diff options
Diffstat (limited to 'kernel/sched/deadline.c')
| -rw-r--r-- | kernel/sched/deadline.c | 200 |
1 files changed, 183 insertions, 17 deletions
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c index 8b0a15e285f9..5c6ffddcafcd 100644 --- a/kernel/sched/deadline.c +++ b/kernel/sched/deadline.c @@ -18,6 +18,8 @@ #include <linux/slab.h> +#include "walt.h" + struct dl_bandwidth def_dl_bandwidth; static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) @@ -43,6 +45,24 @@ static inline int on_dl_rq(struct sched_dl_entity *dl_se) return !RB_EMPTY_NODE(&dl_se->rb_node); } +static void add_average_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + u64 se_bw = dl_se->dl_bw; + + dl_rq->avg_bw += se_bw; +} + +static void clear_average_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + u64 se_bw = dl_se->dl_bw; + + dl_rq->avg_bw -= se_bw; + if (dl_rq->avg_bw < 0) { + WARN_ON(1); + dl_rq->avg_bw = 0; + } +} + static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) { struct sched_dl_entity *dl_se = &p->dl; @@ -441,13 +461,13 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se, * * This function returns true if: * - * runtime / (deadline - t) > dl_runtime / dl_period , + * runtime / (deadline - t) > dl_runtime / dl_deadline , * * IOW we can't recycle current parameters. * - * Notice that the bandwidth check is done against the period. For + * Notice that the bandwidth check is done against the deadline. For * task with deadline equal to period this is the same of using - * dl_deadline instead of dl_period in the equation above. + * dl_period instead of dl_deadline in the equation above. */ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se, u64 t) @@ -472,7 +492,7 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, * of anything below microseconds resolution is actually fiction * (but still we want to give the user that illusion >;). */ - left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); + left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); right = ((dl_se->deadline - t) >> DL_SCALE) * (pi_se->dl_runtime >> DL_SCALE); @@ -480,13 +500,84 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, } /* - * When a -deadline entity is queued back on the runqueue, its runtime and - * deadline might need updating. + * Revised wakeup rule [1]: For self-suspending tasks, rather then + * re-initializing task's runtime and deadline, the revised wakeup + * rule adjusts the task's runtime to avoid the task to overrun its + * density. + * + * Reasoning: a task may overrun the density if: + * runtime / (deadline - t) > dl_runtime / dl_deadline + * + * Therefore, runtime can be adjusted to: + * runtime = (dl_runtime / dl_deadline) * (deadline - t) + * + * In such way that runtime will be equal to the maximum density + * the task can use without breaking any rule. + * + * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant + * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. + */ +static void +update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) +{ + u64 laxity = dl_se->deadline - rq_clock(rq); + + /* + * If the task has deadline < period, and the deadline is in the past, + * it should already be throttled before this check. + * + * See update_dl_entity() comments for further details. + */ + WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); + + dl_se->runtime = (dl_se->dl_density * laxity) >> 20; +} + +/* + * Regarding the deadline, a task with implicit deadline has a relative + * deadline == relative period. A task with constrained deadline has a + * relative deadline <= relative period. + * + * We support constrained deadline tasks. However, there are some restrictions + * applied only for tasks which do not have an implicit deadline. See + * update_dl_entity() to know more about such restrictions. + * + * The dl_is_implicit() returns true if the task has an implicit deadline. + */ +static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) +{ + return dl_se->dl_deadline == dl_se->dl_period; +} + +/* + * When a deadline entity is placed in the runqueue, its runtime and deadline + * might need to be updated. This is done by a CBS wake up rule. There are two + * different rules: 1) the original CBS; and 2) the Revisited CBS. * - * The policy here is that we update the deadline of the entity only if: - * - the current deadline is in the past, - * - using the remaining runtime with the current deadline would make - * the entity exceed its bandwidth. + * When the task is starting a new period, the Original CBS is used. In this + * case, the runtime is replenished and a new absolute deadline is set. + * + * When a task is queued before the begin of the next period, using the + * remaining runtime and deadline could make the entity to overflow, see + * dl_entity_overflow() to find more about runtime overflow. When such case + * is detected, the runtime and deadline need to be updated. + * + * If the task has an implicit deadline, i.e., deadline == period, the Original + * CBS is applied. the runtime is replenished and a new absolute deadline is + * set, as in the previous cases. + * + * However, the Original CBS does not work properly for tasks with + * deadline < period, which are said to have a constrained deadline. By + * applying the Original CBS, a constrained deadline task would be able to run + * runtime/deadline in a period. With deadline < period, the task would + * overrun the runtime/period allowed bandwidth, breaking the admission test. + * + * In order to prevent this misbehave, the Revisited CBS is used for + * constrained deadline tasks when a runtime overflow is detected. In the + * Revisited CBS, rather than replenishing & setting a new absolute deadline, + * the remaining runtime of the task is reduced to avoid runtime overflow. + * Please refer to the comments update_dl_revised_wakeup() function to find + * more about the Revised CBS rule. */ static void update_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se) @@ -494,6 +585,9 @@ static void update_dl_entity(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rq *rq = rq_of_dl_rq(dl_rq); + if (dl_se->dl_new) + add_average_bw(dl_se, dl_rq); + /* * The arrival of a new instance needs special treatment, i.e., * the actual scheduling parameters have to be "renewed". @@ -505,15 +599,28 @@ static void update_dl_entity(struct sched_dl_entity *dl_se, if (dl_time_before(dl_se->deadline, rq_clock(rq)) || dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { + + if (unlikely(!dl_is_implicit(dl_se) && + !dl_time_before(dl_se->deadline, rq_clock(rq)) && + !dl_se->dl_boosted)){ + update_dl_revised_wakeup(dl_se, rq); + return; + } + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; } } +static inline u64 dl_next_period(struct sched_dl_entity *dl_se) +{ + return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; +} + /* * If the entity depleted all its runtime, and if we want it to sleep * while waiting for some new execution time to become available, we - * set the bandwidth enforcement timer to the replenishment instant + * set the bandwidth replenishment timer to the replenishment instant * and try to activate it. * * Notice that it is important for the caller to know if the timer @@ -535,7 +642,7 @@ static int start_dl_timer(struct task_struct *p) * that it is actually coming from rq->clock and not from * hrtimer's time base reading. */ - act = ns_to_ktime(dl_se->deadline); + act = ns_to_ktime(dl_next_period(dl_se)); now = hrtimer_cb_get_time(timer); delta = ktime_to_ns(now) - rq_clock(rq); act = ktime_add_ns(act, delta); @@ -699,6 +806,39 @@ void init_dl_task_timer(struct sched_dl_entity *dl_se) timer->function = dl_task_timer; } +/* + * During the activation, CBS checks if it can reuse the current task's + * runtime and period. If the deadline of the task is in the past, CBS + * cannot use the runtime, and so it replenishes the task. This rule + * works fine for implicit deadline tasks (deadline == period), and the + * CBS was designed for implicit deadline tasks. However, a task with + * constrained deadline (deadine < period) might be awakened after the + * deadline, but before the next period. In this case, replenishing the + * task would allow it to run for runtime / deadline. As in this case + * deadline < period, CBS enables a task to run for more than the + * runtime / period. In a very loaded system, this can cause a domino + * effect, making other tasks miss their deadlines. + * + * To avoid this problem, in the activation of a constrained deadline + * task after the deadline but before the next period, throttle the + * task and set the replenishing timer to the begin of the next period, + * unless it is boosted. + */ +static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) +{ + struct task_struct *p = dl_task_of(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); + + if (dl_time_before(dl_se->deadline, rq_clock(rq)) && + dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { + if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) + return; + dl_se->dl_throttled = 1; + if (dl_se->runtime > 0) + dl_se->runtime = 0; + } +} + static int dl_runtime_exceeded(struct sched_dl_entity *dl_se) { @@ -732,6 +872,9 @@ static void update_curr_dl(struct rq *rq) if (unlikely((s64)delta_exec <= 0)) return; + /* kick cpufreq (see the comment in kernel/sched/sched.h). */ + cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL); + schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); @@ -741,8 +884,6 @@ static void update_curr_dl(struct rq *rq) curr->se.exec_start = rq_clock_task(rq); cpuacct_charge(curr, delta_exec); - sched_rt_avg_update(rq, delta_exec); - dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; if (dl_runtime_exceeded(dl_se)) { dl_se->dl_throttled = 1; @@ -860,6 +1001,7 @@ void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) WARN_ON(!dl_prio(prio)); dl_rq->dl_nr_running++; add_nr_running(rq_of_dl_rq(dl_rq), 1); + walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se)); inc_dl_deadline(dl_rq, deadline); inc_dl_migration(dl_se, dl_rq); @@ -874,6 +1016,7 @@ void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) WARN_ON(!dl_rq->dl_nr_running); dl_rq->dl_nr_running--; sub_nr_running(rq_of_dl_rq(dl_rq), 1); + walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se)); dec_dl_deadline(dl_rq, dl_se->deadline); dec_dl_migration(dl_se, dl_rq); @@ -979,6 +1122,15 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) } /* + * Check if a constrained deadline task was activated + * after the deadline but before the next period. + * If that is the case, the task will be throttled and + * the replenishment timer will be set to the next period. + */ + if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) + dl_check_constrained_dl(&p->dl); + + /* * If p is throttled, we do nothing. In fact, if it exhausted * its budget it needs a replenishment and, since it now is on * its rq, the bandwidth timer callback (which clearly has not @@ -1044,7 +1196,8 @@ static void yield_task_dl(struct rq *rq) static int find_later_rq(struct task_struct *task); static int -select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) +select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags, + int sibling_count_hint) { struct task_struct *curr; struct rq *rq; @@ -1241,6 +1394,8 @@ static void task_fork_dl(struct task_struct *p) static void task_dead_dl(struct task_struct *p) { struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + struct dl_rq *dl_rq = dl_rq_of_se(&p->dl); + struct rq *rq = rq_of_dl_rq(dl_rq); /* * Since we are TASK_DEAD we won't slip out of the domain! @@ -1249,6 +1404,8 @@ static void task_dead_dl(struct task_struct *p) /* XXX we should retain the bw until 0-lag */ dl_b->total_bw -= p->dl.dl_bw; raw_spin_unlock_irq(&dl_b->lock); + + clear_average_bw(&p->dl, &rq->dl); } static void set_curr_task_dl(struct rq *rq) @@ -1556,7 +1713,11 @@ retry: } deactivate_task(rq, next_task, 0); + clear_average_bw(&next_task->dl, &rq->dl); + next_task->on_rq = TASK_ON_RQ_MIGRATING; set_task_cpu(next_task, later_rq->cpu); + next_task->on_rq = TASK_ON_RQ_QUEUED; + add_average_bw(&next_task->dl, &later_rq->dl); activate_task(later_rq, next_task, 0); ret = 1; @@ -1644,7 +1805,11 @@ static void pull_dl_task(struct rq *this_rq) resched = true; deactivate_task(src_rq, p, 0); + clear_average_bw(&p->dl, &src_rq->dl); + p->on_rq = TASK_ON_RQ_MIGRATING; set_task_cpu(p, this_cpu); + p->on_rq = TASK_ON_RQ_QUEUED; + add_average_bw(&p->dl, &this_rq->dl); activate_task(this_rq, p, 0); dmin = p->dl.deadline; @@ -1750,6 +1915,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p) if (!start_dl_timer(p)) __dl_clear_params(p); + clear_average_bw(&p->dl, &rq->dl); + /* * Since this might be the only -deadline task on the rq, * this is the right place to try to pull some other one @@ -1771,12 +1938,11 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p) #ifdef CONFIG_SMP if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) queue_push_tasks(rq); -#else +#endif if (dl_task(rq->curr)) check_preempt_curr_dl(rq, p, 0); else resched_curr(rq); -#endif } } |
