->sgc->cpumask); +} + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. + */ +static inline unsigned int group_first_cpu(struct sched_group *group) +{ + return cpumask_first(sched_group_cpus(group)); +} + +extern int group_balance_cpu(struct sched_group *sg); + +#else + +static inline void sched_ttwu_pending(void) { } + +#endif /* CONFIG_SMP */ + +#include "stats.h" +#include "auto_group.h" + +enum sched_boost_policy { + SCHED_BOOST_NONE, + SCHED_BOOST_ON_BIG, + SCHED_BOOST_ON_ALL, +}; + +#ifdef CONFIG_SCHED_HMP + +#define WINDOW_STATS_RECENT 0 +#define WINDOW_STATS_MAX 1 +#define WINDOW_STATS_MAX_RECENT_AVG 2 +#define WINDOW_STATS_AVG 3 +#define WINDOW_STATS_INVALID_POLICY 4 + +#define SCHED_UPMIGRATE_MIN_NICE 15 +#define EXITING_TASK_MARKER 0xdeaddead + +#define UP_MIGRATION 1 +#define DOWN_MIGRATION 2 +#define IRQLOAD_MIGRATION 3 + +extern struct mutex policy_mutex; +extern unsigned int sched_ravg_window; +extern unsigned int sched_disable_window_stats; +extern unsigned int max_possible_freq; +extern unsigned int min_max_freq; +extern unsigned int pct_task_load(struct task_struct *p); +extern unsigned int max_possible_efficiency; +extern unsigned int min_possible_efficiency; +extern unsigned int max_capacity; +extern unsigned int min_capacity; +extern unsigned int max_load_scale_factor; +extern unsigned int max_possible_capacity; +extern unsigned int min_max_possible_capacity; +extern unsigned int max_power_cost; +extern unsigned int sched_init_task_load_windows; +extern unsigned int up_down_migrate_scale_factor; +extern unsigned int sysctl_sched_restrict_cluster_spill; +extern unsigned int sched_pred_alert_load; +extern struct sched_cluster init_cluster; +extern unsigned int __read_mostly sched_short_sleep_task_threshold; +extern unsigned int __read_mostly sched_long_cpu_selection_threshold; +extern unsigned int __read_mostly sched_big_waker_task_load; +extern unsigned int __read_mostly sched_small_wakee_task_load; +extern unsigned int __read_mostly sched_spill_load; +extern unsigned int __read_mostly sched_upmigrate; +extern unsigned int __read_mostly sched_downmigrate; +extern unsigned int __read_mostly sched_load_granule; + +extern void init_new_task_load(struct task_struct *p); +extern u64 sched_ktime_clock(void); +extern int got_boost_kick(void); +extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb); +extern void update_task_ravg(struct task_struct *p, struct rq *rq, int event, + u64 wallclock, u64 irqtime); +extern bool early_detection_notify(struct rq *rq, u64 wallclock); +extern void clear_ed_task(struct task_struct *p, struct rq *rq); +extern void fixup_busy_time(struct task_struct *p, int new_cpu); +extern void clear_boost_kick(int cpu); +extern void clear_hmp_request(int cpu); +extern void mark_task_starting(struct task_struct *p); +extern void set_window_start(struct rq *rq); +extern void update_cluster_topology(void); +extern void note_task_waking(struct task_struct *p, u64 wallclock); +extern void set_task_last_switch_out(struct task_struct *p, u64 wallclock); +extern void init_clusters(void); +extern void reset_cpu_hmp_stats(int cpu, int reset_cra); +extern unsigned int max_task_load(void); +extern void sched_account_irqtime(int cpu, struct task_struct *curr, + u64 delta, u64 wallclock); +extern void sched_account_irqstart(int cpu, struct task_struct *curr, + u64 wallclock); +extern unsigned int cpu_temp(int cpu); +extern unsigned int nr_eligible_big_tasks(int cpu); +extern int update_preferred_cluster(struct related_thread_group *grp, + struct task_struct *p, u32 old_load); +extern void set_preferred_cluster(struct related_thread_group *grp); +extern void add_new_task_to_grp(struct task_struct *new); +extern unsigned int update_freq_aggregate_threshold(unsigned int threshold); +extern void update_avg_burst(struct task_struct *p); +extern void update_avg(u64 *avg, u64 sample); + +#define NO_BOOST 0 +#define FULL_THROTTLE_BOOST 1 +#define CONSERVATIVE_BOOST 2 +#define RESTRAINED_BOOST 3 + +static inline struct sched_cluster *cpu_cluster(int cpu) +{ + return cpu_rq(cpu)->cluster; +} + +static inline int cpu_capacity(int cpu) +{ + return cpu_rq(cpu)->cluster->capacity; +} + +static inline int cpu_max_possible_capacity(int cpu) +{ + return cpu_rq(cpu)->cluster->max_possible_capacity; +} + +static inline int cpu_load_scale_factor(int cpu) +{ + return cpu_rq(cpu)->cluster->load_scale_factor; +} + +static inline int cpu_efficiency(int cpu) +{ + return cpu_rq(cpu)->cluster->efficiency; +} + +static inline unsigned int cpu_cur_freq(int cpu) +{ + return cpu_rq(cpu)->cluster->cur_freq; +} + +static inline unsigned int cpu_min_freq(int cpu) +{ + return cpu_rq(cpu)->cluster->min_freq; +} + +static inline unsigned int cluster_max_freq(struct sched_cluster *cluster) +{ + /* + * Governor and thermal driver don't know the other party's mitigation + * voting. So struct cluster saves both and return min() for current + * cluster fmax. + */ + return min(cluster->max_mitigated_freq, cluster->max_freq); +} + +static inline unsigned int cpu_max_freq(int cpu) +{ + return cluster_max_freq(cpu_rq(cpu)->cluster); +} + +static inline unsigned int cpu_max_possible_freq(int cpu) +{ + return cpu_rq(cpu)->cluster->max_possible_freq; +} + +static inline int same_cluster(int src_cpu, int dst_cpu) +{ + return cpu_rq(src_cpu)->cluster == cpu_rq(dst_cpu)->cluster; +} + +static inline int cpu_max_power_cost(int cpu) +{ + return cpu_rq(cpu)->cluster->max_power_cost; +} + +static inline int cpu_min_power_cost(int cpu) +{ + return cpu_rq(cpu)->cluster->min_power_cost; +} + +static inline u32 cpu_cycles_to_freq(u64 cycles, u64 period) +{ + return div64_u64(cycles, period); +} + +static inline bool hmp_capable(void) +{ + return max_possible_capacity != min_max_possible_capacity; +} + +static inline bool is_max_capacity_cpu(int cpu) +{ + return cpu_max_possible_capacity(cpu) == max_possible_capacity; +} + +static inline bool is_min_capacity_cpu(int cpu) +{ + return cpu_max_possible_capacity(cpu) == min_max_possible_capacity; +} + +/* + * 'load' is in reference to "best cpu" at its best frequency. + * Scale that in reference to a given cpu, accounting for how bad it is + * in reference to "best cpu". + */ +static inline u64 scale_load_to_cpu(u64 task_load, int cpu) +{ + u64 lsf = cpu_load_scale_factor(cpu); + + if (lsf != 1024) { + task_load *= lsf; + task_load /= 1024; + } + + return task_load; +} + +static inline unsigned int task_load(struct task_struct *p) +{ + return p->ravg.demand; +} + +static inline void +inc_cumulative_runnable_avg(struct hmp_sched_stats *stats, + struct task_struct *p) +{ + u32 task_load; + + if (sched_disable_window_stats) + return; + + task_load = sched_disable_window_stats ? 0 : p->ravg.demand; + + stats->cumulative_runnable_avg += task_load; + stats->pred_demands_sum += p->ravg.pred_demand; +} + +static inline void +dec_cumulative_runnable_avg(struct hmp_sched_stats *stats, + struct task_struct *p) +{ + u32 task_load; + + if (sched_disable_window_stats) + return; + + task_load = sched_disable_window_stats ? 0 : p->ravg.demand; + + stats->cumulative_runnable_avg -= task_load; + + BUG_ON((s64)stats->cumulative_runnable_avg < 0); + + stats->pred_demands_sum -= p->ravg.pred_demand; + BUG_ON((s64)stats->pred_demands_sum < 0); +} + +static inline void +fixup_cumulative_runnable_avg(struct hmp_sched_stats *stats, + struct task_struct *p, s64 task_load_delta, + s64 pred_demand_delta) +{ + if (sched_disable_window_stats) + return; + + stats->cumulative_runnable_avg += task_load_delta; + BUG_ON((s64)stats->cumulative_runnable_avg < 0); + + stats->pred_demands_sum += pred_demand_delta; + BUG_ON((s64)stats->pred_demands_sum < 0); +} + +#define pct_to_real(tunable) \ + (div64_u64((u64)tunable * (u64)max_task_load(), 100)) + +#define real_to_pct(tunable) \ + (div64_u64((u64)tunable * (u64)100, (u64)max_task_load())) + +#define SCHED_HIGH_IRQ_TIMEOUT 3 +static inline u64 sched_irqload(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + s64 delta; + + delta = get_jiffies_64() - rq->irqload_ts; + /* + * Current context can be preempted by irq and rq->irqload_ts can be + * updated by irq context so that delta can be negative. + * But this is okay and we can safely return as this means there + * was recent irq occurrence. + */ + + if (delta < SCHED_HIGH_IRQ_TIMEOUT) + return rq->avg_irqload; + else + return 0; +} + +static inline int sched_cpu_high_irqload(int cpu) +{ + return sched_irqload(cpu) >= sysctl_sched_cpu_high_irqload; +} + +static inline bool task_in_related_thread_group(struct task_struct *p) +{ + return !!(rcu_access_pointer(p->grp) != NULL); +} + +static inline +struct related_thread_group *task_related_thread_group(struct task_struct *p) +{ + return rcu_dereference(p->grp); +} + +#define PRED_DEMAND_DELTA ((s64)new_pred_demand - p->ravg.pred_demand) + +extern void +check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups); + +extern void notify_migration(int src_cpu, int dest_cpu, + bool src_cpu_dead, struct task_struct *p); + +/* Is frequency of two cpus synchronized with each other? */ +static inline int same_freq_domain(int src_cpu, int dst_cpu) +{ + struct rq *rq = cpu_rq(src_cpu); + + if (src_cpu == dst_cpu) + return 1; + + return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask); +} + +#define BOOST_KICK 0 +#define CPU_RESERVED 1 + +static inline int is_reserved(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + return test_bit(CPU_RESERVED, &rq->hmp_flags); +} + +static inline int mark_reserved(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + /* Name boost_flags as hmp_flags? */ + return test_and_set_bit(CPU_RESERVED, &rq->hmp_flags); +} + +static inline void clear_reserved(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + clear_bit(CPU_RESERVED, &rq->hmp_flags); +} + +static inline u64 cpu_cravg_sync(int cpu, int sync) +{ + struct rq *rq = cpu_rq(cpu); + u64 load; + + load = rq->hmp_stats.cumulative_runnable_avg; + + /* + * If load is being checked in a sync wakeup environment, + * we may want to discount the load of the currently running + * task. + */ + if (sync && cpu == smp_processor_id()) { + if (load > rq->curr->ravg.demand) + load -= rq->curr->ravg.demand; + else + load = 0; + } + + return load; +} + +static inline bool is_short_burst_task(struct task_struct *p) +{ + return p->ravg.avg_burst < sysctl_sched_short_burst && + p->ravg.avg_sleep_time > sysctl_sched_short_sleep; +} + +extern void check_for_migration(struct rq *rq, struct task_struct *p); +extern void pre_big_task_count_change(const struct cpumask *cpus); +extern void post_big_task_count_change(const struct cpumask *cpus); +extern void set_hmp_defaults(void); +extern int power_delta_exceeded(unsigned int cpu_cost, unsigned int base_cost); +extern unsigned int power_cost(int cpu, u64 demand); +extern void reset_all_window_stats(u64 window_start, unsigned int window_size); +extern int sched_boost(void); +extern int task_load_will_fit(struct task_struct *p, u64 task_load, int cpu, + enum sched_boost_policy boost_policy); +extern enum sched_boost_policy sched_boost_policy(void); +extern int task_will_fit(struct task_struct *p, int cpu); +extern u64 cpu_load(int cpu); +extern u64 cpu_load_sync(int cpu, int sync); +extern int preferred_cluster(struct sched_cluster *cluster, + struct task_struct *p); +extern void inc_nr_big_task(struct hmp_sched_stats *stats, + struct task_struct *p); +extern void dec_nr_big_task(struct hmp_sched_stats *stats, + struct task_struct *p); +extern void inc_rq_hmp_stats(struct rq *rq, + struct task_struct *p, int change_cra); +extern void dec_rq_hmp_stats(struct rq *rq, + struct task_struct *p, int change_cra); +extern void reset_hmp_stats(struct hmp_sched_stats *stats, int reset_cra); +extern int is_big_task(struct task_struct *p); +extern int upmigrate_discouraged(struct task_struct *p); +extern struct sched_cluster *rq_cluster(struct rq *rq); +extern int nr_big_tasks(struct rq *rq); +extern void fixup_nr_big_tasks(struct hmp_sched_stats *stats, + struct task_struct *p, s64 delta); +extern void reset_task_stats(struct task_struct *p); +extern void reset_cfs_rq_hmp_stats(int cpu, int reset_cra); +extern void _inc_hmp_sched_stats_fair(struct rq *rq, + struct task_struct *p, int change_cra); +extern u64 cpu_upmigrate_discourage_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft); +extern int cpu_upmigrate_discourage_write_u64(struct cgroup_subsys_state *css, + struct cftype *cft, u64 upmigrate_discourage); +extern void sched_boost_parse_dt(void); +extern void clear_top_tasks_bitmap(unsigned long *bitmap); + +#if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE) +extern bool task_sched_boost(struct task_struct *p); +extern int sync_cgroup_colocation(struct task_struct *p, bool insert); +extern bool same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2); +extern void update_cgroup_boost_settings(void); +extern void restore_cgroup_boost_settings(void); + +#else +static inline bool +same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2) +{ + return true; +} + +static inline bool task_sched_boost(struct task_struct *p) +{ + return true; +} + +static inline void update_cgroup_boost_settings(void) { } +static inline void restore_cgroup_boost_settings(void) { } +#endif + +extern int alloc_related_thread_groups(void); + +#else /* CONFIG_SCHED_HMP */ + +struct hmp_sched_stats; +struct related_thread_group; +struct sched_cluster; + +static inline enum sched_boost_policy sched_boost_policy(void) +{ + return SCHED_BOOST_NONE; +} + +static inline bool task_sched_boost(struct task_struct *p) +{ + return true; +} + +static inline int got_boost_kick(void) +{ + return 0; +} + +static inline void update_task_ravg(struct task_struct *p, struct rq *rq, + int event, u64 wallclock, u64 irqtime) { } + +static inline bool early_detection_notify(struct rq *rq, u64 wallclock) +{ + return 0; +} + +static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { } +static inline void fixup_busy_time(struct task_struct *p, int new_cpu) { } +static inline void clear_boost_kick(int cpu) { } +static inline void clear_hmp_request(int cpu) { } +static inline void mark_task_starting(struct task_struct *p) { } +static inline void set_window_start(struct rq *rq) { } +static inline void init_clusters(void) {} +static inline void update_cluster_topology(void) { } +static inline void note_task_waking(struct task_struct *p, u64 wallclock) { } +static inline void set_task_last_switch_out(struct task_struct *p, + u64 wallclock) { } + +static inline int task_will_fit(struct task_struct *p, int cpu) +{ + return 1; +} + +static inline int select_best_cpu(struct task_struct *p, int target, + int reason, int sync) +{ + return 0; +} + +static inline unsigned int power_cost(int cpu, u64 demand) +{ + return SCHED_CAPACITY_SCALE; +} + +static inline int sched_boost(void) +{ + return 0; +} + +static inline int is_big_task(struct task_struct *p) +{ + return 0; +} + +static inline int nr_big_tasks(struct rq *rq) +{ + return 0; +} + +static inline int is_cpu_throttling_imminent(int cpu) +{ + return 0; +} + +static inline int is_task_migration_throttled(struct task_struct *p) +{ + return 0; +} + +static inline unsigned int cpu_temp(int cpu) +{ + return 0; +} + +static inline void +inc_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) { } + +static inline void +dec_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) { } + +static inline void +inc_hmp_sched_stats_fair(struct rq *rq, struct task_struct *p) { } + +static inline void +dec_hmp_sched_stats_fair(struct rq *rq, struct task_struct *p) { } + +static inline int +preferred_cluster(struct sched_cluster *cluster, struct task_struct *p) +{ + return 1; +} + +static inline struct sched_cluster *rq_cluster(struct rq *rq) +{ + return NULL; +} + +static inline void init_new_task_load(struct task_struct *p) +{ +} + +static inline u64 scale_load_to_cpu(u64 load, int cpu) +{ + return load; +} + +static inline unsigned int nr_eligible_big_tasks(int cpu) +{ + return 0; +} + +static inline bool is_max_capacity_cpu(int cpu) { return true; } + +static inline int pct_task_load(struct task_struct *p) { return 0; } + +static inline int cpu_capacity(int cpu) +{ + return SCHED_LOAD_SCALE; +} + +static inline int same_cluster(int src_cpu, int dst_cpu) { return 1; } + +static inline void inc_cumulative_runnable_avg(struct hmp_sched_stats *stats, + struct task_struct *p) +{ +} + +static inline void dec_cumulative_runnable_avg(struct hmp_sched_stats *stats, + struct task_struct *p) +{ +} + +static inline void sched_account_irqtime(int cpu, struct task_struct *curr, + u64 delta, u64 wallclock) +{ +} + +static inline void sched_account_irqstart(int cpu, struct task_struct *curr, + u64 wallclock) +{ +} + +static inline int sched_cpu_high_irqload(int cpu) { return 0; } + +static inline void set_preferred_cluster(struct related_thread_group *grp) { } + +static inline bool task_in_related_thread_group(struct task_struct *p) +{ + return false; +} + +static inline +struct related_thread_group *task_related_thread_group(struct task_struct *p) +{ + return NULL; +} + +static inline u32 task_load(struct task_struct *p) { return 0; } + +static inline int update_preferred_cluster(struct related_thread_group *grp, + struct task_struct *p, u32 old_load) +{ + return 0; +} + +static inline void add_new_task_to_grp(struct task_struct *new) {} + +#define PRED_DEMAND_DELTA (0) + +static inline void +check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups) { } + +static inline void notify_migration(int src_cpu, int dest_cpu, + bool src_cpu_dead, struct task_struct *p) { } + +static inline int same_freq_domain(int src_cpu, int dst_cpu) +{ + return 1; +} + +static inline void check_for_migration(struct rq *rq, struct task_struct *p) { } +static inline void pre_big_task_count_change(void) { } +static inline void post_big_task_count_change(void) { } +static inline void set_hmp_defaults(void) { } + +static inline void clear_reserved(int cpu) { } +static inline void sched_boost_parse_dt(void) {} +static inline int alloc_related_thread_groups(void) { return 0; } + +#define trace_sched_cpu_load(...) +#define trace_sched_cpu_load_lb(...) +#define trace_sched_cpu_load_cgroup(...) +#define trace_sched_cpu_load_wakeup(...) + +static inline void update_avg_burst(struct task_struct *p) {} + +#endif /* CONFIG_SCHED_HMP */ + +/* + * Returns the rq capacity of any rq in a group. This does not play + * well with groups where rq capacity can change independently. + */ +#define group_rq_capacity(group) cpu_capacity(group_first_cpu(group)) + +#ifdef CONFIG_CGROUP_SCHED + +/* + * Return the group to which this tasks belongs. + * + * We cannot use task_css() and friends because the cgroup subsystem + * changes that value before the cgroup_subsys::attach() method is called, + * therefore we cannot pin it and might observe the wrong value. + * + * The same is true for autogroup's p->signal->autogroup->tg, the autogroup + * core changes this before calling sched_move_task(). + * + * Instead we use a 'copy' which is updated from sched_move_task() while + * holding both task_struct::pi_lock and rq::lock. + */ +static inline struct task_group *task_group(struct task_struct *p) +{ + return p->sched_task_group; +} + +/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) +{ +#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) + struct task_group *tg = task_group(p); +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED + set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); + p->se.cfs_rq = tg->cfs_rq[cpu]; + p->se.parent = tg->se[cpu]; +#endif + +#ifdef CONFIG_RT_GROUP_SCHED + p->rt.rt_rq = tg->rt_rq[cpu]; + p->rt.parent = tg->rt_se[cpu]; +#endif +} + +#else /* CONFIG_CGROUP_SCHED */ + +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } +static inline struct task_group *task_group(struct task_struct *p) +{ + return NULL; +} +#endif /* CONFIG_CGROUP_SCHED */ + +static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) +{ + set_task_rq(p, cpu); +#ifdef CONFIG_SMP + /* + * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be + * successfuly executed on another CPU. We must ensure that updates of + * per-task data have been completed by this moment. + */ + smp_wmb(); +#ifdef CONFIG_THREAD_INFO_IN_TASK + p->cpu = cpu; +#else + task_thread_info(p)->cpu = cpu; +#endif + p->wake_cpu = cpu; +#endif +} + +/* + * Tunables that become constants when CONFIG_SCHED_DEBUG is off: + */ +#ifdef CONFIG_SCHED_DEBUG +# include <linux/static_key.h> +# define const_debug __read_mostly +#else +# define const_debug const +#endif + +extern const_debug unsigned int sysctl_sched_features; + +#define SCHED_FEAT(name, enabled) \ + __SCHED_FEAT_##name , + +enum { +#include "features.h" + __SCHED_FEAT_NR, +}; + +#undef SCHED_FEAT + +#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) +#define SCHED_FEAT(name, enabled) \ +static __always_inline bool static_branch_##name(struct static_key *key) \ +{ \ + return static_key_##enabled(key); \ +} + +#include "features.h" + +#undef SCHED_FEAT + +extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; +#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) +#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ +#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) +#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ + +extern struct static_key_false sched_numa_balancing; + +static inline u64 global_rt_period(void) +{ + return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; +} + +static inline u64 global_rt_runtime(void) +{ + if (sysctl_sched_rt_runtime < 0) + return RUNTIME_INF; + + return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; +} + +static inline int task_current(struct rq *rq, struct task_struct *p) +{ + return rq->curr == p; +} + +static inline int task_running(struct rq *rq, struct task_struct *p) +{ +#ifdef CONFIG_SMP + return p->on_cpu; +#else + return task_current(rq, p); +#endif +} + +static inline int task_on_rq_queued(struct task_struct *p) +{ + return p->on_rq == TASK_ON_RQ_QUEUED; +} + +static inline int task_on_rq_migrating(struct task_struct *p) +{ + return p->on_rq == TASK_ON_RQ_MIGRATING; +} + +#ifndef prepare_arch_switch +# define prepare_arch_switch(next) do { } while (0) +#endif +#ifndef finish_arch_post_lock_switch +# define finish_arch_post_lock_switch() do { } while (0) +#endif + +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) +{ +#ifdef CONFIG_SMP + /* + * We can optimise this out completely for !SMP, because the + * SMP rebalancing from interrupt is the only thing that cares + * here. + */ + next->on_cpu = 1; +#endif +} + +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) +{ +#ifdef CONFIG_SMP + /* + * After ->on_cpu is cleared, the task can be moved to a different CPU. + * We must ensure this doesn't happen until the switch is completely + * finished. + * + * In particular, the load of prev->state in finish_task_switch() must + * happen before this. + * + * Pairs with the control dependency and rmb in try_to_wake_up(). + */ + smp_store_release(&prev->on_cpu, 0); +#endif +#ifdef CONFIG_DEBUG_SPINLOCK + /* this is a valid case when another task releases the spinlock */ + rq->lock.owner = current; +#endif + /* + * If we are tracking spinlock dependencies then we have to + * fix up the runqueue lock - which gets 'carried over' from + * prev into current: + */ + spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); + + raw_spin_unlock_irq(&rq->lock); +} + +/* + * wake flags + */ +#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ +#define WF_FORK 0x02 /* child wakeup after fork */ +#define WF_MIGRATED 0x4 /* internal use, task got migrated */ +#define WF_NO_NOTIFIER 0x08 /* do not notify governor */ + +/* + * To aid in avoiding the subversion of "niceness" due to uneven distribution + * of tasks with abnormal "nice" values across CPUs the contribution that + * each task makes to its run queue's load is weighted according to its + * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a + * scaled version of the new time slice allocation that they receive on time + * slice expiry etc. + */ + +#define WEIGHT_IDLEPRIO 3 +#define WMULT_IDLEPRIO 1431655765 + +/* + * Nice levels are multiplicative, with a gentle 10% change for every + * nice level changed. I.e. when a CPU-bound task goes from nice 0 to + * nice 1, it will get ~10% less CPU time than another CPU-bound task + * that remained on nice 0. + * + * The "10% effect" is relative and cumulative: from _any_ nice level, + * if you go up 1 level, it's -10% CPU usage, if you go down 1 level + * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. + * If a task goes up by ~10% and another task goes down by ~10% then + * the relative distance between them is ~25%.) + */ +static const int prio_to_weight[40] = { + /* -20 */ 88761, 71755, 56483, 46273, 36291, + /* -15 */ 29154, 23254, 18705, 14949, 11916, + /* -10 */ 9548, 7620, 6100, 4904, 3906, + /* -5 */ 3121, 2501, 1991, 1586, 1277, + /* 0 */ 1024, 820, 655, 526, 423, + /* 5 */ 335, 272, 215, 172, 137, + /* 10 */ 110, 87, 70, 56, 45, + /* 15 */ 36, 29, 23, 18, 15, +}; + +/* + * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. + * + * In cases where the weight does not change often, we can use the + * precalculated inverse to speed up arithmetics by turning divisions + * into multiplications: + */ +static const u32 prio_to_wmult[40] = { + /* -20 */ 48388, 59856, 76040, 92818, 118348, + /* -15 */ 147320, 184698, 229616, 287308, 360437, + /* -10 */ 449829, 563644, 704093, 875809, 1099582, + /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, + /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, + /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, + /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, + /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, +}; + +/* + * {de,en}queue flags: + * + * DEQUEUE_SLEEP - task is no longer runnable + * ENQUEUE_WAKEUP - task just became runnable + * + * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks + * are in a known state which allows modification. Such pairs + * should preserve as much state as possible. + * + * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location + * in the runqueue. + * + * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) + * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) + * ENQUEUE_WAKING - sched_class::task_waking was called + * + */ + +#define DEQUEUE_SLEEP 0x01 +#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */ +#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */ + +#define ENQUEUE_WAKEUP 0x01 +#define ENQUEUE_RESTORE 0x02 +#define ENQUEUE_MOVE 0x04 + +#define ENQUEUE_HEAD 0x08 +#define ENQUEUE_REPLENISH 0x10 +#ifdef CONFIG_SMP +#define ENQUEUE_WAKING 0x20 +#else +#define ENQUEUE_WAKING 0x00 +#endif +#define ENQUEUE_WAKEUP_NEW 0x40 + +#define RETRY_TASK ((void *)-1UL) + +struct sched_class { + const struct sched_class *next; + + void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); + void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + void (*yield_task) (struct rq *rq); + bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); + + void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); + + /* + * It is the responsibility of the pick_next_task() method that will + * return the next task to call put_prev_task() on the @prev task or + * something equivalent. + * + * May return RETRY_TASK when it finds a higher prio class has runnable + * tasks. + */ + struct task_struct * (*pick_next_task) (struct rq *rq, + struct task_struct *prev); + void (*put_prev_task) (struct rq *rq, struct task_struct *p); + +#ifdef CONFIG_SMP + int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags, + int subling_count_hint); + void (*migrate_task_rq)(struct task_struct *p); + + void (*task_waking) (struct task_struct *task); + void (*task_woken) (struct rq *this_rq, struct task_struct *task); + + void (*set_cpus_allowed)(struct task_struct *p, + const struct cpumask *newmask); + + void (*rq_online)(struct rq *rq); + void (*rq_offline)(struct rq *rq); +#endif + + void (*set_curr_task) (struct rq *rq); + void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); + void (*task_fork) (struct task_struct *p); + void (*task_dead) (struct task_struct *p); + + /* + * The switched_from() call is allowed to drop rq->lock, therefore we + * cannot assume the switched_from/switched_to pair is serliazed by + * rq->lock. They are however serialized by p->pi_lock. + */ + void (*switched_from) (struct rq *this_rq, struct task_struct *task); + void (*switched_to) (struct rq *this_rq, struct task_struct *task); + void (*prio_changed) (struct rq *this_rq, struct task_struct *task, + int oldprio); + + unsigned int (*get_rr_interval) (struct rq *rq, + struct task_struct *task); + + void (*update_curr) (struct rq *rq); + +#define TASK_SET_GROUP 0 +#define TASK_MOVE_GROUP 1 + +#ifdef CONFIG_FAIR_GROUP_SCHED + void (*task_change_group)(struct task_struct *p, int type); +#endif +#ifdef CONFIG_SCHED_HMP + void (*inc_hmp_sched_stats)(struct rq *rq, struct task_struct *p); + void (*dec_hmp_sched_stats)(struct rq *rq, struct task_struct *p); + void (*fixup_hmp_sched_stats)(struct rq *rq, struct task_struct *p, + u32 new_task_load, u32 new_pred_demand); +#endif +}; + +static inline void put_prev_task(struct rq *rq, struct task_struct *prev) +{ + prev->sched_class->put_prev_task(rq, prev); +} + +#define sched_class_highest (&stop_sched_class) +#define for_each_class(class) \ + for (class = sched_class_highest; class; class = class->next) + +extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; +extern const struct sched_class rt_sched_class; +extern const struct sched_class fair_sched_class; +extern const struct sched_class idle_sched_class; + + +#ifdef CONFIG_SMP + +extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc); +extern void update_group_capacity(struct sched_domain *sd, int cpu); + +extern void trigger_load_balance(struct rq *rq); +extern void nohz_balance_clear_nohz_mask(int cpu); + +extern void idle_enter_fair(struct rq *this_rq); +extern void idle_exit_fair(struct rq *this_rq); + +extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); + +#else + +static inline void idle_enter_fair(struct rq *rq) { } +static inline void idle_exit_fair(struct rq *rq) { } + +#endif + +#ifdef CONFIG_CPU_IDLE +static inline void idle_set_state(struct rq *rq, + struct cpuidle_state *idle_state) +{ + rq->idle_state = idle_state; +} + +static inline struct cpuidle_state *idle_get_state(struct rq *rq) +{ + WARN_ON(!rcu_read_lock_held()); + return rq->idle_state; +} + +static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx) +{ + rq->idle_state_idx = idle_state_idx; +} + +static inline int idle_get_state_idx(struct rq *rq) +{ + WARN_ON(!rcu_read_lock_held()); + return rq->idle_state_idx; +} +#else +static inline void idle_set_state(struct rq *rq, + struct cpuidle_state *idle_state) +{ +} + +static inline struct cpuidle_state *idle_get_state(struct rq *rq) +{ + return NULL; +} + +static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx) +{ +} + +static inline int idle_get_state_idx(struct rq *rq) +{ + return -1; +} +#endif + +#ifdef CONFIG_SYSRQ_SCHED_DEBUG +extern void sysrq_sched_debug_show(void); +#endif +extern void sched_init_granularity(void); +extern void update_max_interval(void); + +extern void init_sched_dl_class(void); +extern void init_sched_rt_class(void); +extern void init_sched_fair_class(void); + +extern void resched_curr(struct rq *rq); +extern void resched_cpu(int cpu); + +extern struct rt_bandwidth def_rt_bandwidth; +extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); +extern void init_rt_schedtune_timer(struct sched_rt_entity *rt_se); + +extern struct dl_bandwidth def_dl_bandwidth; +extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); +extern void init_dl_task_timer(struct sched_dl_entity *dl_se); + +unsigned long to_ratio(u64 period, u64 runtime); + +extern void init_entity_runnable_average(struct sched_entity *se); +extern void post_init_entity_util_avg(struct sched_entity *se); + +static inline void __add_nr_running(struct rq *rq, unsigned count) +{ + unsigned prev_nr = rq->nr_running; + + sched_update_nr_prod(cpu_of(rq), count, true); + rq->nr_running = prev_nr + count; + + if (prev_nr < 2 && rq->nr_running >= 2) { +#ifdef CONFIG_SMP + if (!rq->rd->overload) + rq->rd->overload = true; +#endif + +#ifdef CONFIG_NO_HZ_FULL + if (tick_nohz_full_cpu(rq->cpu)) { + /* + * Tick is needed if more than one task runs on a CPU. + * Send the target an IPI to kick it out of nohz mode. + * + * We assume that IPI implies full memory barrier and the + * new value of rq->nr_running is visible on reception + * from the target. + */ + tick_nohz_full_kick_cpu(rq->cpu); + } +#endif + } +} + +static inline void __sub_nr_running(struct rq *rq, unsigned count) +{ + sched_update_nr_prod(cpu_of(rq), count, false); + rq->nr_running -= count; +} + +#ifdef CONFIG_CPU_QUIET +#define NR_AVE_SCALE(x) ((x) << FSHIFT) +static inline u64 do_nr_running_integral(struct rq *rq) +{ + s64 nr, deltax; + u64 nr_running_integral = rq->nr_running_integral; + + deltax = rq->clock_task - rq->nr_last_stamp; + nr = NR_AVE_SCALE(rq->nr_running); + + nr_running_integral += nr * deltax; + + return nr_running_integral; +} + +static inline void add_nr_running(struct rq *rq, unsigned count) +{ + write_seqcount_begin(&rq->ave_seqcnt); + rq->nr_running_integral = do_nr_running_integral(rq); + rq->nr_last_stamp = rq->clock_task; + __add_nr_running(rq, count); + write_seqcount_end(&rq->ave_seqcnt); +} + +static inline void sub_nr_running(struct rq *rq, unsigned count) +{ + write_seqcount_begin(&rq->ave_seqcnt); + rq->nr_running_integral = do_nr_running_integral(rq); + rq->nr_last_stamp = rq->clock_task; + __sub_nr_running(rq, count); + write_seqcount_end(&rq->ave_seqcnt); +} +#else +#define add_nr_running __add_nr_running +#define sub_nr_running __sub_nr_running +#endif + +static inline void rq_last_tick_reset(struct rq *rq) +{ +#ifdef CONFIG_NO_HZ_FULL + rq->last_sched_tick = jiffies; +#endif +} + +extern void update_rq_clock(struct rq *rq); + +extern void activate_task(struct rq *rq, struct task_struct *p, int flags); +extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); + +extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); + +extern const_debug unsigned int sysctl_sched_time_avg; +extern const_debug unsigned int sysctl_sched_nr_migrate; +extern const_debug unsigned int sysctl_sched_migration_cost; + +static inline u64 sched_avg_period(void) +{ + return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; +} + +#ifdef CONFIG_SCHED_HRTICK + +/* + * Use hrtick when: + * - enabled by features + * - hrtimer is actually high res + */ +static inline int hrtick_enabled(struct rq *rq) +{ + if (!sched_feat(HRTICK)) + return 0; + if (!cpu_active(cpu_of(rq))) + return 0; + return hrtimer_is_hres_active(&rq->hrtick_timer); +} + +void hrtick_start(struct rq *rq, u64 delay); + +#else + +static inline int hrtick_enabled(struct rq *rq) +{ + return 0; +} + +#endif /* CONFIG_SCHED_HRTICK */ + +#ifdef CONFIG_SMP +extern void sched_avg_update(struct rq *rq); + +#ifndef arch_scale_freq_capacity +static __always_inline +unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) +{ + return SCHED_CAPACITY_SCALE; +} +#endif + +#ifndef arch_scale_cpu_capacity +static __always_inline +unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) +{ + if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) + return sd->smt_gain / sd->span_weight; + + return SCHED_CAPACITY_SCALE; +} +#endif + +#ifdef CONFIG_SMP +static inline unsigned long capacity_of(int cpu) +{ + return cpu_rq(cpu)->cpu_capacity; +} + +static inline unsigned long capacity_orig_of(int cpu) +{ + return cpu_rq(cpu)->cpu_capacity_orig; +} + +extern unsigned int sysctl_sched_use_walt_cpu_util; +extern unsigned int walt_ravg_window; +extern bool walt_disabled; + +/* + * cpu_util returns the amount of capacity of a CPU that is used by CFS + * tasks. The unit of the return value must be the one of capacity so we can + * compare the utilization with the capacity of the CPU that is available for + * CFS task (ie cpu_capacity). + * + * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the + * recent utilization of currently non-runnable tasks on a CPU. It represents + * the amount of utilization of a CPU in the range [0..capacity_orig] where + * capacity_orig is the cpu_capacity available at the highest frequency + * (arch_scale_freq_capacity()). + * The utilization of a CPU converges towards a sum equal to or less than the + * current capacity (capacity_curr <= capacity_orig) of the CPU because it is + * the running time on this CPU scaled by capacity_curr. + * + * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even + * higher than capacity_orig because of unfortunate rounding in + * cfs.avg.util_avg or just after migrating tasks and new task wakeups until + * the average stabilizes with the new running time. We need to check that the + * utilization stays within the range of [0..capacity_orig] and cap it if + * necessary. Without utilization capping, a group could be seen as overloaded + * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of + * available capacity. We allow utilization to overshoot capacity_curr (but not + * capacity_orig) as it useful for predicting the capacity required after task + * migrations (scheduler-driven DVFS). + */ +static inline unsigned long __cpu_util(int cpu, int delta) +{ + unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; + unsigned long capacity = capacity_orig_of(cpu); + +#ifdef CONFIG_SCHED_WALT + if (!walt_disabled && sysctl_sched_use_walt_cpu_util) + util = div64_u64(cpu_rq(cpu)->cumulative_runnable_avg, + walt_ravg_window >> SCHED_LOAD_SHIFT); +#endif + + delta += util; + if (delta < 0) + return 0; + + return (delta >= capacity) ? capacity : delta; +} + +static inline unsigned long cpu_util(int cpu) +{ + return __cpu_util(cpu, 0); +} + +static inline unsigned long cpu_util_freq(int cpu) +{ + unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; + unsigned long capacity = capacity_orig_of(cpu); + +#ifdef CONFIG_SCHED_WALT + if (!walt_disabled && sysctl_sched_use_walt_cpu_util) + util = div64_u64(cpu_rq(cpu)->prev_runnable_sum, + walt_ravg_window >> SCHED_LOAD_SHIFT); +#endif + return (util >= capacity) ? capacity : util; +} + +#endif + +#ifdef CONFIG_SCHED_HMP +/* + * HMP and EAS are orthogonal. Hopefully the compiler just elides out all code + * with the energy_aware() check, so that we don't even pay the comparison + * penalty at runtime. + */ +#define energy_aware() false +#else +static inline bool energy_aware(void) +{ + return sched_feat(ENERGY_AWARE); +} +#endif + +static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ + rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); +} +#else +static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } +static inline void sched_avg_update(struct rq *rq) { } +#endif + +/* + * __task_rq_lock - lock the rq @p resides on. + */ +static inline struct rq *__task_rq_lock(struct task_struct *p) + __acquires(rq->lock) +{ + struct rq *rq; + + lockdep_assert_held(&p->pi_lock); + + for (;;) { + rq = task_rq(p); + raw_spin_lock(&rq->lock); + if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { + lockdep_pin_lock(&rq->lock); + return rq; + } + raw_spin_unlock(&rq->lock); + + while (unlikely(task_on_rq_migrating(p))) + cpu_relax(); + } +} + +/* + * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. + */ +static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) + __acquires(p->pi_lock) + __acquires(rq->lock) +{ + struct rq *rq; + + for (;;) { + raw_spin_lock_irqsave(&p->pi_lock, *flags); + rq = task_rq(p); + raw_spin_lock(&rq->lock); + /* + * move_queued_task() task_rq_lock() + * + * ACQUIRE (rq->lock) + * [S] ->on_rq = MIGRATING [L] rq = task_rq() + * WMB (__set_task_cpu()) ACQUIRE (rq->lock); + * [S] ->cpu = new_cpu [L] task_rq() + * [L] ->on_rq + * RELEASE (rq->lock) + * + * If we observe the old cpu in task_rq_lock, the acquire of + * the old rq->lock will fully serialize against the stores. + * + * If we observe the new cpu in task_rq_lock, the acquire will + * pair with the WMB to ensure we must then also see migrating. + */ + if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { + lockdep_pin_lock(&rq->lock); + return rq; + } + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irqrestore(&p->pi_lock, *flags); + + while (unlikely(task_on_rq_migrating(p))) + cpu_relax(); + } +} + +static inline void __task_rq_unlock(struct rq *rq) + __releases(rq->lock) +{ + lockdep_unpin_lock(&rq->lock); + raw_spin_unlock(&rq->lock); +} + +static inline void +task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) + __releases(rq->lock) + __releases(p->pi_lock) +{ + lockdep_unpin_lock(&rq->lock); + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irqrestore(&p->pi_lock, *flags); +} + +extern struct rq *lock_rq_of(struct task_struct *p, unsigned long *flags); +extern void unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags); + +#ifdef CONFIG_SMP +#ifdef CONFIG_PREEMPT + +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); + +/* + * fair double_lock_balance: Safely acquires both rq->locks in a fair + * way at the expense of forcing extra atomic operations in all + * invocations. This assures that the double_lock is acquired using the + * same underlying policy as the spinlock_t on this architecture, which + * reduces latency compared to the unfair variant below. However, it + * also adds more overhead and therefore may reduce throughput. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + raw_spin_unlock(&this_rq->lock); + double_rq_lock(this_rq, busiest); + + return 1; +} + +#else +/* + * Unfair double_lock_balance: Optimizes throughput at the expense of + * latency by eliminating extra atomic operations when the locks are + * already in proper order on entry. This favors lower cpu-ids and will + * grant the double lock to lower cpus over higher ids under contention, + * regardless of entry order into the function. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + int ret = 0; + + if (unlikely(!raw_spin_trylock(&busiest->lock))) { + if (busiest < this_rq) { + raw_spin_unlock(&this_rq->lock); + raw_spin_lock(&busiest->lock); + raw_spin_lock_nested(&this_rq->lock, + SINGLE_DEPTH_NESTING); + ret = 1; + } else + raw_spin_lock_nested(&busiest->lock, + SINGLE_DEPTH_NESTING); + } + return ret; +} + +#endif /* CONFIG_PREEMPT */ + +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) +{ + if (unlikely(!irqs_disabled())) { + /* printk() doesn't work good under rq->lock */ + raw_spin_unlock(&this_rq->lock); + BUG_ON(1); + } + + return _double_lock_balance(this_rq, busiest); +} + +static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) + __releases(busiest->lock) +{ + if (this_rq != busiest) + raw_spin_unlock(&busiest->lock); + lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); +} + +static inline void double_lock(spinlock_t *l1, spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + spin_lock(l1); + spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + spin_lock_irq(l1); + spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + raw_spin_lock(l1); + raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) + __acquires(rq1->lock) + __acquires(rq2->lock) +{ + BUG_ON(!irqs_disabled()); + if (rq1 == rq2) { + raw_spin_lock(&rq1->lock); + __acquire(rq2->lock); /* Fake it out ;) */ + } else { + if (rq1 < rq2) { + raw_spin_lock(&rq1->lock); + raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); + } else { + raw_spin_lock(&rq2->lock); + raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); + } + } +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + raw_spin_unlock(&rq1->lock); + if (rq1 != rq2) + raw_spin_unlock(&rq2->lock); + else + __release(rq2->lock); +} + +/* + * task_may_not_preempt - check whether a task may not be preemptible soon + */ +extern bool task_may_not_preempt(struct task_struct *task, int cpu); + +#else /* CONFIG_SMP */ + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) + __acquires(rq1->lock) + __acquires(rq2->lock) +{ + BUG_ON(!irqs_disabled()); + BUG_ON(rq1 != rq2); + raw_spin_lock(&rq1->lock); + __acquire(rq2->lock); /* Fake it out ;) */ +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + BUG_ON(rq1 != rq2); + raw_spin_unlock(&rq1->lock); + __release(rq2->lock); +} + +#endif + +extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); +extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); + +#ifdef CONFIG_SCHED_DEBUG +extern void print_cfs_stats(struct seq_file *m, int cpu); +extern void print_rt_stats(struct seq_file *m, int cpu); +extern void print_dl_stats(struct seq_file *m, int cpu); +extern void +print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); + +#ifdef CONFIG_NUMA_BALANCING +extern void +show_numa_stats(struct task_struct *p, struct seq_file *m); +extern void +print_numa_stats(struct seq_file *m, int node, unsigned long tsf, + unsigned long tpf, unsigned long gsf, unsigned long gpf); +#endif /* CONFIG_NUMA_BALANCING */ +#endif /* CONFIG_SCHED_DEBUG */ + +extern void init_cfs_rq(struct cfs_rq *cfs_rq); +extern void init_rt_rq(struct rt_rq *rt_rq); +extern void init_dl_rq(struct dl_rq *dl_rq); + +extern void cfs_bandwidth_usage_inc(void); +extern void cfs_bandwidth_usage_dec(void); + +#ifdef CONFIG_NO_HZ_COMMON +enum rq_nohz_flag_bits { + NOHZ_TICK_STOPPED, + NOHZ_BALANCE_KICK, +}; + +#define NOHZ_KICK_ANY 0 +#define NOHZ_KICK_RESTRICT 1 + +#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) +#endif + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + +DECLARE_PER_CPU(u64, cpu_hardirq_time); +DECLARE_PER_CPU(u64, cpu_softirq_time); + +#ifndef CONFIG_64BIT +DECLARE_PER_CPU(seqcount_t, irq_time_seq); + +static inline void irq_time_write_begin(void) +{ + __this_cpu_inc(irq_time_seq.sequence); + smp_wmb(); +} + +static inline void irq_time_write_end(void) +{ + smp_wmb(); + __this_cpu_inc(irq_time_seq.sequence); +} + +static inline u64 irq_time_read(int cpu) +{ + u64 irq_time; + unsigned seq; + + do { + seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); + irq_time = per_cpu(cpu_softirq_time, cpu) + + per_cpu(cpu_hardirq_time, cpu); + } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); + + return irq_time; +} +#else /* CONFIG_64BIT */ +static inline void irq_time_write_begin(void) +{ +} + +static inline void irq_time_write_end(void) +{ +} + +static inline u64 irq_time_read(int cpu) +{ + return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); +} +#endif /* CONFIG_64BIT */ +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + +#ifdef CONFIG_CPU_FREQ +DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); + +/** + * cpufreq_update_util - Take a note about CPU utilization changes. + * @rq: Runqueue to carry out the update for. + * @flags: Update reason flags. + * + * This function is called by the scheduler on the CPU whose utilization is + * being updated. + * + * It can only be called from RCU-sched read-side critical sections. + * + * The way cpufreq is currently arranged requires it to evaluate the CPU + * performance state (frequency/voltage) on a regular basis to prevent it from + * being stuck in a completely inadequate performance level for too long. + * That is not guaranteed to happen if the updates are only triggered from CFS, + * though, because they may not be coming in if RT or deadline tasks are active + * all the time (or there are RT and DL tasks only). + * + * As a workaround for that issue, this function is called by the RT and DL + * sched classes to trigger extra cpufreq updates to prevent it from stalling, + * but that really is a band-aid. Going forward it should be replaced with + * solutions targeted more specifically at RT and DL tasks. + */ +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) +{ + struct update_util_data *data; + +#ifdef CONFIG_SCHED_HMP + /* + * Skip if we've already reported, but not if this is an inter-cluster + * migration + */ + if (!sched_disable_window_stats && + (rq->load_reported_window == rq->window_start) && + !(flags & SCHED_CPUFREQ_INTERCLUSTER_MIG)) + return; + rq->load_reported_window = rq->window_start; +#endif + + data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data)); + if (data) + data->func(data, rq_clock(rq), flags); +} + +static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) +{ + if (cpu_of(rq) == smp_processor_id()) + cpufreq_update_util(rq, flags); +} +#else +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} +static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {} +#endif /* CONFIG_CPU_FREQ */ + +#ifdef CONFIG_SCHED_WALT + +static inline bool +walt_task_in_cum_window_demand(struct rq *rq, struct task_struct *p) +{ + return cpu_of(rq) == task_cpu(p) && + (p->on_rq || p->last_sleep_ts >= rq->window_start); +} + +#endif /* CONFIG_SCHED_WALT */ + +#ifdef arch_scale_freq_capacity +#ifndef arch_scale_freq_invariant +#define arch_scale_freq_invariant() (true) +#endif +#else /* arch_scale_freq_capacity */ +#define arch_scale_freq_invariant() (false) +#endif |
