summaryrefslogtreecommitdiff
path: root/drivers/hwmon
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/hwmon')
-rw-r--r--drivers/hwmon/Kconfig28
-rw-r--r--drivers/hwmon/Makefile3
-rw-r--r--drivers/hwmon/epm_adc.c496
-rw-r--r--drivers/hwmon/qpnp-adc-common.c2094
-rw-r--r--drivers/hwmon/qpnp-adc-current.c1664
-rw-r--r--drivers/hwmon/qpnp-adc-voltage.c2909
6 files changed, 7194 insertions, 0 deletions
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
index 80a73bfc1a65..0799e117a7ab 100644
--- a/drivers/hwmon/Kconfig
+++ b/drivers/hwmon/Kconfig
@@ -1200,6 +1200,34 @@ config SENSORS_PCF8591
These devices are hard to detect and rarely found on mainstream
hardware. If unsure, say N.
+config SENSORS_EPM_ADC
+ tristate "EPM ADC Driver for power measurement"
+ depends on I2C && SPI_MASTER
+ default n
+ help
+ Provides interface for measuring the current on specific power rails
+ through the channels on ADC1158 ADC
+
+config SENSORS_QPNP_ADC_VOLTAGE
+ tristate "Support for Qualcomm QPNP Voltage ADC"
+ depends on SPMI
+ help
+ This is the VADC arbiter driver for Qualcomm QPNP ADC Chip.
+
+ The driver supports reading the HKADC, XOADC through the ADC AMUX arbiter.
+ The VADC includes support for the conversion sequencer. The driver supports
+ reading the ADC through the AMUX channels for external pull-ups simultaneously.
+
+config SENSORS_QPNP_ADC_CURRENT
+ tristate "Support for Qualcomm QPNP current ADC"
+ depends on SPMI
+ help
+ This is the IADC driver for Qualcomm QPNP ADC Chip.
+
+ The driver supports single mode operation to read from upto seven channel
+ configuration that include reading the external/internal Rsense, CSP_EX,
+ CSN_EX pair along with the gain and offset calibration.
+
source drivers/hwmon/pmbus/Kconfig
config SENSORS_PWM_FAN
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
index 12a32398fdcc..d50394029008 100644
--- a/drivers/hwmon/Makefile
+++ b/drivers/hwmon/Makefile
@@ -160,6 +160,9 @@ obj-$(CONFIG_SENSORS_W83L785TS) += w83l785ts.o
obj-$(CONFIG_SENSORS_W83L786NG) += w83l786ng.o
obj-$(CONFIG_SENSORS_WM831X) += wm831x-hwmon.o
obj-$(CONFIG_SENSORS_WM8350) += wm8350-hwmon.o
+obj-$(CONFIG_SENSORS_EPM_ADC) += epm_adc.o
+obj-$(CONFIG_SENSORS_QPNP_ADC_VOLTAGE) += qpnp-adc-voltage.o qpnp-adc-common.o
+obj-$(CONFIG_SENSORS_QPNP_ADC_CURRENT) += qpnp-adc-current.o qpnp-adc-common.o
obj-$(CONFIG_PMBUS) += pmbus/
diff --git a/drivers/hwmon/epm_adc.c b/drivers/hwmon/epm_adc.c
new file mode 100644
index 000000000000..905e6f3252c1
--- /dev/null
+++ b/drivers/hwmon/epm_adc.c
@@ -0,0 +1,496 @@
+/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mutex.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/gpio.h>
+#include <linux/of_gpio.h>
+#include <linux/hwmon.h>
+#include <linux/delay.h>
+#include <linux/epm_adc.h>
+#include <linux/uaccess.h>
+#include <linux/spi/spi.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/miscdevice.h>
+#include <linux/platform_device.h>
+
+#define EPM_ADC_DRIVER_NAME "epm_adc"
+#define EPM_ADC_MAX_FNAME 20
+#define EPM_ADC_CONVERSION_DELAY 100 /* milliseconds */
+
+#define EPM_ADC_SPI_BITS_PER_WORD 8
+#define GPIO_EPM_GLOBAL_ENABLE 86
+#define GPIO_EPM_MARKER1 96
+#define GPIO_EPM_MARKER2 85
+#define EPM_ADC_CONVERSION_TIME_MIN 50000
+#define EPM_ADC_CONVERSION_TIME_MAX 51000
+/* PSoc Commands */
+
+#define EPM_PSOC_GLOBAL_ENABLE 81
+#define EPM_PSOC_VREF_VOLTAGE 2048
+#define EPM_PSOC_MAX_ADC_CODE_15_BIT 32767
+#define EPM_PSOC_MAX_ADC_CODE_12_BIT 4096
+#define EPM_GLOBAL_ENABLE_MIN_DELAY 5000
+#define EPM_GLOBAL_ENABLE_MAX_DELAY 5100
+
+struct epm_adc_drv {
+ struct platform_device *pdev;
+ struct device *hwmon;
+ struct spi_device *epm_spi_client;
+ struct mutex conv_lock;
+ uint32_t bus_id;
+ struct miscdevice misc;
+ uint32_t channel_mask;
+ uint32_t epm_global_en_gpio;
+ struct epm_chan_properties epm_psoc_ch_prop[0];
+};
+
+static struct epm_adc_drv *epm_adc_drv;
+
+static int epm_adc_psoc_gpio_init(struct epm_adc_drv *epm_adc,
+ bool enable)
+{
+ int rc = 0;
+
+ if (enable) {
+ rc = gpio_request(epm_adc->epm_global_en_gpio,
+ "EPM_PSOC_GLOBAL_EN");
+ if (!rc) {
+ gpio_direction_output(epm_adc->epm_global_en_gpio, 1);
+ } else {
+ pr_err("%s: Configure EPM_GLOBAL_EN Failed\n",
+ __func__);
+ return rc;
+ }
+ } else {
+ gpio_direction_output(epm_adc->epm_global_en_gpio, 0);
+ gpio_free(epm_adc->epm_global_en_gpio);
+ }
+
+ return 0;
+}
+
+static int epm_request_marker1(void)
+{
+ int rc = 0;
+
+ rc = gpio_request(GPIO_EPM_MARKER1, "EPM_MARKER1");
+ if (!rc) {
+ gpio_direction_output(GPIO_EPM_MARKER1, 1);
+ } else {
+ pr_err("%s: Configure MARKER1 GPIO Failed\n",
+ __func__);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int epm_set_marker1(struct epm_marker_level *marker_init)
+{
+ gpio_set_value(GPIO_EPM_MARKER1, marker_init->level);
+
+ return 0;
+}
+
+static int epm_request_marker2(void)
+{
+ int rc = 0;
+
+ rc = gpio_request(GPIO_EPM_MARKER2, "EPM_MARKER2");
+ if (!rc) {
+ gpio_direction_output(GPIO_EPM_MARKER2, 1);
+ } else {
+ pr_err("%s: Configure MARKER2 GPIO Failed\n",
+ __func__);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int epm_set_marker2(struct epm_marker_level *marker_init)
+{
+ gpio_set_value(GPIO_EPM_MARKER2, marker_init->level);
+
+ return 0;
+}
+
+static int epm_marker1_release(void)
+{
+ gpio_free(GPIO_EPM_MARKER1);
+
+ return 0;
+}
+
+static int epm_marker2_release(void)
+{
+ gpio_free(GPIO_EPM_MARKER2);
+
+ return 0;
+}
+
+static int epm_psoc_generic_request(struct epm_adc_drv *epm_adc,
+ struct epm_generic_request *psoc_get_data)
+{
+ struct spi_message m;
+ struct spi_transfer t;
+ char tx_buf[64], rx_buf[64];
+ int rc = 0, data_loop = 0;
+
+ spi_setup(epm_adc->epm_spi_client);
+
+ memset(&t, 0, sizeof(t));
+ memset(tx_buf, 0, sizeof(tx_buf));
+ memset(rx_buf, 0, sizeof(tx_buf));
+ t.tx_buf = tx_buf;
+ t.rx_buf = rx_buf;
+ spi_message_init(&m);
+ spi_message_add_tail(&t, &m);
+
+ for (data_loop = 0; data_loop < 64; data_loop++)
+ tx_buf[data_loop] = psoc_get_data->buf[data_loop];
+
+ t.len = sizeof(tx_buf);
+ t.bits_per_word = EPM_ADC_SPI_BITS_PER_WORD;
+
+ rc = spi_sync(epm_adc->epm_spi_client, &m);
+ if (rc)
+ return rc;
+
+ for (data_loop = 0; data_loop < 64; data_loop++)
+ psoc_get_data->buf[data_loop] = rx_buf[data_loop];
+
+ return rc;
+}
+
+static long epm_adc_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ struct epm_adc_drv *epm_adc = epm_adc_drv;
+
+ switch (cmd) {
+ case EPM_MARKER1_REQUEST:
+ {
+ uint32_t result;
+ result = epm_request_marker1();
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_MARKER2_REQUEST:
+ {
+ uint32_t result;
+ result = epm_request_marker2();
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_MARKER1_SET_LEVEL:
+ {
+ struct epm_marker_level marker_init;
+ uint32_t result;
+
+ if (copy_from_user(&marker_init, (void __user *)arg,
+ sizeof(struct epm_marker_level)))
+ return -EFAULT;
+
+ result = epm_set_marker1(&marker_init);
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_MARKER2_SET_LEVEL:
+ {
+ struct epm_marker_level marker_init;
+ uint32_t result;
+
+ if (copy_from_user(&marker_init, (void __user *)arg,
+ sizeof(struct epm_marker_level)))
+ return -EFAULT;
+
+ result = epm_set_marker2(&marker_init);
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_MARKER1_RELEASE:
+ {
+ uint32_t result;
+ result = epm_marker1_release();
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_MARKER2_RELEASE:
+ {
+ uint32_t result;
+ result = epm_marker2_release();
+
+ if (copy_to_user((void __user *)arg, &result,
+ sizeof(uint32_t)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_PSOC_ADC_INIT:
+ {
+ int rc;
+
+ rc = epm_adc_psoc_gpio_init(epm_adc, true);
+ if (rc)
+ pr_err("GPIO init failed with %d\n", rc);
+
+ if (copy_to_user((void __user *)arg, &rc,
+ sizeof(int)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_PSOC_ADC_DEINIT:
+ {
+ int rc;
+ rc = epm_adc_psoc_gpio_init(epm_adc, false);
+
+ if (copy_to_user((void __user *)arg, &rc,
+ sizeof(int)))
+ return -EFAULT;
+ break;
+ }
+ case EPM_PSOC_GENERIC_REQUEST:
+ {
+ struct epm_generic_request psoc_get_data;
+ int rc;
+
+ if (copy_from_user(&psoc_get_data,
+ (void __user *)arg,
+ sizeof(struct
+ epm_generic_request)))
+ return -EFAULT;
+
+ rc = epm_psoc_generic_request(epm_adc, &psoc_get_data);
+ if (rc)
+ pr_err("Generic request failed\n");
+
+ if (copy_to_user((void __user *)arg, &psoc_get_data,
+ sizeof(struct
+ epm_generic_request)))
+ return -EFAULT;
+ break;
+ }
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_COMPAT
+static long epm_adc_compat_ioctl_process(struct file *filep,
+ unsigned int cmd, unsigned long arg)
+{
+ arg = (unsigned long)compat_ptr(arg);
+ return epm_adc_ioctl(filep, cmd, arg);
+}
+#endif /* CONFIG_COMPAT */
+
+const struct file_operations epm_adc_fops = {
+ .unlocked_ioctl = epm_adc_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = epm_adc_compat_ioctl_process,
+#endif /* CONFIG_COMPAT */
+};
+
+static int get_device_tree_data(struct spi_device *spi)
+{
+ const struct device_node *node = spi->dev.of_node;
+ struct epm_adc_drv *epm_adc;
+ u32 *epm_ch_gain, *epm_ch_rsense;
+ u32 rc = 0, epm_num_channels, i, channel_mask, epm_gpio_num;
+
+ if (!node)
+ return -EINVAL;
+
+ rc = of_property_read_u32(node,
+ "qcom,channels", &epm_num_channels);
+ if (rc) {
+ dev_err(&spi->dev, "missing channel numbers\n");
+ return -ENODEV;
+ }
+
+ epm_ch_gain = devm_kzalloc(&spi->dev,
+ epm_num_channels * sizeof(u32), GFP_KERNEL);
+ if (!epm_ch_gain) {
+ dev_err(&spi->dev, "cannot allocate gain\n");
+ return -ENOMEM;
+ }
+
+ epm_ch_rsense = devm_kzalloc(&spi->dev,
+ epm_num_channels * sizeof(u32), GFP_KERNEL);
+ if (!epm_ch_rsense) {
+ dev_err(&spi->dev, "cannot allocate rsense\n");
+ return -ENOMEM;
+ }
+
+ rc = of_property_read_u32_array(node,
+ "qcom,gain", epm_ch_gain, epm_num_channels);
+ if (rc) {
+ dev_err(&spi->dev, "invalid gain property:%d\n", rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32_array(node,
+ "qcom,rsense", epm_ch_rsense, epm_num_channels);
+ if (rc) {
+ dev_err(&spi->dev, "invalid rsense property:%d\n", rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(node,
+ "qcom,channel-type", &channel_mask);
+ if (rc) {
+ dev_err(&spi->dev, "missing channel mask\n");
+ return -ENODEV;
+ }
+
+ epm_gpio_num = of_get_named_gpio(spi->dev.of_node,
+ "qcom,epm-enable-gpio", 0);
+ if (epm_gpio_num < 0) {
+ dev_err(&spi->dev, "missing global en gpio num\n");
+ return -ENODEV;
+ }
+
+ epm_adc = devm_kzalloc(&spi->dev,
+ sizeof(struct epm_adc_drv) +
+ (epm_num_channels *
+ sizeof(struct epm_chan_properties)),
+ GFP_KERNEL);
+ if (!epm_adc) {
+ dev_err(&spi->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ for (i = 0; i < epm_num_channels; i++) {
+ epm_adc->epm_psoc_ch_prop[i].resistorvalue =
+ epm_ch_rsense[i];
+ epm_adc->epm_psoc_ch_prop[i].gain =
+ epm_ch_gain[i];
+ }
+
+ epm_adc->channel_mask = channel_mask;
+ epm_adc->epm_global_en_gpio = epm_gpio_num;
+ epm_adc_drv = epm_adc;
+
+ return 0;
+}
+
+static int epm_adc_psoc_spi_probe(struct spi_device *spi)
+{
+
+ struct epm_adc_drv *epm_adc;
+ struct device_node *node = spi->dev.of_node;
+ int rc = 0;
+
+ if (node) {
+ rc = get_device_tree_data(spi);
+ if (rc)
+ return rc;
+ } else {
+ epm_adc = epm_adc_drv;
+ epm_adc_drv->epm_spi_client = spi;
+ epm_adc_drv->epm_spi_client->bits_per_word =
+ EPM_ADC_SPI_BITS_PER_WORD;
+ return rc;
+ }
+
+ epm_adc = epm_adc_drv;
+ epm_adc->misc.name = EPM_ADC_DRIVER_NAME;
+ epm_adc->misc.minor = MISC_DYNAMIC_MINOR;
+
+ if (node) {
+ epm_adc->misc.fops = &epm_adc_fops;
+ if (misc_register(&epm_adc->misc)) {
+ pr_err("Unable to register misc device!\n");
+ return -EFAULT;
+ }
+ }
+
+ epm_adc_drv->epm_spi_client = spi;
+ epm_adc_drv->epm_spi_client->bits_per_word =
+ EPM_ADC_SPI_BITS_PER_WORD;
+
+ epm_adc->hwmon = hwmon_device_register(&spi->dev);
+ if (IS_ERR(epm_adc->hwmon)) {
+ dev_err(&spi->dev, "hwmon_device_register failed\n");
+ return rc;
+ }
+
+ mutex_init(&epm_adc->conv_lock);
+ return rc;
+}
+
+static int epm_adc_psoc_spi_remove(struct spi_device *spi)
+{
+ epm_adc_drv->epm_spi_client = NULL;
+ return 0;
+}
+
+static const struct of_device_id epm_adc_psoc_match_table[] = {
+ { .compatible = "cy,epm-adc-cy8c5568lti-114",
+ },
+ {}
+};
+
+static struct spi_driver epm_spi_driver = {
+ .probe = epm_adc_psoc_spi_probe,
+ .remove = epm_adc_psoc_spi_remove,
+ .driver = {
+ .name = EPM_ADC_DRIVER_NAME,
+ .of_match_table = epm_adc_psoc_match_table,
+ },
+};
+
+static int __init epm_adc_init(void)
+{
+ int ret = 0;
+
+ ret = spi_register_driver(&epm_spi_driver);
+ if (ret)
+ pr_err("%s: spi register failed: rc=%d\n", __func__, ret);
+
+ return ret;
+}
+
+static void __exit epm_adc_exit(void)
+{
+ spi_unregister_driver(&epm_spi_driver);
+}
+
+module_init(epm_adc_init);
+module_exit(epm_adc_exit);
+
+MODULE_DESCRIPTION("EPM ADC Driver");
+MODULE_ALIAS("platform:epm_adc");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/hwmon/qpnp-adc-common.c b/drivers/hwmon/qpnp-adc-common.c
new file mode 100644
index 000000000000..6f4c094309f6
--- /dev/null
+++ b/drivers/hwmon/qpnp-adc-common.c
@@ -0,0 +1,2094 @@
+/* Copyright (c) 2012-2018, 2020, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/kernel.h>
+#include <linux/of.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+#include <linux/types.h>
+#include <linux/hwmon.h>
+#include <linux/module.h>
+#include <linux/debugfs.h>
+#include <linux/spmi.h>
+#include <linux/platform_device.h>
+#include <linux/of_irq.h>
+#include <linux/interrupt.h>
+#include <linux/completion.h>
+#include <linux/qpnp/qpnp-adc.h>
+
+#define KELVINMIL_DEGMIL 273160
+#define QPNP_VADC_LDO_VOLTAGE_MIN 1800000
+#define QPNP_VADC_LDO_VOLTAGE_MAX 1800000
+#define QPNP_VADC_OK_VOLTAGE_MIN 1000000
+#define QPNP_VADC_OK_VOLTAGE_MAX 1000000
+#define PMI_CHG_SCALE_1 -138890
+#define PMI_CHG_SCALE_2 391750000000
+#define QPNP_VADC_HC_VREF_CODE 0x4000
+#define QPNP_VADC_HC_VDD_REFERENCE_MV 1875
+/* Clamp negative ADC code to 0 */
+#define QPNP_VADC_HC_MAX_CODE 0x7FFF
+
+/* Units for temperature below (on x axis) is in 0.1DegC as
+ required by the battery driver. Note the resolution used
+ here to compute the table was done for DegC to milli-volts.
+ In consideration to limit the size of the table for the given
+ temperature range below, the result is linearly interpolated
+ and provided to the battery driver in the units desired for
+ their framework which is 0.1DegC. True resolution of 0.1DegC
+ will result in the below table size to increase by 10 times */
+static const struct qpnp_vadc_map_pt adcmap_btm_threshold[] = {
+ {-300, 1642},
+ {-200, 1544},
+ {-100, 1414},
+ {0, 1260},
+ {10, 1244},
+ {20, 1228},
+ {30, 1212},
+ {40, 1195},
+ {50, 1179},
+ {60, 1162},
+ {70, 1146},
+ {80, 1129},
+ {90, 1113},
+ {100, 1097},
+ {110, 1080},
+ {120, 1064},
+ {130, 1048},
+ {140, 1032},
+ {150, 1016},
+ {160, 1000},
+ {170, 985},
+ {180, 969},
+ {190, 954},
+ {200, 939},
+ {210, 924},
+ {220, 909},
+ {230, 894},
+ {240, 880},
+ {250, 866},
+ {260, 852},
+ {270, 838},
+ {280, 824},
+ {290, 811},
+ {300, 798},
+ {310, 785},
+ {320, 773},
+ {330, 760},
+ {340, 748},
+ {350, 736},
+ {360, 725},
+ {370, 713},
+ {380, 702},
+ {390, 691},
+ {400, 681},
+ {410, 670},
+ {420, 660},
+ {430, 650},
+ {440, 640},
+ {450, 631},
+ {460, 622},
+ {470, 613},
+ {480, 604},
+ {490, 595},
+ {500, 587},
+ {510, 579},
+ {520, 571},
+ {530, 563},
+ {540, 556},
+ {550, 548},
+ {560, 541},
+ {570, 534},
+ {580, 527},
+ {590, 521},
+ {600, 514},
+ {610, 508},
+ {620, 502},
+ {630, 496},
+ {640, 490},
+ {650, 485},
+ {660, 281},
+ {670, 274},
+ {680, 267},
+ {690, 260},
+ {700, 254},
+ {710, 247},
+ {720, 241},
+ {730, 235},
+ {740, 229},
+ {750, 224},
+ {760, 218},
+ {770, 213},
+ {780, 208},
+ {790, 203}
+};
+
+static const struct qpnp_vadc_map_pt adcmap_qrd_btm_threshold[] = {
+ {-200, 1540},
+ {-180, 1517},
+ {-160, 1492},
+ {-140, 1467},
+ {-120, 1440},
+ {-100, 1412},
+ {-80, 1383},
+ {-60, 1353},
+ {-40, 1323},
+ {-20, 1292},
+ {0, 1260},
+ {20, 1228},
+ {40, 1196},
+ {60, 1163},
+ {80, 1131},
+ {100, 1098},
+ {120, 1066},
+ {140, 1034},
+ {160, 1002},
+ {180, 971},
+ {200, 941},
+ {220, 911},
+ {240, 882},
+ {260, 854},
+ {280, 826},
+ {300, 800},
+ {320, 774},
+ {340, 749},
+ {360, 726},
+ {380, 703},
+ {400, 681},
+ {420, 660},
+ {440, 640},
+ {460, 621},
+ {480, 602},
+ {500, 585},
+ {520, 568},
+ {540, 552},
+ {560, 537},
+ {580, 523},
+ {600, 510},
+ {620, 497},
+ {640, 485},
+ {660, 473},
+ {680, 462},
+ {700, 452},
+ {720, 442},
+ {740, 433},
+ {760, 424},
+ {780, 416},
+ {800, 408},
+};
+
+static const struct qpnp_vadc_map_pt adcmap_qrd_skuaa_btm_threshold[] = {
+ {-200, 1476},
+ {-180, 1450},
+ {-160, 1422},
+ {-140, 1394},
+ {-120, 1365},
+ {-100, 1336},
+ {-80, 1306},
+ {-60, 1276},
+ {-40, 1246},
+ {-20, 1216},
+ {0, 1185},
+ {20, 1155},
+ {40, 1126},
+ {60, 1096},
+ {80, 1068},
+ {100, 1040},
+ {120, 1012},
+ {140, 986},
+ {160, 960},
+ {180, 935},
+ {200, 911},
+ {220, 888},
+ {240, 866},
+ {260, 844},
+ {280, 824},
+ {300, 805},
+ {320, 786},
+ {340, 769},
+ {360, 752},
+ {380, 737},
+ {400, 722},
+ {420, 707},
+ {440, 694},
+ {460, 681},
+ {480, 669},
+ {500, 658},
+ {520, 648},
+ {540, 637},
+ {560, 628},
+ {580, 619},
+ {600, 611},
+ {620, 603},
+ {640, 595},
+ {660, 588},
+ {680, 582},
+ {700, 575},
+ {720, 569},
+ {740, 564},
+ {760, 559},
+ {780, 554},
+ {800, 549},
+};
+
+static const struct qpnp_vadc_map_pt adcmap_qrd_skug_btm_threshold[] = {
+ {-200, 1338},
+ {-180, 1307},
+ {-160, 1276},
+ {-140, 1244},
+ {-120, 1213},
+ {-100, 1182},
+ {-80, 1151},
+ {-60, 1121},
+ {-40, 1092},
+ {-20, 1063},
+ {0, 1035},
+ {20, 1008},
+ {40, 982},
+ {60, 957},
+ {80, 933},
+ {100, 910},
+ {120, 889},
+ {140, 868},
+ {160, 848},
+ {180, 830},
+ {200, 812},
+ {220, 795},
+ {240, 780},
+ {260, 765},
+ {280, 751},
+ {300, 738},
+ {320, 726},
+ {340, 714},
+ {360, 704},
+ {380, 694},
+ {400, 684},
+ {420, 675},
+ {440, 667},
+ {460, 659},
+ {480, 652},
+ {500, 645},
+ {520, 639},
+ {540, 633},
+ {560, 627},
+ {580, 622},
+ {600, 617},
+ {620, 613},
+ {640, 608},
+ {660, 604},
+ {680, 600},
+ {700, 597},
+ {720, 593},
+ {740, 590},
+ {760, 587},
+ {780, 585},
+ {800, 582},
+};
+
+static const struct qpnp_vadc_map_pt adcmap_qrd_skuh_btm_threshold[] = {
+ {-200, 1531},
+ {-180, 1508},
+ {-160, 1483},
+ {-140, 1458},
+ {-120, 1432},
+ {-100, 1404},
+ {-80, 1377},
+ {-60, 1348},
+ {-40, 1319},
+ {-20, 1290},
+ {0, 1260},
+ {20, 1230},
+ {40, 1200},
+ {60, 1171},
+ {80, 1141},
+ {100, 1112},
+ {120, 1083},
+ {140, 1055},
+ {160, 1027},
+ {180, 1000},
+ {200, 973},
+ {220, 948},
+ {240, 923},
+ {260, 899},
+ {280, 876},
+ {300, 854},
+ {320, 832},
+ {340, 812},
+ {360, 792},
+ {380, 774},
+ {400, 756},
+ {420, 739},
+ {440, 723},
+ {460, 707},
+ {480, 692},
+ {500, 679},
+ {520, 665},
+ {540, 653},
+ {560, 641},
+ {580, 630},
+ {600, 619},
+ {620, 609},
+ {640, 600},
+ {660, 591},
+ {680, 583},
+ {700, 575},
+ {720, 567},
+ {740, 560},
+ {760, 553},
+ {780, 547},
+ {800, 541},
+ {820, 535},
+ {840, 530},
+ {860, 524},
+ {880, 520},
+};
+
+static const struct qpnp_vadc_map_pt adcmap_qrd_skut1_btm_threshold[] = {
+ {-400, 1759},
+ {-350, 1742},
+ {-300, 1720},
+ {-250, 1691},
+ {-200, 1654},
+ {-150, 1619},
+ {-100, 1556},
+ {-50, 1493},
+ {0, 1422},
+ {50, 1345},
+ {100, 1264},
+ {150, 1180},
+ {200, 1097},
+ {250, 1017},
+ {300, 942},
+ {350, 873},
+ {400, 810},
+ {450, 754},
+ {500, 706},
+ {550, 664},
+ {600, 627},
+ {650, 596},
+ {700, 570},
+ {750, 547},
+ {800, 528},
+ {850, 512},
+ {900, 499},
+ {950, 487},
+ {1000, 477},
+};
+
+/* Voltage to temperature */
+static const struct qpnp_vadc_map_pt adcmap_100k_104ef_104fb[] = {
+ {1758, -40},
+ {1742, -35},
+ {1719, -30},
+ {1691, -25},
+ {1654, -20},
+ {1608, -15},
+ {1551, -10},
+ {1483, -5},
+ {1404, 0},
+ {1315, 5},
+ {1218, 10},
+ {1114, 15},
+ {1007, 20},
+ {900, 25},
+ {795, 30},
+ {696, 35},
+ {605, 40},
+ {522, 45},
+ {448, 50},
+ {383, 55},
+ {327, 60},
+ {278, 65},
+ {237, 70},
+ {202, 75},
+ {172, 80},
+ {146, 85},
+ {125, 90},
+ {107, 95},
+ {92, 100},
+ {79, 105},
+ {68, 110},
+ {59, 115},
+ {51, 120},
+ {44, 125}
+};
+
+/* Voltage to temperature */
+static const struct qpnp_vadc_map_pt adcmap_150k_104ef_104fb[] = {
+ {1738, -40},
+ {1714, -35},
+ {1682, -30},
+ {1641, -25},
+ {1589, -20},
+ {1526, -15},
+ {1451, -10},
+ {1363, -5},
+ {1266, 0},
+ {1159, 5},
+ {1048, 10},
+ {936, 15},
+ {825, 20},
+ {720, 25},
+ {622, 30},
+ {533, 35},
+ {454, 40},
+ {385, 45},
+ {326, 50},
+ {275, 55},
+ {232, 60},
+ {195, 65},
+ {165, 70},
+ {139, 75},
+ {118, 80},
+ {100, 85},
+ {85, 90},
+ {73, 95},
+ {62, 100},
+ {53, 105},
+ {46, 110},
+ {40, 115},
+ {34, 120},
+ {30, 125}
+};
+
+static const struct qpnp_vadc_map_pt adcmap_smb_batt_therm[] = {
+ {-300, 1625},
+ {-200, 1515},
+ {-100, 1368},
+ {0, 1192},
+ {10, 1173},
+ {20, 1154},
+ {30, 1135},
+ {40, 1116},
+ {50, 1097},
+ {60, 1078},
+ {70, 1059},
+ {80, 1040},
+ {90, 1020},
+ {100, 1001},
+ {110, 982},
+ {120, 963},
+ {130, 944},
+ {140, 925},
+ {150, 907},
+ {160, 888},
+ {170, 870},
+ {180, 851},
+ {190, 833},
+ {200, 815},
+ {210, 797},
+ {220, 780},
+ {230, 762},
+ {240, 745},
+ {250, 728},
+ {260, 711},
+ {270, 695},
+ {280, 679},
+ {290, 663},
+ {300, 647},
+ {310, 632},
+ {320, 616},
+ {330, 602},
+ {340, 587},
+ {350, 573},
+ {360, 559},
+ {370, 545},
+ {380, 531},
+ {390, 518},
+ {400, 505},
+ {410, 492},
+ {420, 480},
+ {430, 465},
+ {440, 456},
+ {450, 445},
+ {460, 433},
+ {470, 422},
+ {480, 412},
+ {490, 401},
+ {500, 391},
+ {510, 381},
+ {520, 371},
+ {530, 362},
+ {540, 352},
+ {550, 343},
+ {560, 335},
+ {570, 326},
+ {580, 318},
+ {590, 309},
+ {600, 302},
+ {610, 294},
+ {620, 286},
+ {630, 279},
+ {640, 272},
+ {650, 265},
+ {660, 258},
+ {670, 252},
+ {680, 245},
+ {690, 239},
+ {700, 233},
+ {710, 227},
+ {720, 221},
+ {730, 216},
+ {740, 211},
+ {750, 205},
+ {760, 200},
+ {770, 195},
+ {780, 190},
+ {790, 186}
+};
+
+/* Voltage to temperature */
+static const struct qpnp_vadc_map_pt adcmap_ncp03wf683[] = {
+ {1742, -40},
+ {1718, -35},
+ {1687, -30},
+ {1647, -25},
+ {1596, -20},
+ {1534, -15},
+ {1459, -10},
+ {1372, -5},
+ {1275, 0},
+ {1169, 5},
+ {1058, 10},
+ {945, 15},
+ {834, 20},
+ {729, 25},
+ {630, 30},
+ {541, 35},
+ {461, 40},
+ {392, 45},
+ {332, 50},
+ {280, 55},
+ {236, 60},
+ {199, 65},
+ {169, 70},
+ {142, 75},
+ {121, 80},
+ {102, 85},
+ {87, 90},
+ {74, 95},
+ {64, 100},
+ {55, 105},
+ {47, 110},
+ {40, 115},
+ {35, 120},
+ {30, 125}
+};
+
+/*
+ * Voltage to temperature table for 100k pull up for NTCG104EF104 with
+ * 1.875V reference.
+ */
+static const struct qpnp_vadc_map_pt adcmap_100k_104ef_104fb_1875_vref[] = {
+ { 1831, -40 },
+ { 1814, -35 },
+ { 1791, -30 },
+ { 1761, -25 },
+ { 1723, -20 },
+ { 1675, -15 },
+ { 1616, -10 },
+ { 1545, -5 },
+ { 1463, 0 },
+ { 1370, 5 },
+ { 1268, 10 },
+ { 1160, 15 },
+ { 1049, 20 },
+ { 937, 25 },
+ { 828, 30 },
+ { 726, 35 },
+ { 630, 40 },
+ { 544, 45 },
+ { 467, 50 },
+ { 399, 55 },
+ { 340, 60 },
+ { 290, 65 },
+ { 247, 70 },
+ { 209, 75 },
+ { 179, 80 },
+ { 153, 85 },
+ { 130, 90 },
+ { 112, 95 },
+ { 96, 100 },
+ { 82, 105 },
+ { 71, 110 },
+ { 62, 115 },
+ { 53, 120 },
+ { 46, 125 },
+};
+
+static int32_t qpnp_adc_map_voltage_temp(const struct qpnp_vadc_map_pt *pts,
+ uint32_t tablesize, int32_t input, int64_t *output)
+{
+ bool descending = 1;
+ uint32_t i = 0;
+
+ if (pts == NULL)
+ return -EINVAL;
+
+ /* Check if table is descending or ascending */
+ if (tablesize > 1) {
+ if (pts[0].x < pts[1].x)
+ descending = 0;
+ }
+
+ while (i < tablesize) {
+ if ((descending == 1) && (pts[i].x < input)) {
+ /* table entry is less than measured
+ value and table is descending, stop */
+ break;
+ } else if ((descending == 0) &&
+ (pts[i].x > input)) {
+ /* table entry is greater than measured
+ value and table is ascending, stop */
+ break;
+ } else {
+ i++;
+ }
+ }
+
+ if (i == 0)
+ *output = pts[0].y;
+ else if (i == tablesize)
+ *output = pts[tablesize-1].y;
+ else {
+ /* result is between search_index and search_index-1 */
+ /* interpolate linearly */
+ *output = (((int32_t) ((pts[i].y - pts[i-1].y)*
+ (input - pts[i-1].x))/
+ (pts[i].x - pts[i-1].x))+
+ pts[i-1].y);
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_adc_map_temp_voltage(const struct qpnp_vadc_map_pt *pts,
+ uint32_t tablesize, int32_t input, int64_t *output)
+{
+ bool descending = 1;
+ uint32_t i = 0;
+
+ if (pts == NULL)
+ return -EINVAL;
+
+ /* Check if table is descending or ascending */
+ if (tablesize > 1) {
+ if (pts[0].y < pts[1].y)
+ descending = 0;
+ }
+
+ while (i < tablesize) {
+ if ((descending == 1) && (pts[i].y < input)) {
+ /* table entry is less than measured
+ value and table is descending, stop */
+ break;
+ } else if ((descending == 0) && (pts[i].y > input)) {
+ /* table entry is greater than measured
+ value and table is ascending, stop */
+ break;
+ } else {
+ i++;
+ }
+ }
+
+ if (i == 0) {
+ *output = pts[0].x;
+ } else if (i == tablesize) {
+ *output = pts[tablesize-1].x;
+ } else {
+ /* result is between search_index and search_index-1 */
+ /* interpolate linearly */
+ *output = (((int32_t) ((pts[i].x - pts[i-1].x)*
+ (input - pts[i-1].y))/
+ (pts[i].y - pts[i-1].y))+
+ pts[i-1].x);
+ }
+
+ return 0;
+}
+
+static void qpnp_adc_scale_with_calib_param(int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ int64_t *scale_voltage)
+{
+ *scale_voltage = (adc_code -
+ chan_properties->adc_graph[chan_properties->calib_type].adc_gnd)
+ * chan_properties->adc_graph[chan_properties->calib_type].dx;
+ *scale_voltage = div64_s64(*scale_voltage,
+ chan_properties->adc_graph[chan_properties->calib_type].dy);
+
+ if (chan_properties->calib_type == CALIB_ABSOLUTE)
+ *scale_voltage +=
+ chan_properties->adc_graph[chan_properties->calib_type].dx;
+
+ if (*scale_voltage < 0)
+ *scale_voltage = 0;
+}
+
+int32_t qpnp_adc_scale_pmic_therm(struct qpnp_vadc_chip *vadc,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t pmic_voltage = 0;
+
+ if (!chan_properties || !chan_properties->offset_gain_numerator ||
+ !chan_properties->offset_gain_denominator || !adc_properties
+ || !adc_chan_result)
+ return -EINVAL;
+
+ if (adc_properties->adc_hc) {
+ /* (ADC code * vref_vadc (1.875V)) / 0x4000 */
+ if (adc_code > QPNP_VADC_HC_MAX_CODE)
+ adc_code = 0;
+ pmic_voltage = (int64_t) adc_code;
+ pmic_voltage *= (int64_t) (adc_properties->adc_vdd_reference
+ * 1000);
+ pmic_voltage = div64_s64(pmic_voltage,
+ QPNP_VADC_HC_VREF_CODE);
+ } else {
+ if (!chan_properties->adc_graph[CALIB_ABSOLUTE].dy)
+ return -EINVAL;
+ qpnp_adc_scale_with_calib_param(adc_code, adc_properties,
+ chan_properties, &pmic_voltage);
+ }
+
+ if (pmic_voltage > 0) {
+ /* 2mV/K */
+ adc_chan_result->measurement = pmic_voltage*
+ chan_properties->offset_gain_denominator;
+
+ do_div(adc_chan_result->measurement,
+ chan_properties->offset_gain_numerator * 2);
+ } else
+ adc_chan_result->measurement = 0;
+
+ /* Change to .001 deg C */
+ adc_chan_result->measurement -= KELVINMIL_DEGMIL;
+ adc_chan_result->physical = (int32_t) adc_chan_result->measurement;
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_pmic_therm);
+
+int32_t qpnp_adc_scale_millidegc_pmic_voltage_thr(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph btm_param;
+ int64_t low_output = 0, high_output = 0;
+ int rc = 0, sign = 0;
+
+ /* Convert to Kelvin and account for voltage to be written as 2mV/K */
+ low_output = (param->low_temp + KELVINMIL_DEGMIL) * 2;
+ /* Convert to Kelvin and account for voltage to be written as 2mV/K */
+ high_output = (param->high_temp + KELVINMIL_DEGMIL) * 2;
+
+ if (param->adc_tm_hc) {
+ low_output *= QPNP_VADC_HC_VREF_CODE;
+ do_div(low_output, (QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
+ high_output *= QPNP_VADC_HC_VREF_CODE;
+ do_div(high_output, (QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
+ } else {
+ rc = qpnp_get_vadc_gain_and_offset(chip, &btm_param,
+ CALIB_ABSOLUTE);
+ if (rc < 0) {
+ pr_err("Could not acquire gain and offset\n");
+ return rc;
+ }
+
+ /* Convert to voltage threshold */
+ low_output = (low_output - QPNP_ADC_625_UV) * btm_param.dy;
+ if (low_output < 0) {
+ sign = 1;
+ low_output = -low_output;
+ }
+ do_div(low_output, QPNP_ADC_625_UV);
+ if (sign)
+ low_output = -low_output;
+ low_output += btm_param.adc_gnd;
+
+ sign = 0;
+ /* Convert to voltage threshold */
+ high_output = (high_output - QPNP_ADC_625_UV) * btm_param.dy;
+ if (high_output < 0) {
+ sign = 1;
+ high_output = -high_output;
+ }
+ do_div(high_output, QPNP_ADC_625_UV);
+ if (sign)
+ high_output = -high_output;
+ high_output += btm_param.adc_gnd;
+ }
+
+ *low_threshold = (uint32_t) low_output;
+ *high_threshold = (uint32_t) high_output;
+
+ pr_debug("high_temp:%d, low_temp:%d\n", param->high_temp,
+ param->low_temp);
+ pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
+ *low_threshold);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_millidegc_pmic_voltage_thr);
+
+/* Scales the ADC code to degC using the mapping
+ * table for the XO thermistor.
+ */
+int32_t qpnp_adc_tdkntcg_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t xo_thm_voltage = 0;
+
+ if (!chan_properties || !chan_properties->offset_gain_numerator ||
+ !chan_properties->offset_gain_denominator || !adc_properties
+ || !adc_chan_result)
+ return -EINVAL;
+
+ if (adc_properties->adc_hc) {
+ /* (ADC code * vref_vadc (1.875V) * 1000) / (0x4000 * 1000) */
+ if (adc_code > QPNP_VADC_HC_MAX_CODE)
+ adc_code = 0;
+ xo_thm_voltage = (int64_t) adc_code;
+ xo_thm_voltage *= (int64_t) (adc_properties->adc_vdd_reference
+ * 1000);
+ xo_thm_voltage = div64_s64(xo_thm_voltage,
+ QPNP_VADC_HC_VREF_CODE * 1000);
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
+ xo_thm_voltage, &adc_chan_result->physical);
+ } else {
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &xo_thm_voltage);
+
+ if (chan_properties->calib_type == CALIB_ABSOLUTE)
+ do_div(xo_thm_voltage, 1000);
+
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb),
+ xo_thm_voltage, &adc_chan_result->physical);
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_tdkntcg_therm);
+
+int32_t qpnp_adc_scale_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ adc_chan_result->measurement = bat_voltage;
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_btm_threshold,
+ ARRAY_SIZE(adcmap_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_batt_therm);
+
+int32_t qpnp_adc_scale_qrd_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ adc_chan_result->measurement = bat_voltage;
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_qrd_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_qrd_batt_therm);
+
+int32_t qpnp_adc_scale_qrd_skuaa_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ adc_chan_result->measurement = bat_voltage;
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_qrd_skuaa_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skuaa_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_qrd_skuaa_batt_therm);
+
+int32_t qpnp_adc_scale_qrd_skug_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+ adc_chan_result->measurement = bat_voltage;
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_qrd_skug_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skug_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_qrd_skug_batt_therm);
+
+int32_t qpnp_adc_scale_qrd_skuh_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_qrd_skuh_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_qrd_skuh_batt_therm);
+
+int32_t qpnp_adc_scale_qrd_skut1_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_qrd_skut1_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_qrd_skut1_batt_therm);
+
+int32_t qpnp_adc_scale_smb_batt_therm(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t bat_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &bat_voltage);
+
+ return qpnp_adc_map_temp_voltage(
+ adcmap_smb_batt_therm,
+ ARRAY_SIZE(adcmap_smb_batt_therm),
+ bat_voltage,
+ &adc_chan_result->physical);
+}
+EXPORT_SYMBOL(qpnp_adc_scale_smb_batt_therm);
+
+int32_t qpnp_adc_scale_therm_pu1(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t therm_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &therm_voltage);
+
+ qpnp_adc_map_voltage_temp(adcmap_150k_104ef_104fb,
+ ARRAY_SIZE(adcmap_150k_104ef_104fb),
+ therm_voltage, &adc_chan_result->physical);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_therm_pu1);
+
+int32_t qpnp_adc_scale_therm_pu2(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t therm_voltage = 0;
+
+ if (!chan_properties || !chan_properties->offset_gain_numerator ||
+ !chan_properties->offset_gain_denominator || !adc_properties)
+ return -EINVAL;
+
+ if (adc_properties->adc_hc) {
+ /* (ADC code * vref_vadc (1.875V) * 1000) / (0x4000 * 1000) */
+ if (adc_code > QPNP_VADC_HC_MAX_CODE)
+ adc_code = 0;
+ therm_voltage = (int64_t) adc_code;
+ therm_voltage *= (int64_t) (adc_properties->adc_vdd_reference
+ * 1000);
+ therm_voltage = div64_s64(therm_voltage,
+ (QPNP_VADC_HC_VREF_CODE * 1000));
+
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
+ therm_voltage, &adc_chan_result->physical);
+ } else {
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &therm_voltage);
+
+ if (chan_properties->calib_type == CALIB_ABSOLUTE)
+ do_div(therm_voltage, 1000);
+
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb),
+ therm_voltage, &adc_chan_result->physical);
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_therm_pu2);
+
+int32_t qpnp_adc_tm_scale_voltage_therm_pu2(struct qpnp_vadc_chip *chip,
+ const struct qpnp_adc_properties *adc_properties,
+ uint32_t reg, int64_t *result)
+{
+ int64_t adc_voltage = 0;
+ struct qpnp_vadc_linear_graph param1;
+ int negative_offset = 0;
+
+ if (adc_properties->adc_hc) {
+ /* (ADC code * vref_vadc (1.875V)) / 0x4000 */
+ if (reg > QPNP_VADC_HC_MAX_CODE)
+ reg = 0;
+ adc_voltage = (int64_t) reg;
+ adc_voltage *= QPNP_VADC_HC_VDD_REFERENCE_MV;
+ adc_voltage = div64_s64(adc_voltage,
+ QPNP_VADC_HC_VREF_CODE);
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
+ adc_voltage, result);
+ } else {
+ qpnp_get_vadc_gain_and_offset(chip, &param1, CALIB_RATIOMETRIC);
+
+ adc_voltage = (reg - param1.adc_gnd) * param1.adc_vref;
+ if (adc_voltage < 0) {
+ negative_offset = 1;
+ adc_voltage = -adc_voltage;
+ }
+
+ do_div(adc_voltage, param1.dy);
+
+ qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb),
+ adc_voltage, result);
+ if (negative_offset)
+ adc_voltage = -adc_voltage;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_tm_scale_voltage_therm_pu2);
+
+int32_t qpnp_adc_tm_scale_therm_voltage_pu2(struct qpnp_vadc_chip *chip,
+ const struct qpnp_adc_properties *adc_properties,
+ struct qpnp_adc_tm_config *param)
+{
+ struct qpnp_vadc_linear_graph param1;
+ int rc;
+
+ if (adc_properties->adc_hc) {
+ rc = qpnp_adc_map_temp_voltage(
+ adcmap_100k_104ef_104fb_1875_vref,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
+ param->low_thr_temp, &param->low_thr_voltage);
+ if (rc)
+ return rc;
+ param->low_thr_voltage *= QPNP_VADC_HC_VREF_CODE;
+ do_div(param->low_thr_voltage, QPNP_VADC_HC_VDD_REFERENCE_MV);
+
+ rc = qpnp_adc_map_temp_voltage(
+ adcmap_100k_104ef_104fb_1875_vref,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
+ param->high_thr_temp, &param->high_thr_voltage);
+ if (rc)
+ return rc;
+ param->high_thr_voltage *= QPNP_VADC_HC_VREF_CODE;
+ do_div(param->high_thr_voltage, QPNP_VADC_HC_VDD_REFERENCE_MV);
+ } else {
+ qpnp_get_vadc_gain_and_offset(chip, &param1, CALIB_RATIOMETRIC);
+
+ rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb),
+ param->low_thr_temp, &param->low_thr_voltage);
+ if (rc)
+ return rc;
+
+ param->low_thr_voltage *= param1.dy;
+ do_div(param->low_thr_voltage, param1.adc_vref);
+ param->low_thr_voltage += param1.adc_gnd;
+
+ rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb,
+ ARRAY_SIZE(adcmap_100k_104ef_104fb),
+ param->high_thr_temp, &param->high_thr_voltage);
+ if (rc)
+ return rc;
+
+ param->high_thr_voltage *= param1.dy;
+ do_div(param->high_thr_voltage, param1.adc_vref);
+ param->high_thr_voltage += param1.adc_gnd;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_tm_scale_therm_voltage_pu2);
+
+int32_t qpnp_adc_scale_therm_ncp03(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t therm_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &therm_voltage);
+
+ qpnp_adc_map_voltage_temp(adcmap_ncp03wf683,
+ ARRAY_SIZE(adcmap_ncp03wf683),
+ therm_voltage, &adc_chan_result->physical);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_therm_ncp03);
+
+int32_t qpnp_adc_scale_batt_id(struct qpnp_vadc_chip *chip,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t batt_id_voltage = 0;
+
+ qpnp_adc_scale_with_calib_param(adc_code,
+ adc_properties, chan_properties, &batt_id_voltage);
+
+ adc_chan_result->physical = batt_id_voltage;
+ adc_chan_result->physical = adc_chan_result->measurement;
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_batt_id);
+
+int32_t qpnp_adc_scale_default(struct qpnp_vadc_chip *vadc,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int64_t scale_voltage = 0;
+
+ if (!chan_properties || !chan_properties->offset_gain_numerator ||
+ !chan_properties->offset_gain_denominator || !adc_properties
+ || !adc_chan_result)
+ return -EINVAL;
+
+ if (adc_properties->adc_hc) {
+ /* (ADC code * vref_vadc (1.875V)) / 0x4000 */
+ if (adc_code > QPNP_VADC_HC_MAX_CODE)
+ adc_code = 0;
+ scale_voltage = (int64_t) adc_code;
+ scale_voltage *= (adc_properties->adc_vdd_reference * 1000);
+ scale_voltage = div64_s64(scale_voltage,
+ QPNP_VADC_HC_VREF_CODE);
+ } else {
+ qpnp_adc_scale_with_calib_param(adc_code, adc_properties,
+ chan_properties, &scale_voltage);
+ if (!(chan_properties->calib_type == CALIB_ABSOLUTE))
+ scale_voltage *= 1000;
+ }
+
+
+ scale_voltage *= chan_properties->offset_gain_denominator;
+ scale_voltage = div64_s64(scale_voltage,
+ chan_properties->offset_gain_numerator);
+ adc_chan_result->measurement = scale_voltage;
+ /*
+ * Note: adc_chan_result->measurement is in the unit of
+ * adc_properties.adc_reference. For generic channel processing,
+ * channel measurement is a scale/ratio relative to the adc
+ * reference input
+ */
+ adc_chan_result->physical = adc_chan_result->measurement;
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_default);
+
+int32_t qpnp_adc_usb_scaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph usb_param;
+
+ qpnp_get_vadc_gain_and_offset(chip, &usb_param, CALIB_RATIOMETRIC);
+
+ *low_threshold = param->low_thr * usb_param.dy;
+ do_div(*low_threshold, usb_param.adc_vref);
+ *low_threshold += usb_param.adc_gnd;
+
+ *high_threshold = param->high_thr * usb_param.dy;
+ do_div(*high_threshold, usb_param.adc_vref);
+ *high_threshold += usb_param.adc_gnd;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
+ param->low_thr);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_usb_scaler);
+
+int32_t qpnp_adc_absolute_rthr(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph vbatt_param;
+ int rc = 0, sign = 0;
+ int64_t low_thr = 0, high_thr = 0;
+
+ if (param->adc_tm_hc) {
+ low_thr = (param->low_thr/param->gain_den);
+ low_thr *= param->gain_num;
+ low_thr *= QPNP_VADC_HC_VREF_CODE;
+ do_div(low_thr, (QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
+ *low_threshold = low_thr;
+
+ high_thr = (param->high_thr/param->gain_den);
+ high_thr *= param->gain_num;
+ high_thr *= QPNP_VADC_HC_VREF_CODE;
+ do_div(high_thr, (QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
+ *high_threshold = high_thr;
+ } else {
+ rc = qpnp_get_vadc_gain_and_offset(chip, &vbatt_param,
+ CALIB_ABSOLUTE);
+ if (rc < 0)
+ return rc;
+
+ low_thr = (((param->low_thr/param->gain_den) -
+ QPNP_ADC_625_UV) * vbatt_param.dy);
+ if (low_thr < 0) {
+ sign = 1;
+ low_thr = -low_thr;
+ }
+ low_thr = low_thr * param->gain_num;
+ do_div(low_thr, QPNP_ADC_625_UV);
+ if (sign)
+ low_thr = -low_thr;
+ *low_threshold = low_thr + vbatt_param.adc_gnd;
+
+ sign = 0;
+ high_thr = (((param->high_thr/param->gain_den) -
+ QPNP_ADC_625_UV) * vbatt_param.dy);
+ if (high_thr < 0) {
+ sign = 1;
+ high_thr = -high_thr;
+ }
+ high_thr = high_thr * param->gain_num;
+ do_div(high_thr, QPNP_ADC_625_UV);
+ if (sign)
+ high_thr = -high_thr;
+ *high_threshold = high_thr + vbatt_param.adc_gnd;
+ }
+
+ pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
+ param->low_thr);
+ pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_absolute_rthr);
+
+int32_t qpnp_adc_vbatt_rscaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ return qpnp_adc_absolute_rthr(chip, param, low_threshold,
+ high_threshold);
+}
+EXPORT_SYMBOL(qpnp_adc_vbatt_rscaler);
+
+int32_t qpnp_vadc_absolute_rthr(struct qpnp_vadc_chip *chip,
+ const struct qpnp_vadc_chan_properties *chan_prop,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph vbatt_param;
+ int rc = 0, sign = 0;
+ int64_t low_thr = 0, high_thr = 0;
+
+ if (!chan_prop || !chan_prop->offset_gain_numerator ||
+ !chan_prop->offset_gain_denominator)
+ return -EINVAL;
+
+ rc = qpnp_get_vadc_gain_and_offset(chip, &vbatt_param, CALIB_ABSOLUTE);
+ if (rc < 0)
+ return rc;
+
+ low_thr = (((param->low_thr)/(int)chan_prop->offset_gain_denominator
+ - QPNP_ADC_625_UV) * vbatt_param.dy);
+ if (low_thr < 0) {
+ sign = 1;
+ low_thr = -low_thr;
+ }
+ low_thr = low_thr * chan_prop->offset_gain_numerator;
+ do_div(low_thr, QPNP_ADC_625_UV);
+ if (sign)
+ low_thr = -low_thr;
+ *low_threshold = low_thr + vbatt_param.adc_gnd;
+
+ sign = 0;
+ high_thr = (((param->high_thr)/(int)chan_prop->offset_gain_denominator
+ - QPNP_ADC_625_UV) * vbatt_param.dy);
+ if (high_thr < 0) {
+ sign = 1;
+ high_thr = -high_thr;
+ }
+ high_thr = high_thr * chan_prop->offset_gain_numerator;
+ do_div(high_thr, QPNP_ADC_625_UV);
+ if (sign)
+ high_thr = -high_thr;
+ *high_threshold = high_thr + vbatt_param.adc_gnd;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
+ param->low_thr);
+ pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_vadc_absolute_rthr);
+
+int32_t qpnp_adc_btm_scaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph btm_param;
+ int64_t low_output = 0, high_output = 0;
+ int rc = 0;
+
+ if (param->adc_tm_hc) {
+ pr_err("Update scaling for VADC_TM_HC\n");
+ return -EINVAL;
+ }
+
+ qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
+
+ pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
+ param->low_temp);
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_btm_threshold,
+ ARRAY_SIZE(adcmap_btm_threshold),
+ (param->low_temp),
+ &low_output);
+ if (rc) {
+ pr_debug("low_temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("low_output:%lld\n", low_output);
+ low_output *= btm_param.dy;
+ do_div(low_output, btm_param.adc_vref);
+ low_output += btm_param.adc_gnd;
+
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_btm_threshold,
+ ARRAY_SIZE(adcmap_btm_threshold),
+ (param->high_temp),
+ &high_output);
+ if (rc) {
+ pr_debug("high temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("high_output:%lld\n", high_output);
+ high_output *= btm_param.dy;
+ do_div(high_output, btm_param.adc_vref);
+ high_output += btm_param.adc_gnd;
+
+ /* btm low temperature correspondes to high voltage threshold */
+ *low_threshold = high_output;
+ /* btm high temperature correspondes to low voltage threshold */
+ *high_threshold = low_output;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_btm_scaler);
+
+int32_t qpnp_adc_qrd_skuh_btm_scaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph btm_param;
+ int64_t low_output = 0, high_output = 0;
+ int rc = 0;
+
+ if (param->adc_tm_hc) {
+ pr_err("Update scaling for VADC_TM_HC\n");
+ return -EINVAL;
+ }
+
+ qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
+
+ pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
+ param->low_temp);
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_qrd_skuh_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
+ (param->low_temp),
+ &low_output);
+ if (rc) {
+ pr_debug("low_temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("low_output:%lld\n", low_output);
+ low_output *= btm_param.dy;
+ do_div(low_output, btm_param.adc_vref);
+ low_output += btm_param.adc_gnd;
+
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_qrd_skuh_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
+ (param->high_temp),
+ &high_output);
+ if (rc) {
+ pr_debug("high temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("high_output:%lld\n", high_output);
+ high_output *= btm_param.dy;
+ do_div(high_output, btm_param.adc_vref);
+ high_output += btm_param.adc_gnd;
+
+ /* btm low temperature correspondes to high voltage threshold */
+ *low_threshold = high_output;
+ /* btm high temperature correspondes to low voltage threshold */
+ *high_threshold = low_output;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_qrd_skuh_btm_scaler);
+
+int32_t qpnp_adc_qrd_skut1_btm_scaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph btm_param;
+ int64_t low_output = 0, high_output = 0;
+ int rc = 0;
+
+ if (param->adc_tm_hc) {
+ pr_err("Update scaling for VADC_TM_HC\n");
+ return -EINVAL;
+ }
+
+ qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
+
+ pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
+ param->low_temp);
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_qrd_skut1_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
+ (param->low_temp),
+ &low_output);
+ if (rc) {
+ pr_debug("low_temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("low_output:%lld\n", low_output);
+ low_output *= btm_param.dy;
+ do_div(low_output, btm_param.adc_vref);
+ low_output += btm_param.adc_gnd;
+
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_qrd_skut1_btm_threshold,
+ ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
+ (param->high_temp),
+ &high_output);
+ if (rc) {
+ pr_debug("high temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("high_output:%lld\n", high_output);
+ high_output *= btm_param.dy;
+ do_div(high_output, btm_param.adc_vref);
+ high_output += btm_param.adc_gnd;
+
+ /* btm low temperature correspondes to high voltage threshold */
+ *low_threshold = high_output;
+ /* btm high temperature correspondes to low voltage threshold */
+ *high_threshold = low_output;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_qrd_skut1_btm_scaler);
+
+int32_t qpnp_adc_smb_btm_rscaler(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param,
+ uint32_t *low_threshold, uint32_t *high_threshold)
+{
+ struct qpnp_vadc_linear_graph btm_param;
+ int64_t low_output = 0, high_output = 0;
+ int rc = 0;
+
+ if (param->adc_tm_hc) {
+ pr_err("Update scaling for VADC_TM_HC\n");
+ return -EINVAL;
+ }
+
+ qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
+
+ pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
+ param->low_temp);
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_smb_batt_therm,
+ ARRAY_SIZE(adcmap_smb_batt_therm),
+ (param->low_temp),
+ &low_output);
+ if (rc) {
+ pr_debug("low_temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("low_output:%lld\n", low_output);
+ low_output *= btm_param.dy;
+ do_div(low_output, btm_param.adc_vref);
+ low_output += btm_param.adc_gnd;
+
+ rc = qpnp_adc_map_voltage_temp(
+ adcmap_smb_batt_therm,
+ ARRAY_SIZE(adcmap_smb_batt_therm),
+ (param->high_temp),
+ &high_output);
+ if (rc) {
+ pr_debug("high temp mapping failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("high_output:%lld\n", high_output);
+ high_output *= btm_param.dy;
+ do_div(high_output, btm_param.adc_vref);
+ high_output += btm_param.adc_gnd;
+
+ /* btm low temperature correspondes to high voltage threshold */
+ *low_threshold = high_output;
+ /* btm high temperature correspondes to low voltage threshold */
+ *high_threshold = low_output;
+
+ pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
+ *low_threshold);
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_smb_btm_rscaler);
+
+int32_t qpnp_adc_scale_pmi_chg_temp(struct qpnp_vadc_chip *vadc,
+ int32_t adc_code,
+ const struct qpnp_adc_properties *adc_properties,
+ const struct qpnp_vadc_chan_properties *chan_properties,
+ struct qpnp_vadc_result *adc_chan_result)
+{
+ int rc = 0;
+
+ rc = qpnp_adc_scale_default(vadc, adc_code, adc_properties,
+ chan_properties, adc_chan_result);
+ if (rc < 0)
+ return rc;
+
+ pr_debug("raw_code:%x, v_adc:%lld\n", adc_code,
+ adc_chan_result->physical);
+ adc_chan_result->physical = (int64_t) ((PMI_CHG_SCALE_1) *
+ (adc_chan_result->physical * 2));
+ adc_chan_result->physical = (int64_t) (adc_chan_result->physical +
+ PMI_CHG_SCALE_2);
+ adc_chan_result->physical = (int64_t) adc_chan_result->physical;
+ adc_chan_result->physical = div64_s64(adc_chan_result->physical,
+ 1000000);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_scale_pmi_chg_temp);
+
+int32_t qpnp_adc_enable_voltage(struct qpnp_adc_drv *adc)
+{
+ int rc = 0;
+
+ if (adc->hkadc_ldo) {
+ rc = regulator_enable(adc->hkadc_ldo);
+ if (rc < 0) {
+ pr_err("Failed to enable hkadc ldo\n");
+ return rc;
+ }
+ }
+
+ if (adc->hkadc_ldo_ok) {
+ rc = regulator_enable(adc->hkadc_ldo_ok);
+ if (rc < 0) {
+ pr_err("Failed to enable hkadc ok signal\n");
+ return rc;
+ }
+ }
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_adc_enable_voltage);
+
+void qpnp_adc_disable_voltage(struct qpnp_adc_drv *adc)
+{
+ if (adc->hkadc_ldo)
+ regulator_disable(adc->hkadc_ldo);
+
+ if (adc->hkadc_ldo_ok)
+ regulator_disable(adc->hkadc_ldo_ok);
+
+}
+EXPORT_SYMBOL(qpnp_adc_disable_voltage);
+
+void qpnp_adc_free_voltage_resource(struct qpnp_adc_drv *adc)
+{
+ if (adc->hkadc_ldo)
+ regulator_put(adc->hkadc_ldo);
+
+ if (adc->hkadc_ldo_ok)
+ regulator_put(adc->hkadc_ldo_ok);
+}
+EXPORT_SYMBOL(qpnp_adc_free_voltage_resource);
+
+int qpnp_adc_get_revid_version(struct device *dev)
+{
+ struct pmic_revid_data *revid_data;
+ struct device_node *revid_dev_node;
+
+ revid_dev_node = of_parse_phandle(dev->of_node,
+ "qcom,pmic-revid", 0);
+ if (!revid_dev_node) {
+ pr_debug("Missing qcom,pmic-revid property\n");
+ return -EINVAL;
+ }
+
+ revid_data = get_revid_data(revid_dev_node);
+ if (IS_ERR_OR_NULL(revid_data)) {
+ pr_debug("revid error rc = %ld\n", PTR_ERR(revid_data));
+ return -EINVAL;
+ }
+
+ if ((revid_data->rev1 == PM8941_V3P1_REV1) &&
+ (revid_data->rev2 == PM8941_V3P1_REV2) &&
+ (revid_data->rev3 == PM8941_V3P1_REV3) &&
+ (revid_data->rev4 == PM8941_V3P1_REV4) &&
+ (revid_data->pmic_subtype == PM8941_SUBTYPE))
+ return QPNP_REV_ID_8941_3_1;
+ else if ((revid_data->rev1 == PM8941_V3P0_REV1) &&
+ (revid_data->rev2 == PM8941_V3P0_REV2) &&
+ (revid_data->rev3 == PM8941_V3P0_REV3) &&
+ (revid_data->rev4 == PM8941_V3P0_REV4) &&
+ (revid_data->pmic_subtype == PM8941_SUBTYPE))
+ return QPNP_REV_ID_8941_3_0;
+ else if ((revid_data->rev1 == PM8941_V2P0_REV1) &&
+ (revid_data->rev2 == PM8941_V2P0_REV2) &&
+ (revid_data->rev3 == PM8941_V2P0_REV3) &&
+ (revid_data->rev4 == PM8941_V2P0_REV4) &&
+ (revid_data->pmic_subtype == PM8941_SUBTYPE))
+ return QPNP_REV_ID_8941_2_0;
+ else if ((revid_data->rev1 == PM8226_V2P2_REV1) &&
+ (revid_data->rev2 == PM8226_V2P2_REV2) &&
+ (revid_data->rev3 == PM8226_V2P2_REV3) &&
+ (revid_data->rev4 == PM8226_V2P2_REV4) &&
+ (revid_data->pmic_subtype == PM8226_SUBTYPE))
+ return QPNP_REV_ID_8026_2_2;
+ else if ((revid_data->rev1 == PM8226_V2P1_REV1) &&
+ (revid_data->rev2 == PM8226_V2P1_REV2) &&
+ (revid_data->rev3 == PM8226_V2P1_REV3) &&
+ (revid_data->rev4 == PM8226_V2P1_REV4) &&
+ (revid_data->pmic_subtype == PM8226_SUBTYPE))
+ return QPNP_REV_ID_8026_2_1;
+ else if ((revid_data->rev1 == PM8226_V2P0_REV1) &&
+ (revid_data->rev2 == PM8226_V2P0_REV2) &&
+ (revid_data->rev3 == PM8226_V2P0_REV3) &&
+ (revid_data->rev4 == PM8226_V2P0_REV4) &&
+ (revid_data->pmic_subtype == PM8226_SUBTYPE))
+ return QPNP_REV_ID_8026_2_0;
+ else if ((revid_data->rev1 == PM8226_V1P0_REV1) &&
+ (revid_data->rev2 == PM8226_V1P0_REV2) &&
+ (revid_data->rev3 == PM8226_V1P0_REV3) &&
+ (revid_data->rev4 == PM8226_V1P0_REV4) &&
+ (revid_data->pmic_subtype == PM8226_SUBTYPE))
+ return QPNP_REV_ID_8026_1_0;
+ else if ((revid_data->rev1 == PM8110_V1P0_REV1) &&
+ (revid_data->rev2 == PM8110_V1P0_REV2) &&
+ (revid_data->rev3 == PM8110_V1P0_REV3) &&
+ (revid_data->rev4 == PM8110_V1P0_REV4) &&
+ (revid_data->pmic_subtype == PM8110_SUBTYPE))
+ return QPNP_REV_ID_8110_1_0;
+ else if ((revid_data->rev1 == PM8110_V2P0_REV1) &&
+ (revid_data->rev2 == PM8110_V2P0_REV2) &&
+ (revid_data->rev3 == PM8110_V2P0_REV3) &&
+ (revid_data->rev4 == PM8110_V2P0_REV4) &&
+ (revid_data->pmic_subtype == PM8110_SUBTYPE))
+ return QPNP_REV_ID_8110_2_0;
+ else if ((revid_data->rev1 == PM8916_V1P0_REV1) &&
+ (revid_data->rev2 == PM8916_V1P0_REV2) &&
+ (revid_data->rev3 == PM8916_V1P0_REV3) &&
+ (revid_data->rev4 == PM8916_V1P0_REV4) &&
+ (revid_data->pmic_subtype == PM8916_SUBTYPE))
+ return QPNP_REV_ID_8916_1_0;
+ else if ((revid_data->rev1 == PM8916_V1P1_REV1) &&
+ (revid_data->rev2 == PM8916_V1P1_REV2) &&
+ (revid_data->rev3 == PM8916_V1P1_REV3) &&
+ (revid_data->rev4 == PM8916_V1P1_REV4) &&
+ (revid_data->pmic_subtype == PM8916_SUBTYPE))
+ return QPNP_REV_ID_8916_1_1;
+ else if ((revid_data->rev1 == PM8916_V2P0_REV1) &&
+ (revid_data->rev2 == PM8916_V2P0_REV2) &&
+ (revid_data->rev3 == PM8916_V2P0_REV3) &&
+ (revid_data->rev4 == PM8916_V2P0_REV4) &&
+ (revid_data->pmic_subtype == PM8916_SUBTYPE))
+ return QPNP_REV_ID_8916_2_0;
+ else if ((revid_data->rev1 == PM8909_V1P0_REV1) &&
+ (revid_data->rev2 == PM8909_V1P0_REV2) &&
+ (revid_data->rev3 == PM8909_V1P0_REV3) &&
+ (revid_data->rev4 == PM8909_V1P0_REV4) &&
+ (revid_data->pmic_subtype == PM8909_SUBTYPE))
+ return QPNP_REV_ID_8909_1_0;
+ else if ((revid_data->rev1 == PM8909_V1P1_REV1) &&
+ (revid_data->rev2 == PM8909_V1P1_REV2) &&
+ (revid_data->rev3 == PM8909_V1P1_REV3) &&
+ (revid_data->rev4 == PM8909_V1P1_REV4) &&
+ (revid_data->pmic_subtype == PM8909_SUBTYPE))
+ return QPNP_REV_ID_8909_1_1;
+ else if ((revid_data->rev4 == PM8950_V1P0_REV4) &&
+ (revid_data->pmic_subtype == PM8950_SUBTYPE))
+ return QPNP_REV_ID_PM8950_1_0;
+ else
+ return -EINVAL;
+}
+EXPORT_SYMBOL(qpnp_adc_get_revid_version);
+
+int32_t qpnp_adc_get_devicetree_data(struct platform_device *pdev,
+ struct qpnp_adc_drv *adc_qpnp)
+{
+ struct device_node *node = pdev->dev.of_node;
+ unsigned int base;
+ struct device_node *child;
+ struct qpnp_adc_amux *adc_channel_list;
+ struct qpnp_adc_properties *adc_prop;
+ struct qpnp_adc_amux_properties *amux_prop;
+ int count_adc_channel_list = 0, decimation = 0, rc = 0, i = 0;
+ int decimation_tm_hc = 0, fast_avg_setup_tm_hc = 0, cal_val_hc = 0;
+ bool adc_hc;
+
+ if (!node)
+ return -EINVAL;
+
+ for_each_child_of_node(node, child)
+ count_adc_channel_list++;
+
+ if (!count_adc_channel_list) {
+ pr_err("No channel listing\n");
+ return -EINVAL;
+ }
+
+ adc_qpnp->pdev = pdev;
+
+ adc_prop = devm_kzalloc(&pdev->dev,
+ sizeof(struct qpnp_adc_properties),
+ GFP_KERNEL);
+ if (!adc_prop)
+ return -ENOMEM;
+
+ adc_channel_list = devm_kzalloc(&pdev->dev,
+ ((sizeof(struct qpnp_adc_amux)) * count_adc_channel_list),
+ GFP_KERNEL);
+ if (!adc_channel_list)
+ return -ENOMEM;
+
+ amux_prop = devm_kzalloc(&pdev->dev,
+ sizeof(struct qpnp_adc_amux_properties) +
+ sizeof(struct qpnp_vadc_chan_properties), GFP_KERNEL);
+ if (!amux_prop) {
+ dev_err(&pdev->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ adc_qpnp->adc_channels = adc_channel_list;
+ adc_qpnp->amux_prop = amux_prop;
+ adc_hc = adc_qpnp->adc_hc;
+ adc_prop->adc_hc = adc_hc;
+
+ if (of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
+ rc = of_property_read_u32(node, "qcom,decimation",
+ &decimation_tm_hc);
+ if (rc) {
+ pr_err("Invalid decimation property\n");
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(node,
+ "qcom,fast-avg-setup", &fast_avg_setup_tm_hc);
+ if (rc) {
+ pr_err("Invalid fast average setup with %d\n", rc);
+ return -EINVAL;
+ }
+
+ if ((fast_avg_setup_tm_hc) > ADC_FAST_AVG_SAMPLE_16) {
+ pr_err("Max average support is 2^16\n");
+ return -EINVAL;
+ }
+ }
+
+ for_each_child_of_node(node, child) {
+ int channel_num, scaling = 0, post_scaling = 0;
+ int fast_avg_setup, calib_type = 0, rc, hw_settle_time = 0;
+ const char *calibration_param, *channel_name;
+
+ channel_name = of_get_property(child,
+ "label", NULL) ? : child->name;
+ if (!channel_name) {
+ pr_err("Invalid channel name\n");
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(child, "reg", &channel_num);
+ if (rc) {
+ pr_err("Invalid channel num\n");
+ return -EINVAL;
+ }
+
+ if (!of_device_is_compatible(node, "qcom,qpnp-iadc")) {
+ rc = of_property_read_u32(child,
+ "qcom,hw-settle-time", &hw_settle_time);
+ if (rc) {
+ pr_err("Invalid channel hw settle time property\n");
+ return -EINVAL;
+ }
+ rc = of_property_read_u32(child,
+ "qcom,pre-div-channel-scaling", &scaling);
+ if (rc) {
+ pr_err("Invalid channel scaling property\n");
+ return -EINVAL;
+ }
+ rc = of_property_read_u32(child,
+ "qcom,scale-function", &post_scaling);
+ if (rc) {
+ pr_err("Invalid channel post scaling property\n");
+ return -EINVAL;
+ }
+ rc = of_property_read_string(child,
+ "qcom,calibration-type", &calibration_param);
+ if (rc) {
+ pr_err("Invalid calibration type\n");
+ return -EINVAL;
+ }
+
+ if (!strcmp(calibration_param, "absolute")) {
+ if (adc_hc)
+ calib_type = ADC_HC_ABS_CAL;
+ else
+ calib_type = CALIB_ABSOLUTE;
+ } else if (!strcmp(calibration_param, "ratiometric")) {
+ if (adc_hc)
+ calib_type = ADC_HC_RATIO_CAL;
+ else
+ calib_type = CALIB_RATIOMETRIC;
+ } else if (!strcmp(calibration_param, "no_cal")) {
+ if (adc_hc)
+ calib_type = ADC_HC_NO_CAL;
+ else {
+ pr_err("%s: Invalid calibration property\n",
+ __func__);
+ return -EINVAL;
+ }
+ } else {
+ pr_err("%s: Invalid calibration property\n",
+ __func__);
+ return -EINVAL;
+ }
+ }
+
+ /* ADC_TM_HC fast avg setting is common across channels */
+ if (!of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
+ rc = of_property_read_u32(child,
+ "qcom,fast-avg-setup", &fast_avg_setup);
+ if (rc) {
+ pr_err("Invalid channel fast average setup\n");
+ return -EINVAL;
+ }
+ } else {
+ fast_avg_setup = fast_avg_setup_tm_hc;
+ }
+
+ /* ADC_TM_HC decimation setting is common across channels */
+ if (!of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
+ rc = of_property_read_u32(child,
+ "qcom,decimation", &decimation);
+ if (rc) {
+ pr_err("Invalid decimation\n");
+ return -EINVAL;
+ }
+ } else {
+ decimation = decimation_tm_hc;
+ }
+
+ if (of_device_is_compatible(node, "qcom,qpnp-vadc-hc")) {
+ rc = of_property_read_u32(child, "qcom,cal-val",
+ &cal_val_hc);
+ if (rc) {
+ pr_debug("Use calibration value from timer\n");
+ adc_channel_list[i].cal_val = ADC_TIMER_CAL;
+ } else {
+ adc_channel_list[i].cal_val = cal_val_hc;
+ }
+ }
+
+ /* Individual channel properties */
+ adc_channel_list[i].name = (char *)channel_name;
+ adc_channel_list[i].channel_num = channel_num;
+ adc_channel_list[i].adc_decimation = decimation;
+ adc_channel_list[i].fast_avg_setup = fast_avg_setup;
+ if (!of_device_is_compatible(node, "qcom,qpnp-iadc")) {
+ adc_channel_list[i].chan_path_prescaling = scaling;
+ adc_channel_list[i].adc_scale_fn = post_scaling;
+ adc_channel_list[i].hw_settle_time = hw_settle_time;
+ adc_channel_list[i].calib_type = calib_type;
+ }
+ i++;
+ }
+
+ /* Get the ADC VDD reference voltage and ADC bit resolution */
+ rc = of_property_read_u32(node, "qcom,adc-vdd-reference",
+ &adc_prop->adc_vdd_reference);
+ if (rc) {
+ pr_err("Invalid adc vdd reference property\n");
+ return -EINVAL;
+ }
+ rc = of_property_read_u32(node, "qcom,adc-bit-resolution",
+ &adc_prop->bitresolution);
+ if (rc) {
+ pr_err("Invalid adc bit resolution property\n");
+ return -EINVAL;
+ }
+ adc_qpnp->adc_prop = adc_prop;
+
+ /* Get the peripheral address */
+ rc = of_property_read_u32(pdev->dev.of_node, "reg", &base);
+ if (rc < 0) {
+ dev_err(&pdev->dev,
+ "Couldn't find reg in node = %s rc = %d\n",
+ pdev->dev.of_node->full_name, rc);
+ return rc;
+ }
+
+ adc_qpnp->slave = to_spmi_device(pdev->dev.parent)->usid;
+ adc_qpnp->offset = base;
+
+ /* Register the ADC peripheral interrupt */
+ adc_qpnp->adc_irq_eoc = platform_get_irq_byname(pdev,
+ "eoc-int-en-set");
+ if (adc_qpnp->adc_irq_eoc < 0) {
+ pr_err("Invalid irq\n");
+ return -ENXIO;
+ }
+
+ init_completion(&adc_qpnp->adc_rslt_completion);
+
+ if (of_get_property(node, "hkadc_ldo-supply", NULL)) {
+ adc_qpnp->hkadc_ldo = regulator_get(&pdev->dev, "hkadc_ldo");
+ if (IS_ERR(adc_qpnp->hkadc_ldo)) {
+ pr_err("hkadc_ldo-supply node not found\n");
+ return -EINVAL;
+ }
+
+ rc = regulator_set_voltage(adc_qpnp->hkadc_ldo,
+ QPNP_VADC_LDO_VOLTAGE_MIN,
+ QPNP_VADC_LDO_VOLTAGE_MAX);
+ if (rc < 0) {
+ pr_err("setting voltage for hkadc_ldo failed\n");
+ return rc;
+ }
+
+ rc = regulator_set_load(adc_qpnp->hkadc_ldo, 100000);
+ if (rc < 0) {
+ pr_err("hkadc_ldo optimum mode failed%d\n", rc);
+ return rc;
+ }
+ }
+
+ if (of_get_property(node, "hkadc_ok-supply", NULL)) {
+ adc_qpnp->hkadc_ldo_ok = regulator_get(&pdev->dev,
+ "hkadc_ok");
+ if (IS_ERR(adc_qpnp->hkadc_ldo_ok)) {
+ pr_err("hkadc_ok node not found\n");
+ return -EINVAL;
+ }
+
+ rc = regulator_set_voltage(adc_qpnp->hkadc_ldo_ok,
+ QPNP_VADC_OK_VOLTAGE_MIN,
+ QPNP_VADC_OK_VOLTAGE_MAX);
+ if (rc < 0) {
+ pr_err("setting voltage for hkadc-ldo-ok failed\n");
+ return rc;
+ }
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_adc_get_devicetree_data);
diff --git a/drivers/hwmon/qpnp-adc-current.c b/drivers/hwmon/qpnp-adc-current.c
new file mode 100644
index 000000000000..b156224dc26f
--- /dev/null
+++ b/drivers/hwmon/qpnp-adc-current.c
@@ -0,0 +1,1664 @@
+/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/kernel.h>
+#include <linux/regmap.h>
+#include <linux/of.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+#include <linux/types.h>
+#include <linux/hwmon.h>
+#include <linux/module.h>
+#include <linux/debugfs.h>
+#include <linux/spmi.h>
+#include <linux/platform_device.h>
+#include <linux/of_irq.h>
+#ifdef CONFIG_WAKELOCK
+#include <linux/wakelock.h>
+#endif
+#include <linux/interrupt.h>
+#include <linux/completion.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/qpnp/qpnp-adc.h>
+#include <linux/platform_device.h>
+#ifdef CONFIG_WAKELOCK
+#include <linux/wakelock.h>
+#endif
+
+/* QPNP IADC register definition */
+#define QPNP_IADC_REVISION1 0x0
+#define QPNP_IADC_REVISION2 0x1
+#define QPNP_IADC_REVISION3 0x2
+#define QPNP_IADC_REVISION4 0x3
+#define QPNP_IADC_PERPH_TYPE 0x4
+#define QPNP_IADC_PERH_SUBTYPE 0x5
+
+#define QPNP_IADC_SUPPORTED_REVISION2 1
+
+#define QPNP_STATUS1 0x8
+#define QPNP_STATUS1_OP_MODE 4
+#define QPNP_STATUS1_MULTI_MEAS_EN BIT(3)
+#define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
+#define QPNP_STATUS1_REQ_STS BIT(1)
+#define QPNP_STATUS1_EOC BIT(0)
+#define QPNP_STATUS1_REQ_STS_EOC_MASK 0x3
+#define QPNP_STATUS2 0x9
+#define QPNP_STATUS2_CONV_SEQ_STATE_SHIFT 4
+#define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
+#define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
+#define QPNP_CONV_TIMEOUT_ERR 2
+
+#define QPNP_IADC_MODE_CTL 0x40
+#define QPNP_OP_MODE_SHIFT 4
+#define QPNP_USE_BMS_DATA BIT(4)
+#define QPNP_VADC_SYNCH_EN BIT(2)
+#define QPNP_OFFSET_RMV_EN BIT(1)
+#define QPNP_ADC_TRIM_EN BIT(0)
+#define QPNP_IADC_EN_CTL1 0x46
+#define QPNP_IADC_ADC_EN BIT(7)
+#define QPNP_ADC_CH_SEL_CTL 0x48
+#define QPNP_ADC_DIG_PARAM 0x50
+#define QPNP_ADC_CLK_SEL_MASK 0x3
+#define QPNP_ADC_DEC_RATIO_SEL_MASK 0xc
+#define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
+
+#define QPNP_CONV_REQ 0x52
+#define QPNP_CONV_REQ_SET BIT(7)
+#define QPNP_CONV_SEQ_CTL 0x54
+#define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4
+#define QPNP_CONV_SEQ_TRIG_CTL 0x55
+#define QPNP_FAST_AVG_CTL 0x5a
+
+#define QPNP_M0_LOW_THR_LSB 0x5c
+#define QPNP_M0_LOW_THR_MSB 0x5d
+#define QPNP_M0_HIGH_THR_LSB 0x5e
+#define QPNP_M0_HIGH_THR_MSB 0x5f
+#define QPNP_M1_LOW_THR_LSB 0x69
+#define QPNP_M1_LOW_THR_MSB 0x6a
+#define QPNP_M1_HIGH_THR_LSB 0x6b
+#define QPNP_M1_HIGH_THR_MSB 0x6c
+
+#define QPNP_DATA0 0x60
+#define QPNP_DATA1 0x61
+#define QPNP_CONV_TIMEOUT_ERR 2
+
+#define QPNP_IADC_SEC_ACCESS 0xD0
+#define QPNP_IADC_SEC_ACCESS_DATA 0xA5
+#define QPNP_IADC_MSB_OFFSET 0xF2
+#define QPNP_IADC_LSB_OFFSET 0xF3
+#define QPNP_IADC_NOMINAL_RSENSE 0xF4
+#define QPNP_IADC_ATE_GAIN_CALIB_OFFSET 0xF5
+#define QPNP_INT_TEST_VAL 0xE1
+
+#define QPNP_IADC_ADC_CH_SEL_CTL 0x48
+#define QPNP_IADC_ADC_CHX_SEL_SHIFT 3
+
+#define QPNP_IADC_ADC_DIG_PARAM 0x50
+#define QPNP_IADC_CLK_SEL_SHIFT 1
+#define QPNP_IADC_DEC_RATIO_SEL 3
+
+#define QPNP_IADC_CONV_REQUEST 0x52
+#define QPNP_IADC_CONV_REQ BIT(7)
+
+#define QPNP_IADC_DATA0 0x60
+#define QPNP_IADC_DATA1 0x61
+
+#define QPNP_ADC_CONV_TIME_MIN 2000
+#define QPNP_ADC_CONV_TIME_MAX 2100
+#define QPNP_ADC_ERR_COUNT 20
+
+#define QPNP_ADC_GAIN_NV 17857
+#define QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL 0
+#define QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR 10000000
+#define QPNP_IADC_NANO_VOLTS_FACTOR 1000000
+#define QPNP_IADC_CALIB_SECONDS 300000
+#define QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT 15625
+#define QPNP_IADC_DIE_TEMP_CALIB_OFFSET 5000
+
+#define QPNP_RAW_CODE_16_BIT_MSB_MASK 0xff00
+#define QPNP_RAW_CODE_16_BIT_LSB_MASK 0xff
+#define QPNP_BIT_SHIFT_8 8
+#define QPNP_RSENSE_MSB_SIGN_CHECK 0x80
+#define QPNP_ADC_COMPLETION_TIMEOUT HZ
+#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK 0x7
+#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0 0
+#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2 2
+#define QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST 127
+#define QPNP_IADC_RSENSE_DEFAULT_VALUE 7800000
+#define QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF 9000000
+#define QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC 9700000
+
+struct qpnp_iadc_comp {
+ bool ext_rsense;
+ u8 id;
+ u8 sys_gain;
+ u8 revision_dig_major;
+ u8 revision_ana_minor;
+};
+
+struct qpnp_iadc_chip {
+ struct device *dev;
+ struct qpnp_adc_drv *adc;
+ int32_t rsense;
+ bool external_rsense;
+ bool default_internal_rsense;
+ struct device *iadc_hwmon;
+ struct list_head list;
+ int64_t die_temp;
+ struct delayed_work iadc_work;
+ bool iadc_mode_sel;
+ struct qpnp_iadc_comp iadc_comp;
+ struct qpnp_vadc_chip *vadc_dev;
+ struct work_struct trigger_completion_work;
+ bool skip_auto_calibrations;
+ bool iadc_poll_eoc;
+ u16 batt_id_trim_cnst_rds;
+ int rds_trim_default_type;
+ int max_channels_available;
+ bool rds_trim_default_check;
+ int32_t rsense_workaround_value;
+ struct sensor_device_attribute sens_attr[0];
+};
+
+LIST_HEAD(qpnp_iadc_device_list);
+
+enum qpnp_iadc_rsense_rds_workaround {
+ QPNP_IADC_RDS_DEFAULT_TYPEA,
+ QPNP_IADC_RDS_DEFAULT_TYPEB,
+ QPNP_IADC_RDS_DEFAULT_TYPEC,
+};
+
+static int32_t qpnp_iadc_read_reg(struct qpnp_iadc_chip *iadc,
+ uint32_t reg, u8 *data)
+{
+ int rc;
+ uint val;
+
+ rc = regmap_read(iadc->adc->regmap, (iadc->adc->offset + reg), &val);
+ if (rc < 0) {
+ pr_err("qpnp iadc read reg %d failed with %d\n", reg, rc);
+ return rc;
+ }
+ *data = (u8)val;
+
+ return 0;
+}
+
+static int32_t qpnp_iadc_write_reg(struct qpnp_iadc_chip *iadc,
+ uint32_t reg, u8 data)
+{
+ int rc;
+ u8 *buf;
+
+ buf = &data;
+ rc = regmap_write(iadc->adc->regmap, (iadc->adc->offset + reg), *buf);
+ if (rc < 0) {
+ pr_err("qpnp iadc write reg %d failed with %d\n", reg, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int qpnp_iadc_is_valid(struct qpnp_iadc_chip *iadc)
+{
+ struct qpnp_iadc_chip *iadc_chip = NULL;
+
+ list_for_each_entry(iadc_chip, &qpnp_iadc_device_list, list)
+ if (iadc == iadc_chip)
+ return 0;
+
+ return -EINVAL;
+}
+
+static void qpnp_iadc_trigger_completion(struct work_struct *work)
+{
+ struct qpnp_iadc_chip *iadc = container_of(work,
+ struct qpnp_iadc_chip, trigger_completion_work);
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return;
+
+ complete(&iadc->adc->adc_rslt_completion);
+
+ return;
+}
+
+static irqreturn_t qpnp_iadc_isr(int irq, void *dev_id)
+{
+ struct qpnp_iadc_chip *iadc = dev_id;
+
+ schedule_work(&iadc->trigger_completion_work);
+
+ return IRQ_HANDLED;
+}
+
+static int32_t qpnp_iadc_enable(struct qpnp_iadc_chip *dev, bool state)
+{
+ int rc = 0;
+ u8 data = 0;
+
+ data = QPNP_IADC_ADC_EN;
+ if (state) {
+ rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1,
+ data);
+ if (rc < 0) {
+ pr_err("IADC enable failed\n");
+ return rc;
+ }
+ } else {
+ rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1,
+ (~data & QPNP_IADC_ADC_EN));
+ if (rc < 0) {
+ pr_err("IADC disable failed\n");
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_iadc_status_debug(struct qpnp_iadc_chip *dev)
+{
+ int rc = 0;
+ u8 mode = 0, status1 = 0, chan = 0, dig = 0, en = 0;
+
+ rc = qpnp_iadc_read_reg(dev, QPNP_IADC_MODE_CTL, &mode);
+ if (rc < 0) {
+ pr_err("mode ctl register read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(dev, QPNP_ADC_DIG_PARAM, &dig);
+ if (rc < 0) {
+ pr_err("digital param read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(dev, QPNP_IADC_ADC_CH_SEL_CTL, &chan);
+ if (rc < 0) {
+ pr_err("channel read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(dev, QPNP_STATUS1, &status1);
+ if (rc < 0) {
+ pr_err("status1 read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(dev, QPNP_IADC_EN_CTL1, &en);
+ if (rc < 0) {
+ pr_err("en read failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("EOC not set with status:%x, dig:%x, ch:%x, mode:%x, en:%x\n",
+ status1, dig, chan, mode, en);
+
+ rc = qpnp_iadc_enable(dev, false);
+ if (rc < 0) {
+ pr_err("IADC disable failed with %d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_iadc_read_conversion_result(struct qpnp_iadc_chip *iadc,
+ int16_t *data)
+{
+ uint8_t rslt_lsb, rslt_msb;
+ uint16_t rslt;
+ int32_t rc;
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA0, &rslt_lsb);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA1, &rslt_msb);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ return rc;
+ }
+
+ rslt = (rslt_msb << 8) | rslt_lsb;
+ *data = rslt;
+
+ rc = qpnp_iadc_enable(iadc, false);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+#define QPNP_IADC_PM8026_2_REV2 4
+#define QPNP_IADC_PM8026_2_REV3 2
+
+#define QPNP_COEFF_1 969000
+#define QPNP_COEFF_2 32
+#define QPNP_COEFF_3_TYPEA 1700000
+#define QPNP_COEFF_3_TYPEB 1000000
+#define QPNP_COEFF_4 100
+#define QPNP_COEFF_5 15
+#define QPNP_COEFF_6 100000
+#define QPNP_COEFF_7 21
+#define QPNP_COEFF_8 100000000
+#define QPNP_COEFF_9 38
+#define QPNP_COEFF_10 40
+#define QPNP_COEFF_11 7
+#define QPNP_COEFF_12 11
+#define QPNP_COEFF_13 37
+#define QPNP_COEFF_14 39
+#define QPNP_COEFF_15 9
+#define QPNP_COEFF_16 11
+#define QPNP_COEFF_17 851200
+#define QPNP_COEFF_18 296500
+#define QPNP_COEFF_19 222400
+#define QPNP_COEFF_20 813800
+#define QPNP_COEFF_21 1059100
+#define QPNP_COEFF_22 5000000
+#define QPNP_COEFF_23 3722500
+#define QPNP_COEFF_24 84
+#define QPNP_COEFF_25 33
+#define QPNP_COEFF_26 22
+#define QPNP_COEFF_27 53
+#define QPNP_COEFF_28 48
+
+static int32_t qpnp_iadc_comp(int64_t *result, struct qpnp_iadc_chip *iadc,
+ int64_t die_temp)
+{
+ int64_t temp_var = 0, sys_gain_coeff = 0, old;
+ int32_t coeff_a = 0, coeff_b = 0;
+ int version = 0;
+
+ version = qpnp_adc_get_revid_version(iadc->dev);
+ if (version == -EINVAL)
+ return 0;
+
+ old = *result;
+ *result = *result * 1000000;
+
+ if (iadc->iadc_comp.sys_gain > 127)
+ sys_gain_coeff = -QPNP_COEFF_6 *
+ (iadc->iadc_comp.sys_gain - 128);
+ else
+ sys_gain_coeff = QPNP_COEFF_6 *
+ iadc->iadc_comp.sys_gain;
+
+ switch (version) {
+ case QPNP_REV_ID_8941_3_1:
+ switch (iadc->iadc_comp.id) {
+ case COMP_ID_GF:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ coeff_a = QPNP_COEFF_2;
+ coeff_b = -QPNP_COEFF_3_TYPEA;
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_5;
+ coeff_b = QPNP_COEFF_6;
+ } else {
+ /* discharge */
+ coeff_a = -QPNP_COEFF_7;
+ coeff_b = QPNP_COEFF_6;
+ }
+ }
+ break;
+ case COMP_ID_TSMC:
+ default:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ coeff_a = QPNP_COEFF_2;
+ coeff_b = -QPNP_COEFF_3_TYPEB;
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_5;
+ coeff_b = QPNP_COEFF_6;
+ } else {
+ /* discharge */
+ coeff_a = -QPNP_COEFF_7;
+ coeff_b = QPNP_COEFF_6;
+ }
+ }
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_2_1:
+ case QPNP_REV_ID_8026_2_2:
+ /* pm8026 rev 2.1 and 2.2 */
+ switch (iadc->iadc_comp.id) {
+ case COMP_ID_GF:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ coeff_a = QPNP_COEFF_25;
+ coeff_b = 0;
+ }
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ /* discharge */
+ coeff_a = 0;
+ coeff_b = 0;
+ }
+ }
+ break;
+ case COMP_ID_TSMC:
+ default:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ coeff_a = QPNP_COEFF_26;
+ coeff_b = 0;
+ }
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ /* discharge */
+ coeff_a = 0;
+ coeff_b = 0;
+ }
+ }
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_1_0:
+ /* pm8026 rev 1.0 */
+ switch (iadc->iadc_comp.id) {
+ case COMP_ID_GF:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_9;
+ coeff_b = -QPNP_COEFF_17;
+ } else {
+ coeff_a = QPNP_COEFF_10;
+ coeff_b = QPNP_COEFF_18;
+ }
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = -QPNP_COEFF_11;
+ coeff_b = 0;
+ } else {
+ /* discharge */
+ coeff_a = -QPNP_COEFF_17;
+ coeff_b = -QPNP_COEFF_19;
+ }
+ }
+ break;
+ case COMP_ID_TSMC:
+ default:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_13;
+ coeff_b = -QPNP_COEFF_20;
+ } else {
+ coeff_a = QPNP_COEFF_14;
+ coeff_b = QPNP_COEFF_21;
+ }
+ } else {
+ if (*result < 0) {
+ /* charge */
+ coeff_a = -QPNP_COEFF_15;
+ coeff_b = 0;
+ } else {
+ /* discharge */
+ coeff_a = -QPNP_COEFF_12;
+ coeff_b = -QPNP_COEFF_19;
+ }
+ }
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8110_1_0:
+ /* pm8110 rev 1.0 */
+ switch (iadc->iadc_comp.id) {
+ case COMP_ID_GF:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_24;
+ coeff_b = -QPNP_COEFF_22;
+ } else {
+ coeff_a = QPNP_COEFF_24;
+ coeff_b = -QPNP_COEFF_23;
+ }
+ }
+ break;
+ case COMP_ID_SMIC:
+ default:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = QPNP_COEFF_24;
+ coeff_b = -QPNP_COEFF_22;
+ } else {
+ coeff_a = QPNP_COEFF_24;
+ coeff_b = -QPNP_COEFF_23;
+ }
+ }
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8110_2_0:
+ die_temp -= 25000;
+ /* pm8110 rev 2.0 */
+ switch (iadc->iadc_comp.id) {
+ case COMP_ID_GF:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ coeff_a = QPNP_COEFF_27;
+ coeff_b = 0;
+ }
+ }
+ break;
+ case COMP_ID_SMIC:
+ default:
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ if (*result < 0) {
+ /* charge */
+ coeff_a = 0;
+ coeff_b = 0;
+ } else {
+ coeff_a = QPNP_COEFF_28;
+ coeff_b = 0;
+ }
+ }
+ break;
+ }
+ break;
+ default:
+ case QPNP_REV_ID_8026_2_0:
+ /* pm8026 rev 1.0 */
+ coeff_a = 0;
+ coeff_b = 0;
+ break;
+ }
+
+ temp_var = (coeff_a * die_temp) + coeff_b;
+ temp_var = div64_s64(temp_var, QPNP_COEFF_4);
+ temp_var = 1000 * (1000000 - temp_var);
+
+ if (!iadc->iadc_comp.ext_rsense) {
+ /* internal rsense */
+ *result = div64_s64(*result * 1000, temp_var);
+ }
+
+ if (iadc->iadc_comp.ext_rsense) {
+ /* external rsense */
+ sys_gain_coeff = (1000000 +
+ div64_s64(sys_gain_coeff, QPNP_COEFF_4));
+ temp_var = div64_s64(temp_var * sys_gain_coeff, 1000000);
+ *result = div64_s64(*result * 1000, temp_var);
+ }
+ pr_debug("%lld compensated into %lld, a: %d, b: %d, sys_gain: %lld\n",
+ old, *result, coeff_a, coeff_b, sys_gain_coeff);
+
+ return 0;
+}
+
+int32_t qpnp_iadc_comp_result(struct qpnp_iadc_chip *iadc, int64_t *result)
+{
+ return qpnp_iadc_comp(result, iadc, iadc->die_temp);
+}
+EXPORT_SYMBOL(qpnp_iadc_comp_result);
+
+static int qpnp_iadc_rds_trim_update_check(struct qpnp_iadc_chip *iadc)
+{
+ int rc = 0;
+ u8 trim2_val = 0;
+ uint smbb_batt_trm_data = 0;
+ u8 smbb_batt_trm_cnst_rds = 0;
+
+ if (!iadc->rds_trim_default_check) {
+ pr_debug("No internal rds trim check needed\n");
+ return 0;
+ }
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE, &trim2_val);
+ if (rc < 0) {
+ pr_err("qpnp adc trim2_fullscale1 reg read failed %d\n", rc);
+ return rc;
+ }
+
+ rc = regmap_read(iadc->adc->regmap, iadc->batt_id_trim_cnst_rds,
+ &smbb_batt_trm_data);
+ if (rc < 0) {
+ pr_err("batt_id trim_cnst rds reg read failed %d\n", rc);
+ return rc;
+ }
+
+ smbb_batt_trm_cnst_rds = (u8)smbb_batt_trm_data &
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK;
+
+ pr_debug("n_trim:0x%x smb_trm:0x%02x\n", trim2_val, smbb_batt_trm_data);
+
+ if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEA) {
+
+ if ((smbb_batt_trm_cnst_rds ==
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
+ (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
+ iadc->rsense_workaround_value =
+ QPNP_IADC_RSENSE_DEFAULT_VALUE;
+ iadc->default_internal_rsense = true;
+ }
+ } else if (iadc->rds_trim_default_type ==
+ QPNP_IADC_RDS_DEFAULT_TYPEB) {
+ if ((smbb_batt_trm_cnst_rds >=
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
+ (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
+ iadc->rsense_workaround_value =
+ QPNP_IADC_RSENSE_DEFAULT_VALUE;
+ iadc->default_internal_rsense = true;
+ } else if ((smbb_batt_trm_cnst_rds <
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
+ (trim2_val ==
+ QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
+ if (iadc->iadc_comp.id == COMP_ID_GF) {
+ iadc->rsense_workaround_value =
+ QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF;
+ iadc->default_internal_rsense = true;
+ } else if (iadc->iadc_comp.id == COMP_ID_SMIC) {
+ iadc->rsense_workaround_value =
+ QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC;
+ iadc->default_internal_rsense = true;
+ }
+ }
+ } else if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEC) {
+
+ if ((smbb_batt_trm_cnst_rds >
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0) &&
+ (smbb_batt_trm_cnst_rds <=
+ SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
+ (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
+ iadc->rsense_workaround_value =
+ QPNP_IADC_RSENSE_DEFAULT_VALUE;
+ iadc->default_internal_rsense = true;
+ }
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_iadc_comp_info(struct qpnp_iadc_chip *iadc)
+{
+ int rc = 0;
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_INT_TEST_VAL, &iadc->iadc_comp.id);
+ if (rc < 0) {
+ pr_err("qpnp adc comp id failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2,
+ &iadc->iadc_comp.revision_dig_major);
+ if (rc < 0) {
+ pr_err("qpnp adc revision2 read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION3,
+ &iadc->iadc_comp.revision_ana_minor);
+ if (rc < 0) {
+ pr_err("qpnp adc revision3 read failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_ATE_GAIN_CALIB_OFFSET,
+ &iadc->iadc_comp.sys_gain);
+ if (rc < 0) {
+ pr_err("full scale read failed with %d\n", rc);
+ return rc;
+ }
+
+ if (iadc->external_rsense)
+ iadc->iadc_comp.ext_rsense = true;
+
+ pr_debug("fab id = %u, revision_dig_major = %u, revision_ana_minor = %u sys gain = %u, external_rsense = %d\n",
+ iadc->iadc_comp.id,
+ iadc->iadc_comp.revision_dig_major,
+ iadc->iadc_comp.revision_ana_minor,
+ iadc->iadc_comp.sys_gain,
+ iadc->iadc_comp.ext_rsense);
+ return rc;
+}
+
+static int32_t qpnp_iadc_configure(struct qpnp_iadc_chip *iadc,
+ enum qpnp_iadc_channels channel,
+ uint16_t *raw_code, uint32_t mode_sel)
+{
+ u8 qpnp_iadc_mode_reg = 0, qpnp_iadc_ch_sel_reg = 0;
+ u8 qpnp_iadc_conv_req = 0, qpnp_iadc_dig_param_reg = 0;
+ u8 status1 = 0;
+ uint32_t count = 0;
+ int32_t rc = 0;
+
+ qpnp_iadc_ch_sel_reg = channel;
+
+ qpnp_iadc_dig_param_reg |= iadc->adc->amux_prop->decimation <<
+ QPNP_IADC_DEC_RATIO_SEL;
+ if (iadc->iadc_mode_sel)
+ qpnp_iadc_mode_reg |= (QPNP_ADC_TRIM_EN | QPNP_VADC_SYNCH_EN);
+ else
+ qpnp_iadc_mode_reg |= QPNP_ADC_TRIM_EN;
+
+ qpnp_iadc_conv_req = QPNP_IADC_CONV_REQ;
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MODE_CTL, qpnp_iadc_mode_reg);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_ADC_CH_SEL_CTL,
+ qpnp_iadc_ch_sel_reg);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_ADC_DIG_PARAM,
+ qpnp_iadc_dig_param_reg);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ return rc;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_FAST_AVG_CTL,
+ iadc->adc->amux_prop->fast_avg_setup);
+ if (rc < 0) {
+ pr_err("qpnp adc fast averaging configure error\n");
+ return rc;
+ }
+
+ if (!iadc->iadc_poll_eoc)
+ reinit_completion(&iadc->adc->adc_rslt_completion);
+
+ rc = qpnp_iadc_enable(iadc, true);
+ if (rc)
+ return rc;
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_CONV_REQ, qpnp_iadc_conv_req);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ return rc;
+ }
+
+ if (iadc->iadc_poll_eoc) {
+ while (status1 != QPNP_STATUS1_EOC) {
+ rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1);
+ if (rc < 0)
+ return rc;
+ status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK;
+ usleep_range(QPNP_ADC_CONV_TIME_MIN,
+ QPNP_ADC_CONV_TIME_MAX);
+ count++;
+ if (count > QPNP_ADC_ERR_COUNT) {
+ pr_err("retry error exceeded\n");
+ rc = qpnp_iadc_status_debug(iadc);
+ if (rc < 0)
+ pr_err("IADC status debug failed\n");
+ rc = -EINVAL;
+ return rc;
+ }
+ }
+ } else {
+ rc = wait_for_completion_timeout(
+ &iadc->adc->adc_rslt_completion,
+ QPNP_ADC_COMPLETION_TIMEOUT);
+ if (!rc) {
+ rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1);
+ if (rc < 0)
+ return rc;
+ status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK;
+ if (status1 == QPNP_STATUS1_EOC)
+ pr_debug("End of conversion status set\n");
+ else {
+ rc = qpnp_iadc_status_debug(iadc);
+ if (rc < 0) {
+ pr_err("status debug failed %d\n", rc);
+ return rc;
+ }
+ return -EINVAL;
+ }
+ }
+ }
+
+ rc = qpnp_iadc_read_conversion_result(iadc, raw_code);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+#define IADC_CENTER 0xC000
+#define IADC_READING_RESOLUTION_N 542535
+#define IADC_READING_RESOLUTION_D 100000
+static int32_t qpnp_convert_raw_offset_voltage(struct qpnp_iadc_chip *iadc)
+{
+ s64 numerator;
+
+ if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
+ pr_err("raw offset errors! raw_gain:0x%x and raw_offset:0x%x\n",
+ iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw);
+ return -EINVAL;
+ }
+
+ numerator = iadc->adc->calib.offset_raw - IADC_CENTER;
+ numerator *= IADC_READING_RESOLUTION_N;
+ iadc->adc->calib.offset_uv = div_s64(numerator,
+ IADC_READING_RESOLUTION_D);
+
+ numerator = iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw;
+ numerator *= IADC_READING_RESOLUTION_N;
+
+ iadc->adc->calib.gain_uv = div_s64(numerator,
+ IADC_READING_RESOLUTION_D);
+
+ pr_debug("gain_uv:%d offset_uv:%d\n",
+ iadc->adc->calib.gain_uv, iadc->adc->calib.offset_uv);
+ return 0;
+}
+
+#define IADC_IDEAL_RAW_GAIN 3291
+int32_t qpnp_iadc_calibrate_for_trim(struct qpnp_iadc_chip *iadc,
+ bool batfet_closed)
+{
+ uint8_t rslt_lsb, rslt_msb;
+ int32_t rc = 0, version = 0;
+ uint16_t raw_data;
+ uint32_t mode_sel = 0;
+ bool iadc_offset_ch_batfet_check;
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return -EPROBE_DEFER;
+
+ mutex_lock(&iadc->adc->adc_lock);
+
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("acquiring iadc eoc wakelock\n");
+ pm_stay_awake(iadc->dev);
+ }
+
+ iadc->adc->amux_prop->decimation = DECIMATION_TYPE1;
+ iadc->adc->amux_prop->fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
+
+ rc = qpnp_iadc_configure(iadc, GAIN_CALIBRATION_17P857MV,
+ &raw_data, mode_sel);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ goto fail;
+ }
+
+ iadc->adc->calib.gain_raw = raw_data;
+
+ /*
+ * there is a features on PM8941 in the BMS where if the batfet is
+ * opened the BMS reads from INTERNAL_RSENSE (channel 0) actually go to
+ * OFFSET_CALIBRATION_CSP_CSN (channel 5). Hence if batfet is opened
+ * we have to calibrate based on OFFSET_CALIBRATION_CSP_CSN even for
+ * internal rsense.
+ */
+ version = qpnp_adc_get_revid_version(iadc->dev);
+ if ((version == QPNP_REV_ID_8941_3_1) ||
+ (version == QPNP_REV_ID_8941_3_0) ||
+ (version == QPNP_REV_ID_8941_2_0))
+ iadc_offset_ch_batfet_check = true;
+ else
+ iadc_offset_ch_batfet_check = false;
+
+ if ((iadc_offset_ch_batfet_check && !batfet_closed) ||
+ (iadc->external_rsense)) {
+ /* external offset calculation */
+ rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP_CSN,
+ &raw_data, mode_sel);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ goto fail;
+ }
+ } else {
+ /* internal offset calculation */
+ rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP2_CSN2,
+ &raw_data, mode_sel);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ goto fail;
+ }
+ }
+
+ iadc->adc->calib.offset_raw = raw_data;
+ if (rc < 0) {
+ pr_err("qpnp adc offset/gain calculation failed\n");
+ goto fail;
+ }
+
+ if (iadc->iadc_comp.revision_dig_major == QPNP_IADC_PM8026_2_REV2
+ && iadc->iadc_comp.revision_ana_minor ==
+ QPNP_IADC_PM8026_2_REV3)
+ iadc->adc->calib.gain_raw =
+ iadc->adc->calib.offset_raw + IADC_IDEAL_RAW_GAIN;
+
+ pr_debug("raw gain:0x%x, raw offset:0x%x\n",
+ iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw);
+
+ rc = qpnp_convert_raw_offset_voltage(iadc);
+ if (rc < 0) {
+ pr_err("qpnp raw_voltage conversion failed\n");
+ goto fail;
+ }
+
+ rslt_msb = (raw_data & QPNP_RAW_CODE_16_BIT_MSB_MASK) >>
+ QPNP_BIT_SHIFT_8;
+ rslt_lsb = raw_data & QPNP_RAW_CODE_16_BIT_LSB_MASK;
+
+ pr_debug("trim values:lsb:0x%x and msb:0x%x\n", rslt_lsb, rslt_msb);
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS,
+ QPNP_IADC_SEC_ACCESS_DATA);
+ if (rc < 0) {
+ pr_err("qpnp iadc configure error for sec access\n");
+ goto fail;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MSB_OFFSET,
+ rslt_msb);
+ if (rc < 0) {
+ pr_err("qpnp iadc configure error for MSB write\n");
+ goto fail;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS,
+ QPNP_IADC_SEC_ACCESS_DATA);
+ if (rc < 0) {
+ pr_err("qpnp iadc configure error for sec access\n");
+ goto fail;
+ }
+
+ rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_LSB_OFFSET,
+ rslt_lsb);
+ if (rc < 0) {
+ pr_err("qpnp iadc configure error for LSB write\n");
+ goto fail;
+ }
+fail:
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("releasing iadc eoc wakelock\n");
+ pm_relax(iadc->dev);
+ }
+ mutex_unlock(&iadc->adc->adc_lock);
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_iadc_calibrate_for_trim);
+
+static void qpnp_iadc_work(struct work_struct *work)
+{
+ struct qpnp_iadc_chip *iadc = container_of(work,
+ struct qpnp_iadc_chip, iadc_work.work);
+ int rc = 0;
+
+ if (!iadc->skip_auto_calibrations) {
+ rc = qpnp_iadc_calibrate_for_trim(iadc, true);
+ if (rc)
+ pr_debug("periodic IADC calibration failed\n");
+ }
+
+ schedule_delayed_work(&iadc->iadc_work,
+ round_jiffies_relative(msecs_to_jiffies
+ (QPNP_IADC_CALIB_SECONDS)));
+ return;
+}
+
+static int32_t qpnp_iadc_version_check(struct qpnp_iadc_chip *iadc)
+{
+ uint8_t revision;
+ int rc;
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2, &revision);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ return rc;
+ }
+
+ if (revision < QPNP_IADC_SUPPORTED_REVISION2) {
+ pr_err("IADC Version not supported\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+struct qpnp_iadc_chip *qpnp_get_iadc(struct device *dev, const char *name)
+{
+ struct qpnp_iadc_chip *iadc;
+ struct device_node *node = NULL;
+ char prop_name[QPNP_MAX_PROP_NAME_LEN];
+
+ snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-iadc", name);
+
+ node = of_parse_phandle(dev->of_node, prop_name, 0);
+ if (node == NULL)
+ return ERR_PTR(-ENODEV);
+
+ list_for_each_entry(iadc, &qpnp_iadc_device_list, list)
+ if (iadc->adc->pdev->dev.of_node == node)
+ return iadc;
+ return ERR_PTR(-EPROBE_DEFER);
+}
+EXPORT_SYMBOL(qpnp_get_iadc);
+
+int32_t qpnp_iadc_get_rsense(struct qpnp_iadc_chip *iadc, int32_t *rsense)
+{
+ uint8_t rslt_rsense = 0;
+ int32_t rc = 0, sign_bit = 0;
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return -EPROBE_DEFER;
+
+ if (iadc->external_rsense) {
+ *rsense = iadc->rsense;
+ } else if (iadc->default_internal_rsense) {
+ *rsense = iadc->rsense_workaround_value;
+ } else {
+
+ rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE,
+ &rslt_rsense);
+ if (rc < 0) {
+ pr_err("qpnp adc rsense read failed with %d\n", rc);
+ return rc;
+ }
+
+ pr_debug("rsense:0%x\n", rslt_rsense);
+
+ if (rslt_rsense & QPNP_RSENSE_MSB_SIGN_CHECK)
+ sign_bit = 1;
+
+ rslt_rsense &= ~QPNP_RSENSE_MSB_SIGN_CHECK;
+
+ if (sign_bit)
+ *rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR -
+ (rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
+ else
+ *rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR +
+ (rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
+ }
+ pr_debug("rsense value is %d\n", *rsense);
+
+ if (*rsense == 0)
+ pr_err("incorrect rsens value:%d rslt_rsense:%d\n",
+ *rsense, rslt_rsense);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_iadc_get_rsense);
+
+static int32_t qpnp_check_pmic_temp(struct qpnp_iadc_chip *iadc)
+{
+ struct qpnp_vadc_result result_pmic_therm;
+ int64_t die_temp_offset;
+ int rc = 0;
+
+ rc = qpnp_vadc_read(iadc->vadc_dev, DIE_TEMP, &result_pmic_therm);
+ if (rc < 0)
+ return rc;
+
+ die_temp_offset = result_pmic_therm.physical -
+ iadc->die_temp;
+ if (die_temp_offset < 0)
+ die_temp_offset = -die_temp_offset;
+
+ if (die_temp_offset > QPNP_IADC_DIE_TEMP_CALIB_OFFSET) {
+ iadc->die_temp = result_pmic_therm.physical;
+ if (!iadc->skip_auto_calibrations) {
+ rc = qpnp_iadc_calibrate_for_trim(iadc, true);
+ if (rc)
+ pr_err("IADC calibration failed rc = %d\n", rc);
+ }
+ }
+
+ return rc;
+}
+
+int32_t qpnp_iadc_read(struct qpnp_iadc_chip *iadc,
+ enum qpnp_iadc_channels channel,
+ struct qpnp_iadc_result *result)
+{
+ int32_t rc, rsense_n_ohms, sign = 0, num, mode_sel = 0;
+ int32_t rsense_u_ohms = 0;
+ int64_t result_current;
+ uint16_t raw_data;
+ int dt_index = 0;
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return -EPROBE_DEFER;
+
+ if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
+ pr_err("raw offset errors! run iadc calibration again\n");
+ return -EINVAL;
+ }
+
+ rc = qpnp_check_pmic_temp(iadc);
+ if (rc) {
+ pr_err("Error checking pmic therm temp\n");
+ return rc;
+ }
+
+ mutex_lock(&iadc->adc->adc_lock);
+
+ while (((enum qpnp_iadc_channels)
+ iadc->adc->adc_channels[dt_index].channel_num
+ != channel) && (dt_index < iadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= iadc->max_channels_available) {
+ pr_err("not a valid IADC channel\n");
+ rc = -EINVAL;
+ goto fail;
+ }
+
+ iadc->adc->amux_prop->decimation =
+ iadc->adc->adc_channels[dt_index].adc_decimation;
+ iadc->adc->amux_prop->fast_avg_setup =
+ iadc->adc->adc_channels[dt_index].fast_avg_setup;
+
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("acquiring iadc eoc wakelock\n");
+ pm_stay_awake(iadc->dev);
+ }
+
+ rc = qpnp_iadc_configure(iadc, channel, &raw_data, mode_sel);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ goto fail;
+ }
+
+ rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms);
+ pr_debug("current raw:0%x and rsense:%d\n",
+ raw_data, rsense_n_ohms);
+ rsense_u_ohms = rsense_n_ohms/1000;
+ num = raw_data - iadc->adc->calib.offset_raw;
+ if (num < 0) {
+ sign = 1;
+ num = -num;
+ }
+
+ result->result_uv = (num * QPNP_ADC_GAIN_NV)/
+ (iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
+ result_current = result->result_uv;
+ result_current *= QPNP_IADC_NANO_VOLTS_FACTOR;
+ /* Intentional fall through. Process the result w/o comp */
+ do_div(result_current, rsense_u_ohms);
+
+ if (sign) {
+ result->result_uv = -result->result_uv;
+ result_current = -result_current;
+ }
+ result_current *= -1;
+ rc = qpnp_iadc_comp_result(iadc, &result_current);
+ if (rc < 0)
+ pr_err("Error during compensating the IADC\n");
+ rc = 0;
+ result_current *= -1;
+
+ result->result_ua = (int32_t) result_current;
+fail:
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("releasing iadc eoc wakelock\n");
+ pm_relax(iadc->dev);
+ }
+ mutex_unlock(&iadc->adc->adc_lock);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_iadc_read);
+
+int32_t qpnp_iadc_get_gain_and_offset(struct qpnp_iadc_chip *iadc,
+ struct qpnp_iadc_calib *result)
+{
+ int rc;
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return -EPROBE_DEFER;
+
+ rc = qpnp_check_pmic_temp(iadc);
+ if (rc) {
+ pr_err("Error checking pmic therm temp\n");
+ return rc;
+ }
+
+ mutex_lock(&iadc->adc->adc_lock);
+ result->gain_raw = iadc->adc->calib.gain_raw;
+ result->ideal_gain_nv = QPNP_ADC_GAIN_NV;
+ result->gain_uv = iadc->adc->calib.gain_uv;
+ result->offset_raw = iadc->adc->calib.offset_raw;
+ result->ideal_offset_uv =
+ QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL;
+ result->offset_uv = iadc->adc->calib.offset_uv;
+ pr_debug("raw gain:0%x, raw offset:0%x\n",
+ result->gain_raw, result->offset_raw);
+ pr_debug("gain_uv:%d offset_uv:%d\n",
+ result->gain_uv, result->offset_uv);
+ mutex_unlock(&iadc->adc->adc_lock);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_iadc_get_gain_and_offset);
+
+int qpnp_iadc_skip_calibration(struct qpnp_iadc_chip *iadc)
+{
+ iadc->skip_auto_calibrations = true;
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_iadc_skip_calibration);
+
+int qpnp_iadc_resume_calibration(struct qpnp_iadc_chip *iadc)
+{
+ iadc->skip_auto_calibrations = false;
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_iadc_resume_calibration);
+
+int32_t qpnp_iadc_vadc_sync_read(struct qpnp_iadc_chip *iadc,
+ enum qpnp_iadc_channels i_channel, struct qpnp_iadc_result *i_result,
+ enum qpnp_vadc_channels v_channel, struct qpnp_vadc_result *v_result)
+{
+ int rc = 0, mode_sel = 0, num = 0, rsense_n_ohms = 0, sign = 0;
+ int dt_index = 0;
+ uint16_t raw_data;
+ int32_t rsense_u_ohms = 0;
+ int64_t result_current;
+
+ if (qpnp_iadc_is_valid(iadc) < 0)
+ return -EPROBE_DEFER;
+
+ if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
+ pr_err("raw offset errors! run iadc calibration again\n");
+ return -EINVAL;
+ }
+
+ mutex_lock(&iadc->adc->adc_lock);
+
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("acquiring iadc eoc wakelock\n");
+ pm_stay_awake(iadc->dev);
+ }
+
+ iadc->iadc_mode_sel = true;
+
+ rc = qpnp_vadc_iadc_sync_request(iadc->vadc_dev, v_channel);
+ if (rc) {
+ pr_err("Configuring VADC failed\n");
+ goto fail;
+ }
+
+ while (((enum qpnp_iadc_channels)
+ iadc->adc->adc_channels[dt_index].channel_num
+ != i_channel) && (dt_index < iadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= iadc->max_channels_available) {
+ pr_err("not a valid IADC channel\n");
+ rc = -EINVAL;
+ goto fail;
+ }
+
+ iadc->adc->amux_prop->decimation =
+ iadc->adc->adc_channels[dt_index].adc_decimation;
+ iadc->adc->amux_prop->fast_avg_setup =
+ iadc->adc->adc_channels[dt_index].fast_avg_setup;
+
+ rc = qpnp_iadc_configure(iadc, i_channel, &raw_data, mode_sel);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ goto fail_release_vadc;
+ }
+
+ rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms);
+ pr_debug("current raw:0%x and rsense:%d\n",
+ raw_data, rsense_n_ohms);
+ rsense_u_ohms = rsense_n_ohms/1000;
+ num = raw_data - iadc->adc->calib.offset_raw;
+ if (num < 0) {
+ sign = 1;
+ num = -num;
+ }
+
+ i_result->result_uv = (num * QPNP_ADC_GAIN_NV)/
+ (iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
+ result_current = i_result->result_uv;
+ result_current *= QPNP_IADC_NANO_VOLTS_FACTOR;
+ /* Intentional fall through. Process the result w/o comp */
+ if (!rsense_u_ohms) {
+ pr_err("rsense error=%d\n", rsense_u_ohms);
+ goto fail_release_vadc;
+ }
+
+ do_div(result_current, rsense_u_ohms);
+
+ if (sign) {
+ i_result->result_uv = -i_result->result_uv;
+ result_current = -result_current;
+ }
+ result_current *= -1;
+ rc = qpnp_iadc_comp_result(iadc, &result_current);
+ if (rc < 0)
+ pr_err("Error during compensating the IADC\n");
+ rc = 0;
+ result_current *= -1;
+
+ i_result->result_ua = (int32_t) result_current;
+
+fail_release_vadc:
+ rc = qpnp_vadc_iadc_sync_complete_request(iadc->vadc_dev, v_channel,
+ v_result);
+ if (rc)
+ pr_err("Releasing VADC failed\n");
+fail:
+ iadc->iadc_mode_sel = false;
+
+ if (iadc->iadc_poll_eoc) {
+ pr_debug("releasing iadc eoc wakelock\n");
+ pm_relax(iadc->dev);
+ }
+ mutex_unlock(&iadc->adc->adc_lock);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_iadc_vadc_sync_read);
+
+static ssize_t qpnp_iadc_show(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
+ struct qpnp_iadc_chip *iadc = dev_get_drvdata(dev);
+ struct qpnp_iadc_result result;
+ int rc = -1;
+
+ rc = qpnp_iadc_read(iadc, attr->index, &result);
+
+ if (rc)
+ return 0;
+
+ return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
+ "Result:%d\n", result.result_ua);
+}
+
+static struct sensor_device_attribute qpnp_adc_attr =
+ SENSOR_ATTR(NULL, S_IRUGO, qpnp_iadc_show, NULL, 0);
+
+static int32_t qpnp_iadc_init_hwmon(struct qpnp_iadc_chip *iadc,
+ struct platform_device *pdev)
+{
+ struct device_node *child;
+ struct device_node *node = pdev->dev.of_node;
+ int rc = 0, i = 0, channel;
+
+ for_each_child_of_node(node, child) {
+ channel = iadc->adc->adc_channels[i].channel_num;
+ qpnp_adc_attr.index = iadc->adc->adc_channels[i].channel_num;
+ qpnp_adc_attr.dev_attr.attr.name =
+ iadc->adc->adc_channels[i].name;
+ memcpy(&iadc->sens_attr[i], &qpnp_adc_attr,
+ sizeof(qpnp_adc_attr));
+ sysfs_attr_init(&iadc->sens_attr[i].dev_attr.attr);
+ rc = device_create_file(&pdev->dev,
+ &iadc->sens_attr[i].dev_attr);
+ if (rc) {
+ dev_err(&pdev->dev,
+ "device_create_file failed for dev %s\n",
+ iadc->adc->adc_channels[i].name);
+ goto hwmon_err_sens;
+ }
+ i++;
+ }
+
+ return 0;
+hwmon_err_sens:
+ pr_err("Init HWMON failed for qpnp_iadc with %d\n", rc);
+ return rc;
+}
+
+static int qpnp_iadc_probe(struct platform_device *pdev)
+{
+ struct qpnp_iadc_chip *iadc;
+ struct qpnp_adc_drv *adc_qpnp;
+ struct device_node *node = pdev->dev.of_node;
+ struct device_node *child;
+ unsigned int base;
+ int rc, count_adc_channel_list = 0, i = 0;
+
+ for_each_child_of_node(node, child)
+ count_adc_channel_list++;
+
+ if (!count_adc_channel_list) {
+ pr_err("No channel listing\n");
+ return -EINVAL;
+ }
+
+ iadc = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_iadc_chip) +
+ (sizeof(struct sensor_device_attribute) *
+ count_adc_channel_list), GFP_KERNEL);
+ if (!iadc) {
+ dev_err(&pdev->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ adc_qpnp = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_drv),
+ GFP_KERNEL);
+ if (!adc_qpnp) {
+ dev_err(&pdev->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ adc_qpnp->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+ if (!adc_qpnp->regmap) {
+ dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
+ return -EINVAL;
+ }
+
+ iadc->dev = &(pdev->dev);
+ iadc->adc = adc_qpnp;
+
+ rc = qpnp_adc_get_devicetree_data(pdev, iadc->adc);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to read device tree\n");
+ return rc;
+ }
+
+ rc = of_property_read_u32(pdev->dev.of_node, "batt-id-trim-cnst-rds",
+ &base);
+ if (rc < 0) {
+ dev_err(&pdev->dev,
+ "Couldn't find batt-id-trim-cnst-rds in node = %s rc = %d\n",
+ pdev->dev.of_node->full_name, rc);
+ return rc;
+ }
+ iadc->batt_id_trim_cnst_rds = base;
+ rc = of_property_read_u32(node, "qcom,use-default-rds-trim",
+ &iadc->rds_trim_default_type);
+ if (rc)
+ pr_debug("No trim workaround needed\n");
+ else {
+ pr_debug("Use internal RDS trim workaround\n");
+ iadc->rds_trim_default_check = true;
+ }
+
+ iadc->vadc_dev = qpnp_get_vadc(&pdev->dev, "iadc");
+ if (IS_ERR(iadc->vadc_dev)) {
+ rc = PTR_ERR(iadc->vadc_dev);
+ if (rc != -EPROBE_DEFER)
+ pr_err("vadc property missing, rc=%d\n", rc);
+ return rc;
+ }
+
+ mutex_init(&iadc->adc->adc_lock);
+
+ rc = of_property_read_u32(node, "qcom,rsense",
+ &iadc->rsense);
+ if (rc)
+ pr_debug("Defaulting to internal rsense\n");
+ else {
+ pr_debug("Use external rsense\n");
+ iadc->external_rsense = true;
+ }
+
+ iadc->iadc_poll_eoc = of_property_read_bool(node,
+ "qcom,iadc-poll-eoc");
+ if (!iadc->iadc_poll_eoc) {
+ rc = devm_request_irq(&pdev->dev, iadc->adc->adc_irq_eoc,
+ qpnp_iadc_isr, IRQF_TRIGGER_RISING,
+ "qpnp_iadc_interrupt", iadc);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to request adc irq\n");
+ return rc;
+ } else {
+ enable_irq_wake(iadc->adc->adc_irq_eoc);
+ }
+ }
+
+ rc = qpnp_iadc_init_hwmon(iadc, pdev);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to initialize qpnp hwmon adc\n");
+ return rc;
+ }
+ iadc->iadc_hwmon = hwmon_device_register(&iadc->adc->pdev->dev);
+
+ rc = qpnp_iadc_version_check(iadc);
+ if (rc) {
+ dev_err(&pdev->dev, "IADC version not supported\n");
+ goto fail;
+ }
+
+ iadc->max_channels_available = count_adc_channel_list;
+ INIT_WORK(&iadc->trigger_completion_work, qpnp_iadc_trigger_completion);
+ INIT_DELAYED_WORK(&iadc->iadc_work, qpnp_iadc_work);
+ rc = qpnp_iadc_comp_info(iadc);
+ if (rc) {
+ dev_err(&pdev->dev, "abstracting IADC comp info failed!\n");
+ goto fail;
+ }
+
+ rc = qpnp_iadc_rds_trim_update_check(iadc);
+ if (rc) {
+ dev_err(&pdev->dev, "Rds trim update failed!\n");
+ goto fail;
+ }
+
+ dev_set_drvdata(&pdev->dev, iadc);
+ list_add(&iadc->list, &qpnp_iadc_device_list);
+ rc = qpnp_iadc_calibrate_for_trim(iadc, true);
+ if (rc)
+ dev_err(&pdev->dev, "failed to calibrate for USR trim\n");
+
+ if (iadc->iadc_poll_eoc)
+ device_init_wakeup(iadc->dev, 1);
+
+ schedule_delayed_work(&iadc->iadc_work,
+ round_jiffies_relative(msecs_to_jiffies
+ (QPNP_IADC_CALIB_SECONDS)));
+ return 0;
+fail:
+ for_each_child_of_node(node, child) {
+ device_remove_file(&pdev->dev, &iadc->sens_attr[i].dev_attr);
+ i++;
+ }
+ hwmon_device_unregister(iadc->iadc_hwmon);
+
+ return rc;
+}
+
+static int qpnp_iadc_remove(struct platform_device *pdev)
+{
+ struct qpnp_iadc_chip *iadc = dev_get_drvdata(&pdev->dev);
+ struct device_node *node = pdev->dev.of_node;
+ struct device_node *child;
+ int i = 0;
+
+ cancel_delayed_work(&iadc->iadc_work);
+ for_each_child_of_node(node, child) {
+ device_remove_file(&pdev->dev, &iadc->sens_attr[i].dev_attr);
+ i++;
+ }
+ hwmon_device_unregister(iadc->iadc_hwmon);
+ if (iadc->iadc_poll_eoc)
+ pm_relax(iadc->dev);
+ dev_set_drvdata(&pdev->dev, NULL);
+
+ return 0;
+}
+
+static const struct of_device_id qpnp_iadc_match_table[] = {
+ { .compatible = "qcom,qpnp-iadc",
+ },
+ {}
+};
+
+static struct platform_driver qpnp_iadc_driver = {
+ .driver = {
+ .name = "qcom,qpnp-iadc",
+ .of_match_table = qpnp_iadc_match_table,
+ },
+ .probe = qpnp_iadc_probe,
+ .remove = qpnp_iadc_remove,
+};
+
+static int __init qpnp_iadc_init(void)
+{
+ return platform_driver_register(&qpnp_iadc_driver);
+}
+module_init(qpnp_iadc_init);
+
+static void __exit qpnp_iadc_exit(void)
+{
+ platform_driver_unregister(&qpnp_iadc_driver);
+}
+module_exit(qpnp_iadc_exit);
+
+MODULE_DESCRIPTION("QPNP PMIC current ADC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/hwmon/qpnp-adc-voltage.c b/drivers/hwmon/qpnp-adc-voltage.c
new file mode 100644
index 000000000000..81ad68548c6b
--- /dev/null
+++ b/drivers/hwmon/qpnp-adc-voltage.c
@@ -0,0 +1,2909 @@
+/* Copyright (c) 2012-2016, 2020, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/kernel.h>
+#include <linux/regmap.h>
+#include <linux/of.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+#include <linux/types.h>
+#include <linux/hwmon.h>
+#include <linux/module.h>
+#include <linux/debugfs.h>
+#include <linux/spmi.h>
+#include <linux/platform_device.h>
+#include <linux/of_irq.h>
+#include <linux/interrupt.h>
+#include <linux/completion.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/qpnp/qpnp-adc.h>
+#include <linux/platform_device.h>
+#include <linux/power_supply.h>
+#include <linux/thermal.h>
+
+/* QPNP VADC register definition */
+#define QPNP_VADC_REVISION1 0x0
+#define QPNP_VADC_REVISION2 0x1
+#define QPNP_VADC_REVISION3 0x2
+#define QPNP_VADC_REVISION4 0x3
+#define QPNP_VADC_PERPH_TYPE 0x4
+#define QPNP_VADC_PERH_SUBTYPE 0x5
+
+#define QPNP_VADC_SUPPORTED_REVISION2 1
+
+#define QPNP_VADC_STATUS1 0x8
+#define QPNP_VADC_STATUS1_OP_MODE 4
+#define QPNP_VADC_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
+#define QPNP_VADC_STATUS1_REQ_STS BIT(1)
+#define QPNP_VADC_STATUS1_EOC BIT(0)
+#define QPNP_VADC_STATUS1_REQ_STS_EOC_MASK 0x3
+#define QPNP_VADC_STATUS1_OP_MODE_MASK 0x18
+#define QPNP_VADC_MEAS_INT_MODE 0x2
+#define QPNP_VADC_MEAS_INT_MODE_MASK 0x10
+
+#define QPNP_VADC_STATUS2 0x9
+#define QPNP_VADC_STATUS2_CONV_SEQ_STATE 6
+#define QPNP_VADC_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
+#define QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
+#define QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT 4
+#define QPNP_VADC_CONV_TIMEOUT_ERR 2
+
+#define QPNP_VADC_MODE_CTL 0x40
+#define QPNP_VADC_OP_MODE_SHIFT 3
+#define QPNP_VADC_VREF_XO_THM_FORCE BIT(2)
+#define QPNP_VADC_AMUX_TRIM_EN BIT(1)
+#define QPNP_VADC_TRIM_EN BIT(0)
+#define QPNP_VADC_EN_CTL1 0x46
+#define QPNP_VADC_EN BIT(7)
+#define QPNP_VADC_CH_SEL_CTL 0x48
+#define QPNP_VADC_DIG_PARAM 0x50
+#define QPNP_VADC_DIG_DEC_RATIO_SEL_SHIFT 3
+#define QPNP_VADC_HW_SETTLE_DELAY 0x51
+#define QPNP_VADC_CONV_REQ 0x52
+#define QPNP_VADC_CONV_REQ_SET BIT(7)
+#define QPNP_VADC_CONV_SEQ_CTL 0x54
+#define QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT 4
+#define QPNP_VADC_CONV_SEQ_TRIG_CTL 0x55
+#define QPNP_VADC_MEAS_INTERVAL_CTL 0x57
+#define QPNP_VADC_MEAS_INTERVAL_OP_CTL 0x59
+#define QPNP_VADC_MEAS_INTERVAL_OP_SET BIT(7)
+
+#define QPNP_VADC_CONV_SEQ_FALLING_EDGE 0x0
+#define QPNP_VADC_CONV_SEQ_RISING_EDGE 0x1
+#define QPNP_VADC_CONV_SEQ_EDGE_SHIFT 7
+#define QPNP_VADC_FAST_AVG_CTL 0x5a
+
+#define QPNP_VADC_LOW_THR_LSB 0x5c
+#define QPNP_VADC_LOW_THR_MSB 0x5d
+#define QPNP_VADC_HIGH_THR_LSB 0x5e
+#define QPNP_VADC_HIGH_THR_MSB 0x5f
+#define QPNP_VADC_ACCESS 0xd0
+#define QPNP_VADC_ACCESS_DATA 0xa5
+#define QPNP_VADC_PERH_RESET_CTL3 0xda
+#define QPNP_FOLLOW_OTST2_RB BIT(3)
+#define QPNP_FOLLOW_WARM_RB BIT(2)
+#define QPNP_FOLLOW_SHUTDOWN1_RB BIT(1)
+#define QPNP_FOLLOW_SHUTDOWN2_RB BIT(0)
+
+#define QPNP_INT_TEST_VAL 0xE1
+
+#define QPNP_VADC_DATA0 0x60
+#define QPNP_VADC_DATA1 0x61
+#define QPNP_VADC_CONV_TIMEOUT_ERR 2
+#define QPNP_VADC_CONV_TIME_MIN 1000
+#define QPNP_VADC_CONV_TIME_MAX 1100
+#define QPNP_ADC_COMPLETION_TIMEOUT HZ
+#define QPNP_VADC_ERR_COUNT 20
+#define QPNP_OP_MODE_SHIFT 3
+
+#define QPNP_VADC_THR_LSB_MASK(val) (val & 0xff)
+#define QPNP_VADC_THR_MSB_MASK(val) ((val & 0xff00) >> 8)
+#define QPNP_MIN_TIME 2000
+#define QPNP_MAX_TIME 2000
+#define QPNP_RETRY 100
+#define QPNP_VADC_ABSOLUTE_RECALIB_OFFSET 8
+#define QPNP_VADC_RATIOMETRIC_RECALIB_OFFSET 12
+#define QPNP_VADC_RECALIB_MAXCNT 10
+#define QPNP_VADC_OFFSET_DUMP 8
+#define QPNP_VADC_REG_DUMP 14
+
+/* QPNP VADC refreshed register set */
+#define QPNP_VADC_HC1_STATUS1 0x8
+
+#define QPNP_VADC_HC1_DATA_HOLD_CTL 0x3f
+#define QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD BIT(1)
+
+#define QPNP_VADC_HC1_ADC_DIG_PARAM 0x42
+#define QPNP_VADC_HC1_CAL_VAL BIT(6)
+#define QPNP_VADC_HC1_CAL_VAL_SHIFT 6
+#define QPNP_VADC_HC1_CAL_SEL_MASK 0x30
+#define QPNP_VADC_HC1_CAL_SEL_SHIFT 4
+#define QPNP_VADC_HC1_DEC_RATIO_SEL 0xc
+#define QPNP_VADC_HC1_DEC_RATIO_SHIFT 2
+#define QPNP_VADC_HC1_FAST_AVG_CTL 0x43
+#define QPNP_VADC_HC1_FAST_AVG_SAMPLES_MASK 0x7
+#define QPNP_VADC_HC1_ADC_CH_SEL_CTL 0x44
+#define QPNP_VADC_HC1_DELAY_CTL 0x45
+#define QPNP_VADC_HC1_DELAY_CTL_MASK 0xf
+#define QPNP_VADC_MC1_EN_CTL1 0x46
+#define QPNP_VADC_HC1_ADC_EN BIT(7)
+#define QPNP_VADC_MC1_CONV_REQ 0x47
+#define QPNP_VADC_HC1_CONV_REQ_START BIT(7)
+
+#define QPNP_VADC_HC1_VBAT_MIN_THR0 0x48
+#define QPNP_VADC_HC1_VBAT_MIN_THR1 0x49
+
+#define QPNP_VADC_HC1_DATA0 0x50
+#define QPNP_VADC_HC1_DATA1 0x51
+#define QPNP_VADC_HC1_DATA_CHECK_USR 0x8000
+
+#define QPNP_VADC_HC1_VBAT_MIN_DATA0 0x52
+#define QPNP_VADC_MC1_VBAT_MIN_DATA1 0x53
+
+/*
+ * Conversion time varies between 213uS to 6827uS based on the decimation,
+ * clock rate, fast average samples with no measurement in queue.
+ */
+#define QPNP_VADC_HC1_CONV_TIME_MIN_US 213
+#define QPNP_VADC_HC1_CONV_TIME_MAX_US 214
+#define QPNP_VADC_HC1_ERR_COUNT 1600
+
+struct qpnp_vadc_mode_state {
+ bool meas_int_mode;
+ bool meas_int_request_in_queue;
+ bool vadc_meas_int_enable;
+ struct qpnp_adc_tm_btm_param *param;
+ struct qpnp_adc_amux vadc_meas_amux;
+};
+
+struct qpnp_vadc_thermal_data {
+ bool thermal_node;
+ int thermal_chan;
+ enum qpnp_vadc_channels vadc_channel;
+ struct thermal_zone_device *tz_dev;
+ struct qpnp_vadc_chip *vadc_dev;
+};
+
+struct qpnp_vadc_chip {
+ struct device *dev;
+ struct qpnp_adc_drv *adc;
+ struct list_head list;
+ struct device *vadc_hwmon;
+ bool vadc_init_calib;
+ int max_channels_available;
+ bool vadc_iadc_sync_lock;
+ u8 id;
+ struct work_struct trigger_completion_work;
+ bool vadc_poll_eoc;
+ bool vadc_recalib_check;
+ u8 revision_ana_minor;
+ u8 revision_dig_major;
+ struct work_struct trigger_high_thr_work;
+ struct work_struct trigger_low_thr_work;
+ struct qpnp_vadc_mode_state *state_copy;
+ struct qpnp_vadc_thermal_data *vadc_therm_chan;
+ struct power_supply *vadc_chg_vote;
+ bool vadc_hc;
+ int vadc_debug_count;
+ struct sensor_device_attribute sens_attr[0];
+};
+
+LIST_HEAD(qpnp_vadc_device_list);
+
+static struct qpnp_vadc_scale_fn vadc_scale_fn[] = {
+ [SCALE_DEFAULT] = {qpnp_adc_scale_default},
+ [SCALE_BATT_THERM] = {qpnp_adc_scale_batt_therm},
+ [SCALE_PMIC_THERM] = {qpnp_adc_scale_pmic_therm},
+ [SCALE_XOTHERM] = {qpnp_adc_tdkntcg_therm},
+ [SCALE_THERM_100K_PULLUP] = {qpnp_adc_scale_therm_pu2},
+ [SCALE_THERM_150K_PULLUP] = {qpnp_adc_scale_therm_pu1},
+ [SCALE_QRD_BATT_THERM] = {qpnp_adc_scale_qrd_batt_therm},
+ [SCALE_QRD_SKUAA_BATT_THERM] = {qpnp_adc_scale_qrd_skuaa_batt_therm},
+ [SCALE_SMB_BATT_THERM] = {qpnp_adc_scale_smb_batt_therm},
+ [SCALE_QRD_SKUG_BATT_THERM] = {qpnp_adc_scale_qrd_skug_batt_therm},
+ [SCALE_QRD_SKUH_BATT_THERM] = {qpnp_adc_scale_qrd_skuh_batt_therm},
+ [SCALE_NCP_03WF683_THERM] = {qpnp_adc_scale_therm_ncp03},
+ [SCALE_QRD_SKUT1_BATT_THERM] = {qpnp_adc_scale_qrd_skut1_batt_therm},
+ [SCALE_PMI_CHG_TEMP] = {qpnp_adc_scale_pmi_chg_temp},
+};
+
+static struct qpnp_vadc_rscale_fn adc_vadc_rscale_fn[] = {
+ [SCALE_RVADC_ABSOLUTE] = {qpnp_vadc_absolute_rthr},
+};
+
+static int32_t qpnp_vadc_calib_device(struct qpnp_vadc_chip *vadc);
+
+static int32_t qpnp_vadc_read_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
+ u8 *data, int len)
+{
+ int rc;
+
+ rc = regmap_bulk_read(vadc->adc->regmap,
+ (vadc->adc->offset + reg), data, len);
+ if (rc < 0) {
+ pr_err("qpnp adc read reg %d failed with %d\n", reg, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_vadc_write_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
+ u8 *buf, int len)
+{
+ int rc;
+
+ rc = regmap_bulk_write(vadc->adc->regmap,
+ (vadc->adc->offset + reg), buf, len);
+ if (rc < 0) {
+ pr_err("qpnp adc write reg %d failed with %d\n", reg, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int qpnp_vadc_is_valid(struct qpnp_vadc_chip *vadc)
+{
+ struct qpnp_vadc_chip *vadc_chip = NULL;
+
+ list_for_each_entry(vadc_chip, &qpnp_vadc_device_list, list)
+ if (vadc == vadc_chip)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int32_t qpnp_vadc_warm_rst_configure(struct qpnp_vadc_chip *vadc)
+{
+ int rc = 0;
+ u8 data = 0, buf = 0;
+
+ buf = QPNP_VADC_ACCESS_DATA;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, &buf, 1);
+ if (rc < 0) {
+ pr_err("VADC write access failed\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, &data, 1);
+ if (rc < 0) {
+ pr_err("VADC perh reset ctl3 read failed\n");
+ return rc;
+ }
+
+ buf = QPNP_VADC_ACCESS_DATA;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, &buf, 1);
+ if (rc < 0) {
+ pr_err("VADC write access failed\n");
+ return rc;
+ }
+
+ data |= QPNP_FOLLOW_WARM_RB;
+
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, &data, 1);
+ if (rc < 0) {
+ pr_err("VADC perh reset ctl3 write failed\n");
+ return rc;
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_vadc_mode_select(struct qpnp_vadc_chip *vadc, u8 mode_ctl)
+{
+ int rc;
+
+ mode_ctl |= (QPNP_VADC_TRIM_EN | QPNP_VADC_AMUX_TRIM_EN);
+
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MODE_CTL, &mode_ctl, 1);
+ if (rc < 0)
+ pr_err("vadc write mode selection err:%d\n", rc);
+
+ return rc;
+}
+
+static int32_t qpnp_vadc_enable(struct qpnp_vadc_chip *vadc, bool state)
+{
+ int rc = 0;
+ u8 data = 0;
+
+ data = QPNP_VADC_EN;
+ if (state) {
+ if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok) {
+ rc = qpnp_adc_enable_voltage(vadc->adc);
+ if (rc) {
+ pr_err("failed enabling VADC LDO\n");
+ return rc;
+ }
+ }
+
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1, &data, 1);
+ if (rc < 0) {
+ pr_err("VADC enable failed\n");
+ return rc;
+ }
+ } else {
+ data = (~data & QPNP_VADC_EN);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1, &data, 1);
+ if (rc < 0) {
+ pr_err("VADC disable failed\n");
+ return rc;
+ }
+
+ if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok)
+ qpnp_adc_disable_voltage(vadc->adc);
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_vadc_status_debug(struct qpnp_vadc_chip *vadc)
+{
+ int rc = 0, i = 0;
+ u8 buf[8], offset = 0;
+
+ if (vadc->vadc_debug_count < 3) {
+ for (i = 0; i < QPNP_VADC_REG_DUMP; i++) {
+ rc = qpnp_vadc_read_reg(vadc, offset, buf, 8);
+ if (rc) {
+ pr_err("debug register dump failed\n");
+ return rc;
+ }
+ offset += QPNP_VADC_OFFSET_DUMP;
+ pr_err("row%d: 0%x 0%x 0%x 0%x 0%x 0%x 0%x 0%x\n",
+ i, buf[0], buf[1], buf[2], buf[3], buf[4],
+ buf[5], buf[6], buf[7]);
+ }
+ } else
+ pr_debug("VADC peripheral dumps got printed before\n");
+
+ vadc->vadc_debug_count++;
+
+ rc = qpnp_vadc_enable(vadc, false);
+ if (rc < 0) {
+ pr_err("VADC disable failed with %d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int qpnp_vadc_hc_check_conversion_status(struct qpnp_vadc_chip *vadc)
+{
+ int rc = 0, count = 0;
+ u8 status1 = 0;
+
+ while (status1 != QPNP_VADC_STATUS1_EOC) {
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc < 0)
+ return rc;
+ status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ if (status1 == QPNP_VADC_STATUS1_EOC)
+ break;
+ usleep_range(QPNP_VADC_HC1_CONV_TIME_MIN_US,
+ QPNP_VADC_HC1_CONV_TIME_MAX_US);
+ count++;
+ if (count > QPNP_VADC_HC1_ERR_COUNT) {
+ pr_err("retry error exceeded\n");
+ rc = qpnp_vadc_status_debug(vadc);
+ if (rc < 0)
+ pr_err("VADC disable failed with %d\n", rc);
+ return -EINVAL;
+ }
+ }
+
+ return rc;
+}
+
+static int qpnp_vadc_hc_read_data(struct qpnp_vadc_chip *vadc, int *data)
+{
+ int rc = 0;
+ u8 buf = 0, rslt_lsb = 0, rslt_msb = 0;
+
+ /* Set hold bit */
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
+ if (rc) {
+ pr_err("debug register dump failed\n");
+ return rc;
+ }
+ buf |= QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
+ if (rc) {
+ pr_err("debug register dump failed\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA0, &rslt_lsb, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed for data0\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA1, &rslt_msb, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed for data1\n");
+ return rc;
+ }
+
+ *data = (rslt_msb << 8) | rslt_lsb;
+
+ if (*data == QPNP_VADC_HC1_DATA_CHECK_USR) {
+ pr_err("Invalid data :0x%x\n", *data);
+ return -EINVAL;
+ }
+
+ rc = qpnp_vadc_enable(vadc, false);
+ if (rc) {
+ pr_err("VADC disable failed\n");
+ return rc;
+ }
+
+ /* De-assert hold bit */
+ buf &= ~QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
+ if (rc)
+ pr_err("de-asserting hold bit failed\n");
+
+ return rc;
+}
+
+static void qpnp_vadc_hc_update_adc_dig_param(struct qpnp_vadc_chip *vadc,
+ struct qpnp_adc_amux_properties *amux_prop, u8 *data)
+{
+ /* Update CAL value */
+ *data &= ~QPNP_VADC_HC1_CAL_VAL;
+ *data |= (amux_prop->cal_val << QPNP_VADC_HC1_CAL_VAL_SHIFT);
+
+ /* Update CAL select */
+ *data &= ~QPNP_VADC_HC1_CAL_SEL_MASK;
+ *data |= (amux_prop->calib_type << QPNP_VADC_HC1_CAL_SEL_SHIFT);
+
+ /* Update Decimation ratio select */
+ *data &= ~QPNP_VADC_HC1_DEC_RATIO_SEL;
+ *data |= (amux_prop->decimation << QPNP_VADC_HC1_DEC_RATIO_SHIFT);
+
+ pr_debug("VADC_DIG_PARAM value:0x%x\n", *data);
+}
+
+static int qpnp_vadc_hc_configure(struct qpnp_vadc_chip *vadc,
+ struct qpnp_adc_amux_properties *amux_prop)
+{
+ int rc = 0;
+ u8 buf[6];
+
+ /* Read registers 0x42 through 0x46 */
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_ADC_DIG_PARAM, buf, 6);
+ if (rc < 0) {
+ pr_err("qpnp adc configure block read failed\n");
+ return rc;
+ }
+
+ /* ADC Digital param selection */
+ qpnp_vadc_hc_update_adc_dig_param(vadc, amux_prop, &buf[0]);
+
+ /* Update fast average sample value */
+ buf[1] &= (u8) ~QPNP_VADC_HC1_FAST_AVG_SAMPLES_MASK;
+ buf[1] |= amux_prop->fast_avg_setup;
+
+ /* Select ADC channel */
+ buf[2] = amux_prop->amux_channel;
+
+ /* Select hw settle delay for the channel */
+ buf[3] &= (u8) ~QPNP_VADC_HC1_DELAY_CTL_MASK;
+ buf[3] |= amux_prop->hw_settle_time;
+
+ /* Select ADC enable */
+ buf[4] |= QPNP_VADC_HC1_ADC_EN;
+
+ /* Select CONV request */
+ buf[5] |= QPNP_VADC_HC1_CONV_REQ_START;
+
+ if (!vadc->vadc_poll_eoc)
+ reinit_completion(&vadc->adc->adc_rslt_completion);
+
+ pr_debug("dig:0x%x, fast_avg:0x%x, channel:0x%x, hw_settle:0x%x\n",
+ buf[0], buf[1], buf[2], buf[3]);
+
+ /* Block register write from 0x42 through 0x46 */
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_ADC_DIG_PARAM, buf, 6);
+ if (rc < 0) {
+ pr_err("qpnp adc block register configure failed\n");
+ return rc;
+ }
+
+ return 0;
+}
+
+int32_t qpnp_vadc_hc_read(struct qpnp_vadc_chip *vadc,
+ enum qpnp_vadc_channels channel,
+ struct qpnp_vadc_result *result)
+{
+ int rc = 0, scale_type, amux_prescaling, dt_index = 0, calib_type = 0;
+ struct qpnp_adc_amux_properties amux_prop;
+
+ if (qpnp_vadc_is_valid(vadc))
+ return -EPROBE_DEFER;
+
+ mutex_lock(&vadc->adc->adc_lock);
+
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != channel) && (dt_index < vadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= vadc->max_channels_available) {
+ pr_err("not a valid VADC channel:%d\n", channel);
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ if (!vadc->vadc_init_calib) {
+ rc = qpnp_vadc_calib_device(vadc);
+ if (rc) {
+ pr_err("Calibration failed\n");
+ goto fail_unlock;
+ } else {
+ vadc->vadc_init_calib = true;
+ }
+ }
+
+ calib_type = vadc->adc->adc_channels[dt_index].calib_type;
+ if (calib_type >= ADC_HC_CAL_SEL_NONE) {
+ pr_err("not a valid calib_type\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ amux_prop.decimation =
+ vadc->adc->adc_channels[dt_index].adc_decimation;
+ amux_prop.calib_type = vadc->adc->adc_channels[dt_index].calib_type;
+ amux_prop.cal_val = vadc->adc->adc_channels[dt_index].cal_val;
+ amux_prop.fast_avg_setup =
+ vadc->adc->adc_channels[dt_index].fast_avg_setup;
+ amux_prop.amux_channel = channel;
+ amux_prop.hw_settle_time =
+ vadc->adc->adc_channels[dt_index].hw_settle_time;
+
+ rc = qpnp_vadc_hc_configure(vadc, &amux_prop);
+ if (rc < 0) {
+ pr_err("Configuring VADC channel failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ if (vadc->vadc_poll_eoc) {
+ rc = qpnp_vadc_hc_check_conversion_status(vadc);
+ if (rc < 0) {
+ pr_err("polling mode conversion failed\n");
+ goto fail_unlock;
+ }
+ } else {
+ rc = wait_for_completion_timeout(
+ &vadc->adc->adc_rslt_completion,
+ QPNP_ADC_COMPLETION_TIMEOUT);
+ if (!rc) {
+ rc = qpnp_vadc_hc_check_conversion_status(vadc);
+ if (rc < 0) {
+ pr_err("interrupt mode conversion failed\n");
+ goto fail_unlock;
+ }
+ pr_debug("End of conversion status set\n");
+ }
+ }
+
+ rc = qpnp_vadc_hc_read_data(vadc, &result->adc_code);
+ if (rc) {
+ pr_err("qpnp vadc read adc code failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ amux_prescaling =
+ vadc->adc->adc_channels[dt_index].chan_path_prescaling;
+
+ if (amux_prescaling >= PATH_SCALING_NONE) {
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
+ vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
+
+ scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
+ if (scale_type >= SCALE_NONE) {
+ rc = -EBADF;
+ goto fail_unlock;
+ }
+
+ /* Note: Scaling functions for VADC_HC do not need offset/gain */
+ vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
+ vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
+
+ pr_debug("channel=0x%x, adc_code=0x%x adc_result=%lld\n",
+ channel, result->adc_code, result->physical);
+
+fail_unlock:
+ mutex_unlock(&vadc->adc->adc_lock);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vadc_hc_read);
+
+static int32_t qpnp_vadc_configure(struct qpnp_vadc_chip *vadc,
+ struct qpnp_adc_amux_properties *chan_prop)
+{
+ u8 decimation = 0, conv_sequence = 0, conv_sequence_trig = 0;
+ u8 mode_ctrl = 0, meas_int_op_ctl_data = 0, buf = 0;
+ int rc = 0;
+
+ /* Mode selection */
+ mode_ctrl |= ((chan_prop->mode_sel << QPNP_VADC_OP_MODE_SHIFT) |
+ (QPNP_VADC_TRIM_EN | QPNP_VADC_AMUX_TRIM_EN));
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MODE_CTL, &mode_ctrl, 1);
+ if (rc < 0) {
+ pr_err("Mode configure write error\n");
+ return rc;
+ }
+
+ /* Channel selection */
+ buf = chan_prop->amux_channel;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CH_SEL_CTL, &buf, 1);
+ if (rc < 0) {
+ pr_err("Channel configure error\n");
+ return rc;
+ }
+
+ /* Digital parameter setup */
+ decimation = chan_prop->decimation <<
+ QPNP_VADC_DIG_DEC_RATIO_SEL_SHIFT;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_DIG_PARAM, &decimation, 1);
+ if (rc < 0) {
+ pr_err("Digital parameter configure write error\n");
+ return rc;
+ }
+
+ /* HW settling time delay */
+ buf = chan_prop->hw_settle_time;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HW_SETTLE_DELAY, &buf, 1);
+ if (rc < 0) {
+ pr_err("HW settling time setup error\n");
+ return rc;
+ }
+
+ pr_debug("mode:%d, channel:%d, decimation:%d, hw_settle:%d\n",
+ mode_ctrl, chan_prop->amux_channel, decimation,
+ chan_prop->hw_settle_time);
+
+ if (chan_prop->mode_sel == (ADC_OP_NORMAL_MODE <<
+ QPNP_VADC_OP_MODE_SHIFT)) {
+ /* Normal measurement mode */
+ buf = chan_prop->fast_avg_setup;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_FAST_AVG_CTL,
+ &buf, 1);
+ if (rc < 0) {
+ pr_err("Fast averaging configure error\n");
+ return rc;
+ }
+ /* Ensure MEAS_INTERVAL_OP_CTL is set to 0 */
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_OP_CTL,
+ &meas_int_op_ctl_data, 1);
+ if (rc < 0) {
+ pr_err("Measurement interval OP configure error\n");
+ return rc;
+ }
+ } else if (chan_prop->mode_sel == (ADC_OP_CONVERSION_SEQUENCER <<
+ QPNP_VADC_OP_MODE_SHIFT)) {
+ /* Conversion sequence mode */
+ conv_sequence = ((ADC_SEQ_HOLD_100US <<
+ QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT) |
+ ADC_CONV_SEQ_TIMEOUT_5MS);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_CTL,
+ &conv_sequence, 1);
+ if (rc < 0) {
+ pr_err("Conversion sequence error\n");
+ return rc;
+ }
+
+ conv_sequence_trig = ((QPNP_VADC_CONV_SEQ_RISING_EDGE <<
+ QPNP_VADC_CONV_SEQ_EDGE_SHIFT) |
+ chan_prop->trigger_channel);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_TRIG_CTL,
+ &conv_sequence_trig, 1);
+ if (rc < 0) {
+ pr_err("Conversion trigger error\n");
+ return rc;
+ }
+ } else if (chan_prop->mode_sel == ADC_OP_MEASUREMENT_INTERVAL) {
+ buf = QPNP_VADC_MEAS_INTERVAL_OP_SET;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_OP_CTL,
+ &buf, 1);
+ if (rc < 0) {
+ pr_err("Measurement interval OP configure error\n");
+ return rc;
+ }
+ }
+
+ if (!vadc->vadc_poll_eoc)
+ reinit_completion(&vadc->adc->adc_rslt_completion);
+
+ rc = qpnp_vadc_enable(vadc, true);
+ if (rc)
+ return rc;
+
+ if (!vadc->vadc_iadc_sync_lock) {
+ /* Request conversion */
+ buf = QPNP_VADC_CONV_REQ_SET;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_REQ, &buf, 1);
+ if (rc < 0) {
+ pr_err("Request conversion failed\n");
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static int32_t qpnp_vadc_read_conversion_result(struct qpnp_vadc_chip *vadc,
+ int32_t *data)
+{
+ uint8_t rslt_lsb, rslt_msb;
+ int rc = 0, status = 0;
+
+ status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA0, &rslt_lsb, 1);
+ if (status < 0) {
+ pr_err("qpnp adc result read failed for data0\n");
+ goto fail;
+ }
+
+ status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA1, &rslt_msb, 1);
+ if (status < 0) {
+ pr_err("qpnp adc result read failed for data1\n");
+ goto fail;
+ }
+
+ *data = (rslt_msb << 8) | rslt_lsb;
+
+fail:
+ rc = qpnp_vadc_enable(vadc, false);
+ if (rc)
+ return rc;
+
+ return status;
+}
+
+static int32_t qpnp_vadc_read_status(struct qpnp_vadc_chip *vadc, int mode_sel)
+{
+ u8 status1, status2, status2_conv_seq_state;
+ u8 status_err = QPNP_VADC_CONV_TIMEOUT_ERR;
+ int rc;
+
+ switch (mode_sel) {
+ case (ADC_OP_CONVERSION_SEQUENCER << QPNP_VADC_OP_MODE_SHIFT):
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc) {
+ pr_err("qpnp_vadc read mask interrupt failed\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS2, &status2, 1);
+ if (rc) {
+ pr_err("qpnp_vadc read mask interrupt failed\n");
+ return rc;
+ }
+
+ if (!(status2 & ~QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS) &&
+ (status1 & (~QPNP_VADC_STATUS1_REQ_STS |
+ QPNP_VADC_STATUS1_EOC))) {
+ rc = status_err;
+ return rc;
+ }
+
+ status2_conv_seq_state = status2 >>
+ QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT;
+ if (status2_conv_seq_state != ADC_CONV_SEQ_IDLE) {
+ pr_err("qpnp vadc seq error with status %d\n",
+ status2);
+ rc = -EINVAL;
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static void qpnp_vadc_work(struct work_struct *work)
+{
+ struct qpnp_vadc_chip *vadc = container_of(work,
+ struct qpnp_vadc_chip, trigger_completion_work);
+
+ if (qpnp_vadc_is_valid(vadc) < 0)
+ return;
+
+ complete(&vadc->adc->adc_rslt_completion);
+}
+
+static void qpnp_vadc_low_thr_fn(struct work_struct *work)
+{
+ struct qpnp_vadc_chip *vadc = container_of(work,
+ struct qpnp_vadc_chip, trigger_low_thr_work);
+
+ vadc->state_copy->meas_int_mode = false;
+ vadc->state_copy->meas_int_request_in_queue = false;
+ vadc->state_copy->param->threshold_notification(
+ ADC_TM_LOW_STATE,
+ vadc->state_copy->param->btm_ctx);
+}
+
+static void qpnp_vadc_high_thr_fn(struct work_struct *work)
+{
+ struct qpnp_vadc_chip *vadc = container_of(work,
+ struct qpnp_vadc_chip, trigger_high_thr_work);
+
+ vadc->state_copy->meas_int_mode = false;
+ vadc->state_copy->meas_int_request_in_queue = false;
+ vadc->state_copy->param->threshold_notification(
+ ADC_TM_HIGH_STATE,
+ vadc->state_copy->param->btm_ctx);
+}
+
+static irqreturn_t qpnp_vadc_isr(int irq, void *dev_id)
+{
+ struct qpnp_vadc_chip *vadc = dev_id;
+
+ schedule_work(&vadc->trigger_completion_work);
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t qpnp_vadc_low_thr_isr(int irq, void *data)
+{
+ struct qpnp_vadc_chip *vadc = data;
+ u8 mode_ctl = 0, mode = 0;
+ int rc = 0;
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_MODE_CTL, &mode, 1);
+ if (rc < 0) {
+ pr_err("mode ctl register read failed with %d\n", rc);
+ return rc;
+ }
+
+ if (!(mode & QPNP_VADC_MEAS_INT_MODE_MASK)) {
+ pr_debug("Spurious VADC threshold 0x%x\n", mode);
+ return IRQ_HANDLED;
+ }
+
+ mode_ctl = ADC_OP_NORMAL_MODE;
+ /* Set measurement in single measurement mode */
+ qpnp_vadc_mode_select(vadc, mode_ctl);
+ qpnp_vadc_enable(vadc, false);
+ schedule_work(&vadc->trigger_low_thr_work);
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t qpnp_vadc_high_thr_isr(int irq, void *data)
+{
+ struct qpnp_vadc_chip *vadc = data;
+ u8 mode_ctl = 0, mode = 0;
+ int rc = 0;
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_MODE_CTL, &mode, 1);
+ if (rc < 0) {
+ pr_err("mode ctl register read failed with %d\n", rc);
+ return rc;
+ }
+
+ if (!(mode & QPNP_VADC_MEAS_INT_MODE_MASK)) {
+ pr_debug("Spurious VADC threshold 0x%x\n", mode);
+ return IRQ_HANDLED;
+ }
+
+ mode_ctl = ADC_OP_NORMAL_MODE;
+ /* Set measurement in single measurement mode */
+ qpnp_vadc_mode_select(vadc, mode_ctl);
+ qpnp_vadc_enable(vadc, false);
+ schedule_work(&vadc->trigger_high_thr_work);
+
+ return IRQ_HANDLED;
+}
+
+static int32_t qpnp_vadc_version_check(struct qpnp_vadc_chip *dev)
+{
+ uint8_t revision;
+ int rc;
+
+ rc = qpnp_vadc_read_reg(dev, QPNP_VADC_REVISION2, &revision, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc result read failed with %d\n", rc);
+ return rc;
+ }
+
+ if (revision < QPNP_VADC_SUPPORTED_REVISION2) {
+ pr_err("VADC Version not supported\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int32_t
+ qpnp_vadc_channel_post_scaling_calib_check(struct qpnp_vadc_chip *vadc,
+ int channel)
+{
+ int version, rc = 0;
+
+ version = qpnp_adc_get_revid_version(vadc->dev);
+
+ if (version == QPNP_REV_ID_PM8950_1_0) {
+ if ((channel == LR_MUX7_HW_ID) ||
+ (channel == P_MUX2_1_1) ||
+ (channel == LR_MUX3_XO_THERM) ||
+ (channel == LR_MUX3_BUF_XO_THERM_BUF) ||
+ (channel == P_MUX4_1_1)) {
+ vadc->adc->amux_prop->chan_prop->calib_type =
+ CALIB_ABSOLUTE;
+ return rc;
+ }
+ }
+
+ return -EINVAL;
+}
+
+#define QPNP_VBAT_COEFF_1 3000
+#define QPNP_VBAT_COEFF_2 45810000
+#define QPNP_VBAT_COEFF_3 100000
+#define QPNP_VBAT_COEFF_4 3500
+#define QPNP_VBAT_COEFF_5 80000000
+#define QPNP_VBAT_COEFF_6 4400
+#define QPNP_VBAT_COEFF_7 32200000
+#define QPNP_VBAT_COEFF_8 3880
+#define QPNP_VBAT_COEFF_9 5770
+#define QPNP_VBAT_COEFF_10 3660
+#define QPNP_VBAT_COEFF_11 5320
+#define QPNP_VBAT_COEFF_12 8060000
+#define QPNP_VBAT_COEFF_13 102640000
+#define QPNP_VBAT_COEFF_14 22220000
+#define QPNP_VBAT_COEFF_15 83060000
+#define QPNP_VBAT_COEFF_16 2810
+#define QPNP_VBAT_COEFF_17 5260
+#define QPNP_VBAT_COEFF_18 8027
+#define QPNP_VBAT_COEFF_19 2347
+#define QPNP_VBAT_COEFF_20 6043
+#define QPNP_VBAT_COEFF_21 1914
+#define QPNP_VBAT_OFFSET_SMIC 9446
+#define QPNP_VBAT_OFFSET_GF 9441
+#define QPNP_OCV_OFFSET_SMIC 4596
+#define QPNP_OCV_OFFSET_GF 5896
+#define QPNP_VBAT_COEFF_22 6800
+#define QPNP_VBAT_COEFF_23 3500
+#define QPNP_VBAT_COEFF_24 4360
+#define QPNP_VBAT_COEFF_25 8060
+#define QPNP_VBAT_COEFF_26 7895
+#define QPNP_VBAT_COEFF_27 5658
+#define QPNP_VBAT_COEFF_28 5760
+#define QPNP_VBAT_COEFF_29 7900
+#define QPNP_VBAT_COEFF_30 5660
+#define QPNP_VBAT_COEFF_31 3620
+#define QPNP_VBAT_COEFF_32 1230
+#define QPNP_VBAT_COEFF_33 5760
+#define QPNP_VBAT_COEFF_34 4080
+#define QPNP_VBAT_COEFF_35 7000
+#define QPNP_VBAT_COEFF_36 3040
+#define QPNP_VBAT_COEFF_37 3850
+#define QPNP_VBAT_COEFF_38 5000
+#define QPNP_VBAT_COEFF_39 2610
+#define QPNP_VBAT_COEFF_40 4190
+#define QPNP_VBAT_COEFF_41 5800
+#define QPNP_VBAT_COEFF_42 2620
+#define QPNP_VBAT_COEFF_43 4030
+#define QPNP_VBAT_COEFF_44 3230
+#define QPNP_VBAT_COEFF_45 3450
+#define QPNP_VBAT_COEFF_46 2120
+#define QPNP_VBAT_COEFF_47 3560
+#define QPNP_VBAT_COEFF_48 2190
+#define QPNP_VBAT_COEFF_49 4180
+#define QPNP_VBAT_COEFF_50 27800000
+#define QPNP_VBAT_COEFF_51 5110
+#define QPNP_VBAT_COEFF_52 34444000
+
+static int32_t qpnp_ocv_comp(int64_t *result,
+ struct qpnp_vadc_chip *vadc, int64_t die_temp)
+{
+ int64_t temp_var = 0, offset = 0;
+ int64_t old = *result;
+ int version;
+
+ version = qpnp_adc_get_revid_version(vadc->dev);
+ if (version == -EINVAL)
+ return 0;
+
+ if (version == QPNP_REV_ID_8026_2_2) {
+ if (die_temp > 25000)
+ return 0;
+ }
+
+ switch (version) {
+ case QPNP_REV_ID_8941_3_1:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_4));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_1));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_1_0:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = (((die_temp *
+ (-QPNP_VBAT_COEFF_10))
+ - QPNP_VBAT_COEFF_14));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = (((die_temp *
+ (-QPNP_VBAT_COEFF_8))
+ + QPNP_VBAT_COEFF_12));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_2_0:
+ case QPNP_REV_ID_8026_2_1:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_10));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_8));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_2_2:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ *result -= QPNP_VBAT_COEFF_22;
+ temp_var = (die_temp - 25000) *
+ QPNP_VBAT_COEFF_24;
+ break;
+ default:
+ case COMP_ID_GF:
+ *result -= QPNP_VBAT_COEFF_22;
+ temp_var = (die_temp - 25000) *
+ QPNP_VBAT_COEFF_25;
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8110_2_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ *result -= QPNP_OCV_OFFSET_SMIC;
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_18;
+ else
+ temp_var = QPNP_VBAT_COEFF_19;
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ default:
+ case COMP_ID_GF:
+ *result -= QPNP_OCV_OFFSET_GF;
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_20;
+ else
+ temp_var = QPNP_VBAT_COEFF_21;
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_1_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_26;
+ else
+ temp_var = QPNP_VBAT_COEFF_27;
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ default:
+ case COMP_ID_GF:
+ offset = QPNP_OCV_OFFSET_GF;
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_26;
+ else
+ temp_var = QPNP_VBAT_COEFF_27;
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_1_1:
+ switch (vadc->id) {
+ /* FAB_ID is zero */
+ case COMP_ID_GF:
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_29;
+ else
+ temp_var = QPNP_VBAT_COEFF_30;
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ /* FAB_ID is non-zero */
+ default:
+ if (die_temp < 25000)
+ temp_var = QPNP_VBAT_COEFF_31;
+ else
+ temp_var = (-QPNP_VBAT_COEFF_32);
+ temp_var = (die_temp - 25000) * temp_var;
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_2_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ offset = (-QPNP_VBAT_COEFF_38);
+ if (die_temp < 0)
+ temp_var = die_temp * QPNP_VBAT_COEFF_36;
+ else if (die_temp > 40000)
+ temp_var = ((die_temp - 40000) *
+ (-QPNP_VBAT_COEFF_37));
+ break;
+ case COMP_ID_TSMC:
+ if (die_temp < 10000)
+ temp_var = ((die_temp - 10000) *
+ QPNP_VBAT_COEFF_41);
+ else if (die_temp > 50000)
+ temp_var = ((die_temp - 50000) *
+ (-QPNP_VBAT_COEFF_42));
+ break;
+ default:
+ case COMP_ID_GF:
+ if (die_temp < 20000)
+ temp_var = ((die_temp - 20000) *
+ QPNP_VBAT_COEFF_45);
+ else if (die_temp > 40000)
+ temp_var = ((die_temp - 40000) *
+ (-QPNP_VBAT_COEFF_46));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8909_1_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ temp_var = (-QPNP_VBAT_COEFF_50);
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8909_1_1:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ temp_var = (QPNP_VBAT_COEFF_52);
+ break;
+ }
+ break;
+ default:
+ temp_var = 0;
+ break;
+ }
+
+ temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
+
+ temp_var = 1000000 + temp_var;
+
+ *result = *result * temp_var;
+
+ if (offset)
+ *result -= offset;
+
+ *result = div64_s64(*result, 1000000);
+ pr_debug("%lld compensated into %lld\n", old, *result);
+
+ return 0;
+}
+
+static int32_t qpnp_vbat_sns_comp(int64_t *result,
+ struct qpnp_vadc_chip *vadc, int64_t die_temp)
+{
+ int64_t temp_var = 0, offset = 0;
+ int64_t old = *result;
+ int version;
+
+ version = qpnp_adc_get_revid_version(vadc->dev);
+ if (version == -EINVAL)
+ return 0;
+
+ if (version != QPNP_REV_ID_8941_3_1) {
+ /* min(die_temp_c, 60_degC) */
+ if (die_temp > 60000)
+ die_temp = 60000;
+ }
+
+ switch (version) {
+ case QPNP_REV_ID_8941_3_1:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_1));
+ break;
+ default:
+ case COMP_ID_GF:
+ /* min(die_temp_c, 60_degC) */
+ if (die_temp > 60000)
+ die_temp = 60000;
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_1));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_1_0:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = (((die_temp *
+ (-QPNP_VBAT_COEFF_11))
+ + QPNP_VBAT_COEFF_15));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = (((die_temp *
+ (-QPNP_VBAT_COEFF_9))
+ + QPNP_VBAT_COEFF_13));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_2_0:
+ case QPNP_REV_ID_8026_2_1:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_11));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = ((die_temp - 25000) *
+ (-QPNP_VBAT_COEFF_9));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8026_2_2:
+ switch (vadc->id) {
+ case COMP_ID_TSMC:
+ *result -= QPNP_VBAT_COEFF_23;
+ temp_var = 0;
+ break;
+ default:
+ case COMP_ID_GF:
+ *result -= QPNP_VBAT_COEFF_23;
+ temp_var = 0;
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8110_2_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ *result -= QPNP_VBAT_OFFSET_SMIC;
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_17));
+ break;
+ default:
+ case COMP_ID_GF:
+ *result -= QPNP_VBAT_OFFSET_GF;
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_16));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_1_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_28));
+ break;
+ default:
+ case COMP_ID_GF:
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_28));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_1_1:
+ switch (vadc->id) {
+ /* FAB_ID is zero */
+ case COMP_ID_GF:
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_33));
+ break;
+ /* FAB_ID is non-zero */
+ default:
+ offset = QPNP_VBAT_COEFF_35;
+ if (die_temp > 50000) {
+ temp_var = ((die_temp - 25000) *
+ (QPNP_VBAT_COEFF_34));
+ }
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8916_2_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ if (die_temp < 0) {
+ temp_var = (die_temp *
+ QPNP_VBAT_COEFF_39);
+ } else if (die_temp > 40000) {
+ temp_var = ((die_temp - 40000) *
+ (-QPNP_VBAT_COEFF_40));
+ }
+ break;
+ case COMP_ID_TSMC:
+ if (die_temp < 10000)
+ temp_var = ((die_temp - 10000) *
+ QPNP_VBAT_COEFF_43);
+ else if (die_temp > 50000)
+ temp_var = ((die_temp - 50000) *
+ (-QPNP_VBAT_COEFF_44));
+ break;
+ default:
+ case COMP_ID_GF:
+ if (die_temp < 20000)
+ temp_var = ((die_temp - 20000) *
+ QPNP_VBAT_COEFF_47);
+ else if (die_temp > 40000)
+ temp_var = ((die_temp - 40000) *
+ (-QPNP_VBAT_COEFF_48));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8909_1_0:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ if (die_temp < 30000)
+ temp_var = (-QPNP_VBAT_COEFF_50);
+ else if (die_temp > 30000)
+ temp_var = (((die_temp - 30000) *
+ (-QPNP_VBAT_COEFF_49)) +
+ (-QPNP_VBAT_COEFF_50));
+ break;
+ }
+ break;
+ case QPNP_REV_ID_8909_1_1:
+ switch (vadc->id) {
+ case COMP_ID_SMIC:
+ if (die_temp < 30000)
+ temp_var = (QPNP_VBAT_COEFF_52);
+ else if (die_temp > 30000)
+ temp_var = (((die_temp - 30000) *
+ (-QPNP_VBAT_COEFF_51)) +
+ (QPNP_VBAT_COEFF_52));
+ break;
+ }
+ break;
+ default:
+ temp_var = 0;
+ break;
+ }
+
+ temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
+
+ temp_var = 1000000 + temp_var;
+
+ *result = *result * temp_var;
+
+ if (offset)
+ *result -= offset;
+
+ *result = div64_s64(*result, 1000000);
+ pr_debug("%lld compensated into %lld\n", old, *result);
+
+ return 0;
+}
+
+int32_t qpnp_vbat_sns_comp_result(struct qpnp_vadc_chip *vadc,
+ int64_t *result, bool is_pon_ocv)
+{
+ struct qpnp_vadc_result die_temp_result;
+ int rc = 0;
+
+ rc = qpnp_vadc_is_valid(vadc);
+ if (rc < 0)
+ return rc;
+
+ rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
+ DIE_TEMP, &die_temp_result);
+ if (rc < 0) {
+ pr_err("Error reading die_temp\n");
+ return rc;
+ }
+
+ pr_debug("die-temp = %lld\n", die_temp_result.physical);
+
+ if (is_pon_ocv)
+ rc = qpnp_ocv_comp(result, vadc, die_temp_result.physical);
+ else
+ rc = qpnp_vbat_sns_comp(result, vadc,
+ die_temp_result.physical);
+
+ if (rc < 0)
+ pr_err("Error with vbat compensation\n");
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vbat_sns_comp_result);
+
+static void qpnp_vadc_625mv_channel_sel(struct qpnp_vadc_chip *vadc,
+ uint32_t *ref_channel_sel)
+{
+ uint32_t dt_index = 0;
+
+ /* Check if the buffered 625mV channel exists */
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != SPARE1) && (dt_index < vadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= vadc->max_channels_available) {
+ pr_debug("Use default 625mV ref channel\n");
+ *ref_channel_sel = REF_625MV;
+ } else {
+ pr_debug("Use buffered 625mV ref channel\n");
+ *ref_channel_sel = SPARE1;
+ }
+}
+
+int32_t qpnp_vadc_calib_vref(struct qpnp_vadc_chip *vadc,
+ enum qpnp_adc_calib_type calib_type,
+ int *calib_data)
+{
+ struct qpnp_adc_amux_properties conv;
+ int rc, count = 0, calib_read = 0;
+ u8 status1 = 0;
+
+ if (vadc->vadc_hc) {
+ if (calib_type == ADC_HC_ABS_CAL)
+ conv.amux_channel = VADC_CALIB_VREF_1P25;
+ else if (calib_type == CALIB_RATIOMETRIC)
+ conv.amux_channel = VADC_CALIB_VREF;
+ } else {
+ if (calib_type == CALIB_ABSOLUTE)
+ conv.amux_channel = REF_125V;
+ else if (calib_type == CALIB_RATIOMETRIC)
+ conv.amux_channel = VDD_VADC;
+ }
+
+ conv.decimation = DECIMATION_TYPE2;
+ conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
+ conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
+ conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
+ conv.cal_val = (enum qpnp_adc_cal_val)calib_type;
+
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_configure(vadc, &conv);
+ if (rc) {
+ pr_err("qpnp_vadc configure failed with %d\n", rc);
+ goto calib_fail;
+ }
+ } else {
+ rc = qpnp_vadc_configure(vadc, &conv);
+ if (rc) {
+ pr_err("qpnp_vadc configure failed with %d\n", rc);
+ goto calib_fail;
+ }
+ }
+
+ while (status1 != QPNP_VADC_STATUS1_EOC) {
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc < 0)
+ return rc;
+ status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ usleep_range(QPNP_VADC_CONV_TIME_MIN,
+ QPNP_VADC_CONV_TIME_MAX);
+ count++;
+ if (count > QPNP_VADC_ERR_COUNT) {
+ rc = -ENODEV;
+ goto calib_fail;
+ }
+ }
+
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_read_data(vadc, &calib_read);
+ if (rc) {
+ pr_err("qpnp vadc read adc code failed with %d\n", rc);
+ goto calib_fail;
+ }
+ } else {
+ rc = qpnp_vadc_read_conversion_result(vadc, &calib_read);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ goto calib_fail;
+ }
+ }
+
+ *calib_data = calib_read;
+calib_fail:
+ return rc;
+}
+
+
+int32_t qpnp_vadc_calib_gnd(struct qpnp_vadc_chip *vadc,
+ enum qpnp_adc_calib_type calib_type,
+ int *calib_data)
+{
+ struct qpnp_adc_amux_properties conv;
+ int rc, count = 0, calib_read = 0;
+ u8 status1 = 0;
+ uint32_t ref_channel_sel = 0;
+
+ if (vadc->vadc_hc) {
+ conv.amux_channel = VADC_VREF_GND;
+ } else {
+ if (calib_type == CALIB_ABSOLUTE) {
+ qpnp_vadc_625mv_channel_sel(vadc, &ref_channel_sel);
+ conv.amux_channel = ref_channel_sel;
+ } else if (calib_type == CALIB_RATIOMETRIC)
+ conv.amux_channel = GND_REF;
+ }
+
+ conv.decimation = DECIMATION_TYPE2;
+ conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
+ conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
+ conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
+ conv.cal_val = (enum qpnp_adc_cal_val)calib_type;
+
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_configure(vadc, &conv);
+ if (rc) {
+ pr_err("qpnp_vadc configure failed with %d\n", rc);
+ goto calib_fail;
+ }
+ } else {
+ rc = qpnp_vadc_configure(vadc, &conv);
+ if (rc) {
+ pr_err("qpnp_vadc configure failed with %d\n", rc);
+ goto calib_fail;
+ }
+ }
+
+ while (status1 != QPNP_VADC_STATUS1_EOC) {
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc < 0)
+ return rc;
+ status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ usleep_range(QPNP_VADC_CONV_TIME_MIN,
+ QPNP_VADC_CONV_TIME_MAX);
+ count++;
+ if (count > QPNP_VADC_ERR_COUNT) {
+ rc = -ENODEV;
+ goto calib_fail;
+ }
+ }
+
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_read_data(vadc, &calib_read);
+ if (rc) {
+ pr_err("qpnp vadc read adc code failed with %d\n", rc);
+ goto calib_fail;
+ }
+ } else {
+ rc = qpnp_vadc_read_conversion_result(vadc, &calib_read);
+ if (rc) {
+ pr_err("qpnp adc read adc failed with %d\n", rc);
+ goto calib_fail;
+ }
+ }
+ *calib_data = calib_read;
+calib_fail:
+ return rc;
+}
+
+static int32_t qpnp_vadc_calib_device(struct qpnp_vadc_chip *vadc)
+{
+ int rc, calib_read_1 = 0, calib_read_2 = 0;
+ enum qpnp_adc_calib_type calib_type;
+
+ if (vadc->vadc_hc)
+ calib_type = ADC_HC_ABS_CAL;
+ else
+ calib_type = CALIB_ABSOLUTE;
+
+ rc = qpnp_vadc_calib_vref(vadc, calib_type, &calib_read_1);
+ if (rc) {
+ pr_err("qpnp adc absolute vref calib failed with %d\n", rc);
+ goto calib_fail;
+ }
+ rc = qpnp_vadc_calib_gnd(vadc, calib_type, &calib_read_2);
+ if (rc) {
+ pr_err("qpnp adc absolute gnd calib failed with %d\n", rc);
+ goto calib_fail;
+ }
+ pr_debug("absolute reference raw: 1.25V:0x%x, 625mV/GND:0x%x\n",
+ calib_read_1, calib_read_2);
+
+ if (calib_read_1 == calib_read_2) {
+ pr_err("absolute reference raw: 1.25V:0x%x625mV:0x%x\n",
+ calib_read_2, calib_read_1);
+ rc = -EINVAL;
+ goto calib_fail;
+ }
+
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dy =
+ (calib_read_1 - calib_read_2);
+
+ if (calib_type == CALIB_ABSOLUTE)
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dx
+ = QPNP_ADC_625_UV;
+ else if (calib_type == ADC_HC_ABS_CAL)
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dx
+ = QPNP_ADC_1P25_UV;
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_vref =
+ calib_read_1;
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_gnd =
+ calib_read_2;
+
+ calib_read_1 = 0;
+ calib_read_2 = 0;
+ rc = qpnp_vadc_calib_vref(vadc, CALIB_RATIOMETRIC, &calib_read_1);
+ if (rc) {
+ pr_err("qpnp adc ratiometric vref calib failed with %d\n", rc);
+ goto calib_fail;
+ }
+ rc = qpnp_vadc_calib_gnd(vadc, CALIB_RATIOMETRIC, &calib_read_2);
+ if (rc) {
+ pr_err("qpnp adc ratiometric gnd calib failed with %d\n", rc);
+ goto calib_fail;
+ }
+ pr_debug("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
+ calib_read_1, calib_read_2);
+
+ if (calib_read_1 == calib_read_2) {
+ pr_err("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
+ calib_read_1, calib_read_2);
+ rc = -EINVAL;
+ goto calib_fail;
+ }
+
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy =
+ (calib_read_1 - calib_read_2);
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx =
+ vadc->adc->adc_prop->adc_vdd_reference;
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_vref =
+ calib_read_1;
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd =
+ calib_read_2;
+
+calib_fail:
+ return rc;
+}
+
+int32_t qpnp_get_vadc_gain_and_offset(struct qpnp_vadc_chip *vadc,
+ struct qpnp_vadc_linear_graph *param,
+ enum qpnp_adc_calib_type calib_type)
+{
+ int rc = 0;
+ struct qpnp_vadc_result result;
+
+ rc = qpnp_vadc_is_valid(vadc);
+ if (rc < 0)
+ return rc;
+
+ if (!vadc->vadc_init_calib) {
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_read(vadc, VADC_CALIB_VREF_1P25,
+ &result);
+ if (rc) {
+ pr_debug("vadc read failed with rc = %d\n", rc);
+ return rc;
+ }
+ } else {
+ rc = qpnp_vadc_read(vadc, REF_125V, &result);
+ if (rc) {
+ pr_debug("vadc read failed with rc = %d\n", rc);
+ return rc;
+ }
+ }
+ }
+
+ switch (calib_type) {
+ case CALIB_RATIOMETRIC:
+ param->dy =
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy;
+ param->dx =
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx;
+ param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
+ param->adc_gnd =
+ vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd;
+ break;
+ case CALIB_ABSOLUTE:
+ case ADC_HC_ABS_CAL:
+ param->dy =
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dy;
+ param->dx =
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dx;
+ param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
+ param->adc_gnd =
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_gnd;
+ break;
+ default:
+ rc = -EINVAL;
+ }
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_get_vadc_gain_and_offset);
+
+static int32_t qpnp_vadc_wait_for_req_sts_check(struct qpnp_vadc_chip *vadc)
+{
+ u8 status1 = 0;
+ int rc, count = 0;
+
+ /* Re-enable the peripheral */
+ rc = qpnp_vadc_enable(vadc, true);
+ if (rc) {
+ pr_err("vadc re-enable peripheral failed with %d\n", rc);
+ return rc;
+ }
+
+ /* The VADC_TM bank needs to be disabled for new conversion request */
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc) {
+ pr_err("vadc read status1 failed with %d\n", rc);
+ return rc;
+ }
+
+ /* Disable the bank if a conversion is occuring */
+ while ((status1 & QPNP_VADC_STATUS1_REQ_STS) && (count < QPNP_RETRY)) {
+ /* Wait time is based on the optimum sampling rate
+ * and adding enough time buffer to account for ADC conversions
+ * occurring on different peripheral banks
+ */
+ usleep_range(QPNP_MIN_TIME, QPNP_MAX_TIME);
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+ if (rc < 0) {
+ pr_err("vadc disable failed with %d\n", rc);
+ return rc;
+ }
+ count++;
+ }
+
+ if (count >= QPNP_RETRY)
+ pr_err("QPNP vadc status req bit did not fall low!!\n");
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
+
+ /* Disable the peripheral */
+ rc = qpnp_vadc_enable(vadc, false);
+ if (rc < 0)
+ pr_err("vadc peripheral disable failed with %d\n", rc);
+
+ return rc;
+}
+
+static int32_t qpnp_vadc_manage_meas_int_requests(struct qpnp_vadc_chip *chip)
+{
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
+ int rc = 0, dt_index = 0;
+ u8 mode_ctl = 0;
+
+ pr_debug("meas_int_mode:0x%x, mode_ctl:%0x\n",
+ vadc->state_copy->meas_int_mode, mode_ctl);
+
+ if (vadc->state_copy->meas_int_mode) {
+ pr_debug("meas interval in progress. Procced to disable it\n");
+ /* measurement interval in progress. Proceed to disable it */
+ mode_ctl = ADC_OP_NORMAL_MODE;
+ rc = qpnp_vadc_mode_select(vadc, mode_ctl);
+ if (rc < 0) {
+ pr_err("NORM mode select failed with %d\n", rc);
+ return rc;
+ }
+
+ /* Disable bank */
+ rc = qpnp_vadc_enable(vadc, false);
+ if (rc) {
+ pr_err("Disable bank failed with %d\n", rc);
+ return rc;
+ }
+
+ /* Check if a conversion is in progress */
+ rc = qpnp_vadc_wait_for_req_sts_check(vadc);
+ if (rc < 0) {
+ pr_err("req_sts check failed with %d\n", rc);
+ return rc;
+ }
+
+ vadc->state_copy->meas_int_mode = false;
+ vadc->state_copy->meas_int_request_in_queue = true;
+ } else if (vadc->state_copy->meas_int_request_in_queue) {
+ /* put the meas interval back in queue */
+ pr_debug("put meas interval back in queue\n");
+ vadc->adc->amux_prop->amux_channel =
+ vadc->state_copy->vadc_meas_amux.channel_num;
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != vadc->adc->amux_prop->amux_channel) &&
+ (dt_index < vadc->max_channels_available))
+ dt_index++;
+ if (dt_index >= vadc->max_channels_available) {
+ pr_err("not a valid VADC channel\n");
+ rc = -EINVAL;
+ return rc;
+ }
+
+ vadc->adc->amux_prop->decimation =
+ vadc->adc->amux_prop->decimation;
+ vadc->adc->amux_prop->hw_settle_time =
+ vadc->adc->amux_prop->hw_settle_time;
+ vadc->adc->amux_prop->fast_avg_setup =
+ vadc->adc->amux_prop->fast_avg_setup;
+ vadc->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL;
+ rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
+ if (rc) {
+ pr_err("vadc configure failed with %d\n", rc);
+ return rc;
+ }
+
+ vadc->state_copy->meas_int_mode = true;
+ vadc->state_copy->meas_int_request_in_queue = false;
+ }
+ dev_set_drvdata(vadc->dev, vadc);
+
+ return 0;
+}
+
+struct qpnp_vadc_chip *qpnp_get_vadc(struct device *dev, const char *name)
+{
+ struct qpnp_vadc_chip *vadc;
+ struct device_node *node = NULL;
+ char prop_name[QPNP_MAX_PROP_NAME_LEN];
+
+ snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-vadc", name);
+
+ node = of_parse_phandle(dev->of_node, prop_name, 0);
+ if (node == NULL)
+ return ERR_PTR(-ENODEV);
+
+ list_for_each_entry(vadc, &qpnp_vadc_device_list, list)
+ if (vadc->adc->pdev->dev.of_node == node)
+ return vadc;
+ return ERR_PTR(-EPROBE_DEFER);
+}
+EXPORT_SYMBOL(qpnp_get_vadc);
+
+int32_t qpnp_vadc_conv_seq_request(struct qpnp_vadc_chip *vadc,
+ enum qpnp_vadc_trigger trigger_channel,
+ enum qpnp_vadc_channels channel,
+ struct qpnp_vadc_result *result)
+{
+ int rc = 0, scale_type, amux_prescaling, dt_index = 0, calib_type = 0;
+ uint32_t ref_channel, count = 0, local_idx = 0;
+ int32_t vref_calib = 0, gnd_calib = 0, new_vref_calib = 0, offset = 0;
+ int32_t calib_offset = 0;
+ u8 status1 = 0;
+
+ if (qpnp_vadc_is_valid(vadc))
+ return -EPROBE_DEFER;
+
+ mutex_lock(&vadc->adc->adc_lock);
+
+ if (vadc->state_copy->vadc_meas_int_enable)
+ qpnp_vadc_manage_meas_int_requests(vadc);
+
+ if (channel == REF_625MV) {
+ qpnp_vadc_625mv_channel_sel(vadc, &ref_channel);
+ channel = ref_channel;
+ }
+
+ vadc->adc->amux_prop->amux_channel = channel;
+
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != channel) && (dt_index < vadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= vadc->max_channels_available) {
+ pr_err("not a valid VADC channel\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ calib_type = vadc->adc->adc_channels[dt_index].calib_type;
+ if (calib_type >= CALIB_NONE) {
+ pr_err("not a valid calib_type\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+ calib_offset = (calib_type == CALIB_ABSOLUTE) ?
+ QPNP_VADC_ABSOLUTE_RECALIB_OFFSET :
+ QPNP_VADC_RATIOMETRIC_RECALIB_OFFSET;
+ rc = qpnp_vadc_version_check(vadc);
+ if (rc)
+ goto fail_unlock;
+ if (vadc->vadc_recalib_check) {
+ rc = qpnp_vadc_calib_vref(vadc, calib_type, &vref_calib);
+ if (rc) {
+ pr_err("Calibration failed\n");
+ goto fail_unlock;
+ }
+ } else if (!vadc->vadc_init_calib) {
+ rc = qpnp_vadc_calib_device(vadc);
+ if (rc) {
+ pr_err("Calibration failed\n");
+ goto fail_unlock;
+ } else {
+ vadc->vadc_init_calib = true;
+ }
+ }
+
+recalibrate:
+ status1 = 0;
+ vadc->adc->amux_prop->decimation =
+ vadc->adc->adc_channels[dt_index].adc_decimation;
+ vadc->adc->amux_prop->hw_settle_time =
+ vadc->adc->adc_channels[dt_index].hw_settle_time;
+ vadc->adc->amux_prop->fast_avg_setup =
+ vadc->adc->adc_channels[dt_index].fast_avg_setup;
+
+ if (trigger_channel < ADC_SEQ_NONE)
+ vadc->adc->amux_prop->mode_sel = (ADC_OP_CONVERSION_SEQUENCER
+ << QPNP_VADC_OP_MODE_SHIFT);
+ else if (trigger_channel == ADC_SEQ_NONE)
+ vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
+ << QPNP_VADC_OP_MODE_SHIFT);
+ else {
+ pr_err("Invalid trigger channel:%d\n", trigger_channel);
+ goto fail_unlock;
+ }
+
+ vadc->adc->amux_prop->trigger_channel = trigger_channel;
+
+ rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
+ if (rc) {
+ pr_err("qpnp vadc configure failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ if (vadc->vadc_poll_eoc) {
+ while (status1 != QPNP_VADC_STATUS1_EOC) {
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
+ &status1, 1);
+ if (rc < 0)
+ goto fail_unlock;
+ status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ if (status1 == QPNP_VADC_STATUS1_EOC)
+ break;
+ usleep_range(QPNP_VADC_CONV_TIME_MIN,
+ QPNP_VADC_CONV_TIME_MAX);
+ count++;
+ if (count > QPNP_VADC_ERR_COUNT) {
+ pr_err("retry error exceeded\n");
+ rc = qpnp_vadc_status_debug(vadc);
+ if (rc < 0)
+ pr_err("VADC disable failed\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+ }
+ } else {
+ rc = wait_for_completion_timeout(
+ &vadc->adc->adc_rslt_completion,
+ QPNP_ADC_COMPLETION_TIMEOUT);
+ if (!rc) {
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
+ &status1, 1);
+ if (rc < 0)
+ goto fail_unlock;
+ status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ if (status1 == QPNP_VADC_STATUS1_EOC)
+ pr_debug("End of conversion status set\n");
+ else {
+ rc = qpnp_vadc_status_debug(vadc);
+ if (rc < 0)
+ pr_err("VADC disable failed\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+ }
+ }
+
+ if (trigger_channel < ADC_SEQ_NONE) {
+ rc = qpnp_vadc_read_status(vadc,
+ vadc->adc->amux_prop->mode_sel);
+ if (rc)
+ pr_debug("Conversion sequence timed out - %d\n", rc);
+ }
+
+ rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
+ if (rc) {
+ pr_err("qpnp vadc read adc code failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ if (vadc->vadc_recalib_check) {
+ rc = qpnp_vadc_calib_gnd(vadc, calib_type, &gnd_calib);
+ if (rc) {
+ pr_err("Calibration failed\n");
+ goto fail_unlock;
+ }
+ rc = qpnp_vadc_calib_vref(vadc, calib_type, &new_vref_calib);
+ if (rc < 0) {
+ pr_err("qpnp vadc calib read failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ if (local_idx >= QPNP_VADC_RECALIB_MAXCNT) {
+ pr_err("invalid recalib count=%d\n", local_idx);
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+ pr_debug(
+ "chan=%d, calib=%s, vref_calib=0x%x, gnd_calib=0x%x, new_vref_calib=0x%x\n",
+ channel,
+ ((calib_type == CALIB_ABSOLUTE) ?
+ "ABSOLUTE" : "RATIOMETRIC"),
+ vref_calib, gnd_calib, new_vref_calib);
+
+ offset = (new_vref_calib - vref_calib);
+ if (offset < 0)
+ offset = -offset;
+ if (offset <= calib_offset) {
+ pr_debug(
+ "qpnp vadc recalibration not required,offset:%d\n",
+ offset);
+ local_idx = 0;
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dy =
+ (vref_calib - gnd_calib);
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dx =
+ (calib_type == CALIB_ABSOLUTE) ? QPNP_ADC_625_UV :
+ vadc->adc->adc_prop->adc_vdd_reference;
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_vref
+ = vref_calib;
+ vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_gnd
+ = gnd_calib;
+ } else {
+ vref_calib = new_vref_calib;
+ local_idx = local_idx + 1;
+ if (local_idx >= QPNP_VADC_RECALIB_MAXCNT) {
+ pr_err(
+ "qpnp_vadc recalibration failed, count=%d",
+ local_idx);
+ } else {
+ pr_debug(
+ "qpnp vadc recalibration requested,offset:%d\n",
+ offset);
+ offset = 0;
+ goto recalibrate;
+ }
+ }
+ }
+
+ amux_prescaling =
+ vadc->adc->adc_channels[dt_index].chan_path_prescaling;
+
+ if (amux_prescaling >= PATH_SCALING_NONE) {
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
+ vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
+ vadc->adc->amux_prop->chan_prop->calib_type =
+ vadc->adc->adc_channels[dt_index].calib_type;
+
+ scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
+ if (scale_type >= SCALE_NONE) {
+ rc = -EBADF;
+ goto fail_unlock;
+ }
+
+ if ((qpnp_vadc_channel_post_scaling_calib_check(vadc, channel)) < 0)
+ pr_debug("Post scaling calib type not updated\n");
+
+ vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
+ vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
+
+ pr_debug("channel=%d, adc_code=%d adc_result=%lld\n",
+ channel, result->adc_code, result->physical);
+
+fail_unlock:
+ if (vadc->state_copy->vadc_meas_int_enable)
+ qpnp_vadc_manage_meas_int_requests(vadc);
+
+ mutex_unlock(&vadc->adc->adc_lock);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vadc_conv_seq_request);
+
+int32_t qpnp_vadc_read(struct qpnp_vadc_chip *vadc,
+ enum qpnp_vadc_channels channel,
+ struct qpnp_vadc_result *result)
+{
+ struct qpnp_vadc_result die_temp_result;
+ int rc = 0;
+ enum power_supply_property prop;
+ union power_supply_propval ret = {0, };
+
+ if (vadc->vadc_hc) {
+ rc = qpnp_vadc_hc_read(vadc, channel, result);
+ if (rc < 0) {
+ pr_err("Error reading vadc_hc channel %d\n", channel);
+ return rc;
+ }
+
+ return 0;
+ }
+
+ if (channel == VBAT_SNS) {
+ rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
+ channel, result);
+ if (rc < 0) {
+ pr_err("Error reading vbatt\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
+ DIE_TEMP, &die_temp_result);
+ if (rc < 0) {
+ pr_err("Error reading die_temp\n");
+ return rc;
+ }
+
+ rc = qpnp_vbat_sns_comp(&result->physical, vadc,
+ die_temp_result.physical);
+ if (rc < 0)
+ pr_err("Error with vbat compensation\n");
+
+ return 0;
+ } else if (channel == SPARE2) {
+ /* chg temp channel */
+ if (!vadc->vadc_chg_vote) {
+ vadc->vadc_chg_vote =
+ power_supply_get_by_name("battery");
+ if (!vadc->vadc_chg_vote) {
+ pr_err("no vadc_chg_vote found\n");
+ return -EINVAL;
+ }
+ }
+
+ prop = POWER_SUPPLY_PROP_FORCE_TLIM;
+ ret.intval = 1;
+
+ rc = power_supply_set_property(vadc->vadc_chg_vote,
+ prop, &ret);
+ if (rc) {
+ pr_err("error enabling the charger circuitry vote\n");
+ return rc;
+ }
+
+ rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
+ channel, result);
+ if (rc < 0)
+ pr_err("Error reading die_temp\n");
+
+ ret.intval = 0;
+ rc = power_supply_set_property(vadc->vadc_chg_vote,
+ prop, &ret);
+ if (rc) {
+ pr_err("error enabling the charger circuitry vote\n");
+ return rc;
+ }
+
+ return 0;
+ } else
+ return qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
+ channel, result);
+}
+EXPORT_SYMBOL(qpnp_vadc_read);
+
+static void qpnp_vadc_lock(struct qpnp_vadc_chip *vadc)
+{
+ mutex_lock(&vadc->adc->adc_lock);
+}
+
+static void qpnp_vadc_unlock(struct qpnp_vadc_chip *vadc)
+{
+ mutex_unlock(&vadc->adc->adc_lock);
+}
+
+int32_t qpnp_vadc_iadc_sync_request(struct qpnp_vadc_chip *vadc,
+ enum qpnp_vadc_channels channel)
+{
+ int rc = 0, dt_index = 0, calib_type = 0;
+
+ if (qpnp_vadc_is_valid(vadc))
+ return -EPROBE_DEFER;
+
+ qpnp_vadc_lock(vadc);
+
+
+ vadc->adc->amux_prop->amux_channel = channel;
+
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != channel) && (dt_index < vadc->max_channels_available))
+ dt_index++;
+
+ if (dt_index >= vadc->max_channels_available) {
+ pr_err("not a valid VADC channel\n");
+ rc = -EINVAL;
+ goto fail;
+ }
+
+ calib_type = vadc->adc->adc_channels[dt_index].calib_type;
+ if (!vadc->vadc_init_calib) {
+ rc = qpnp_vadc_version_check(vadc);
+ if (rc)
+ goto fail;
+
+ rc = qpnp_vadc_calib_device(vadc);
+ if (rc) {
+ pr_err("Calibration failed\n");
+ goto fail;
+ } else
+ vadc->vadc_init_calib = true;
+ }
+
+ vadc->adc->amux_prop->decimation =
+ vadc->adc->adc_channels[dt_index].adc_decimation;
+ vadc->adc->amux_prop->hw_settle_time =
+ vadc->adc->adc_channels[dt_index].hw_settle_time;
+ vadc->adc->amux_prop->fast_avg_setup =
+ vadc->adc->adc_channels[dt_index].fast_avg_setup;
+ vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
+ << QPNP_VADC_OP_MODE_SHIFT);
+ vadc->vadc_iadc_sync_lock = true;
+
+ rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
+ if (rc) {
+ pr_err("qpnp vadc configure failed with %d\n", rc);
+ goto fail;
+ }
+
+ return rc;
+fail:
+ vadc->vadc_iadc_sync_lock = false;
+ qpnp_vadc_unlock(vadc);
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vadc_iadc_sync_request);
+
+int32_t qpnp_vadc_iadc_sync_complete_request(struct qpnp_vadc_chip *vadc,
+ enum qpnp_vadc_channels channel,
+ struct qpnp_vadc_result *result)
+{
+ int rc = 0, scale_type, amux_prescaling, dt_index = 0;
+
+ vadc->adc->amux_prop->amux_channel = channel;
+
+ while ((vadc->adc->adc_channels[dt_index].channel_num
+ != channel) && (dt_index < vadc->max_channels_available))
+ dt_index++;
+
+ rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
+ if (rc) {
+ pr_err("qpnp vadc read adc code failed with %d\n", rc);
+ goto fail;
+ }
+
+ amux_prescaling =
+ vadc->adc->adc_channels[dt_index].chan_path_prescaling;
+
+ if (amux_prescaling >= PATH_SCALING_NONE) {
+ rc = -EINVAL;
+ goto fail;
+ }
+
+ vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
+ vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
+
+ scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
+ if (scale_type >= SCALE_NONE) {
+ rc = -EBADF;
+ goto fail;
+ }
+
+ vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
+ vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
+
+fail:
+ vadc->vadc_iadc_sync_lock = false;
+ qpnp_vadc_unlock(vadc);
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vadc_iadc_sync_complete_request);
+
+static int32_t qpnp_vadc_thr_update(struct qpnp_vadc_chip *vadc,
+ int32_t high_thr, int32_t low_thr)
+{
+ int rc = 0;
+ u8 buf = 0;
+
+ pr_debug("client requested high:%d and low:%d\n",
+ high_thr, low_thr);
+
+ buf = QPNP_VADC_THR_LSB_MASK(low_thr);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_LOW_THR_LSB, &buf, 1);
+ if (rc < 0) {
+ pr_err("low threshold lsb setting failed, err:%d\n", rc);
+ return rc;
+ }
+
+ buf = QPNP_VADC_THR_MSB_MASK(low_thr);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_LOW_THR_MSB, &buf, 1);
+ if (rc < 0) {
+ pr_err("low threshold msb setting failed, err:%d\n", rc);
+ return rc;
+ }
+
+ buf = QPNP_VADC_THR_LSB_MASK(high_thr);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HIGH_THR_LSB, &buf, 1);
+ if (rc < 0) {
+ pr_err("high threshold lsb setting failed, err:%d\n", rc);
+ return rc;
+ }
+
+ buf = QPNP_VADC_THR_MSB_MASK(high_thr);
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HIGH_THR_MSB, &buf, 1);
+ if (rc < 0) {
+ pr_err("high threshold msb setting failed, err:%d\n", rc);
+ return rc;
+ }
+
+ pr_debug("client requested high:%d and low:%d\n", high_thr, low_thr);
+
+ return rc;
+}
+
+int32_t qpnp_vadc_channel_monitor(struct qpnp_vadc_chip *chip,
+ struct qpnp_adc_tm_btm_param *param)
+{
+ uint32_t channel, scale_type = 0;
+ uint32_t low_thr = 0, high_thr = 0;
+ int rc = 0, idx = 0, amux_prescaling = 0;
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
+ u8 buf = 0;
+
+ if (qpnp_vadc_is_valid(vadc))
+ return -EPROBE_DEFER;
+
+ if (!vadc->state_copy->vadc_meas_int_enable) {
+ pr_err("Recurring measurement interval not available\n");
+ return -EINVAL;
+ }
+
+ if (param->threshold_notification == NULL) {
+ pr_debug("No notification for high/low temp??\n");
+ return -EINVAL;
+ }
+
+ mutex_lock(&vadc->adc->adc_lock);
+
+ channel = param->channel;
+ while (idx < vadc->max_channels_available) {
+ if (vadc->adc->adc_channels[idx].channel_num == channel)
+ break;
+ else
+ idx++;
+ }
+
+ if (idx >= vadc->max_channels_available) {
+ pr_err("not a valid VADC channel\n");
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ scale_type = vadc->adc->adc_channels[idx].adc_scale_fn;
+ if (scale_type >= SCALE_RVADC_SCALE_NONE) {
+ rc = -EBADF;
+ goto fail_unlock;
+ }
+
+ amux_prescaling =
+ vadc->adc->adc_channels[idx].chan_path_prescaling;
+
+ if (amux_prescaling >= PATH_SCALING_NONE) {
+ rc = -EINVAL;
+ goto fail_unlock;
+ }
+
+ vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
+ vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
+ qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
+ vadc->adc->amux_prop->chan_prop->calib_type =
+ vadc->adc->adc_channels[idx].calib_type;
+
+ pr_debug("channel:%d, scale_type:%d, dt_idx:%d",
+ channel, scale_type, idx);
+ vadc->adc->amux_prop->amux_channel = channel;
+ vadc->adc->amux_prop->decimation =
+ vadc->adc->adc_channels[idx].adc_decimation;
+ vadc->adc->amux_prop->hw_settle_time =
+ vadc->adc->adc_channels[idx].hw_settle_time;
+ vadc->adc->amux_prop->fast_avg_setup =
+ vadc->adc->adc_channels[idx].fast_avg_setup;
+ vadc->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL;
+ adc_vadc_rscale_fn[scale_type].chan(vadc,
+ vadc->adc->amux_prop->chan_prop, param,
+ &low_thr, &high_thr);
+
+ if (param->timer_interval >= ADC_MEAS1_INTERVAL_NONE) {
+ pr_err("Invalid timer interval :%d\n", param->timer_interval);
+ goto fail_unlock;
+ }
+
+ buf = param->timer_interval;
+ rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_CTL, &buf, 1);
+ if (rc) {
+ pr_err("vadc meas timer failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ rc = qpnp_vadc_thr_update(vadc, high_thr, low_thr);
+ if (rc) {
+ pr_err("vadc thr update failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
+ if (rc) {
+ pr_err("vadc configure failed with %d\n", rc);
+ goto fail_unlock;
+ }
+
+ vadc->state_copy->meas_int_mode = true;
+ vadc->state_copy->param = param;
+ vadc->state_copy->vadc_meas_amux.channel_num = channel;
+ vadc->state_copy->vadc_meas_amux.adc_decimation =
+ vadc->adc->amux_prop->decimation;
+ vadc->state_copy->vadc_meas_amux.hw_settle_time =
+ vadc->adc->amux_prop->hw_settle_time;
+ vadc->state_copy->vadc_meas_amux.fast_avg_setup =
+ vadc->adc->amux_prop->fast_avg_setup;
+ vadc->state_copy->meas_int_request_in_queue = false;
+ dev_set_drvdata(vadc->dev, vadc);
+
+fail_unlock:
+ mutex_unlock(&vadc->adc->adc_lock);
+
+ return rc;
+}
+EXPORT_SYMBOL(qpnp_vadc_channel_monitor);
+
+int32_t qpnp_vadc_end_channel_monitor(struct qpnp_vadc_chip *chip)
+{
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
+ u8 mode_ctl = 0;
+
+ if (qpnp_vadc_is_valid(vadc))
+ return -EPROBE_DEFER;
+
+ if (!vadc->state_copy->vadc_meas_int_enable) {
+ pr_err("Recurring measurement interval not available\n");
+ return -EINVAL;
+ }
+
+ vadc->state_copy->meas_int_mode = false;
+ vadc->state_copy->meas_int_request_in_queue = false;
+ dev_set_drvdata(vadc->dev, vadc);
+ mode_ctl = ADC_OP_NORMAL_MODE;
+ /* Set measurement in single measurement mode */
+ qpnp_vadc_mode_select(vadc, mode_ctl);
+ qpnp_vadc_enable(vadc, false);
+
+ return 0;
+}
+EXPORT_SYMBOL(qpnp_vadc_end_channel_monitor);
+
+static ssize_t qpnp_adc_show(struct device *dev,
+ struct device_attribute *devattr, char *buf)
+{
+ struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(dev);
+ struct qpnp_vadc_result result;
+ int rc = -1;
+
+ rc = qpnp_vadc_read(vadc, attr->index, &result);
+
+ if (rc) {
+ pr_err("VADC read error with %d\n", rc);
+ return 0;
+ }
+
+ return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
+ "Result:%lld Raw:%x\n", result.physical, result.adc_code);
+}
+
+static struct sensor_device_attribute qpnp_adc_attr =
+ SENSOR_ATTR(NULL, S_IRUGO, qpnp_adc_show, NULL, 0);
+
+static int32_t qpnp_vadc_init_hwmon(struct qpnp_vadc_chip *vadc,
+ struct platform_device *pdev)
+{
+ struct device_node *child;
+ struct device_node *node = pdev->dev.of_node;
+ int rc = 0, i = 0, channel;
+
+ for_each_child_of_node(node, child) {
+ channel = vadc->adc->adc_channels[i].channel_num;
+ qpnp_adc_attr.index = vadc->adc->adc_channels[i].channel_num;
+ qpnp_adc_attr.dev_attr.attr.name =
+ vadc->adc->adc_channels[i].name;
+ memcpy(&vadc->sens_attr[i], &qpnp_adc_attr,
+ sizeof(qpnp_adc_attr));
+ sysfs_attr_init(&vadc->sens_attr[i].dev_attr.attr);
+ rc = device_create_file(&pdev->dev,
+ &vadc->sens_attr[i].dev_attr);
+ if (rc) {
+ dev_err(&pdev->dev,
+ "device_create_file failed for dev %s\n",
+ vadc->adc->adc_channels[i].name);
+ goto hwmon_err_sens;
+ }
+ i++;
+ }
+
+ return 0;
+hwmon_err_sens:
+ pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
+ return rc;
+}
+
+static int qpnp_vadc_get_temp(struct thermal_zone_device *thermal,
+ int *temp)
+{
+ struct qpnp_vadc_thermal_data *vadc_therm = thermal->devdata;
+ struct qpnp_vadc_chip *vadc = vadc_therm->vadc_dev;
+ struct qpnp_vadc_result result;
+ int rc = 0;
+
+ rc = qpnp_vadc_read(vadc,
+ vadc_therm->vadc_channel, &result);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ pr_err("VADC read error with %d\n", rc);
+ return rc;
+ }
+
+ *temp = result.physical;
+
+ return rc;
+}
+
+static struct thermal_zone_device_ops qpnp_vadc_thermal_ops = {
+ .get_temp = qpnp_vadc_get_temp,
+};
+
+static int32_t qpnp_vadc_init_thermal(struct qpnp_vadc_chip *vadc,
+ struct platform_device *pdev)
+{
+ struct device_node *child;
+ struct device_node *node = pdev->dev.of_node;
+ int rc = 0, i = 0;
+ bool thermal_node = false;
+
+ if (node == NULL)
+ goto thermal_err_sens;
+ for_each_child_of_node(node, child) {
+ char name[QPNP_THERMALNODE_NAME_LENGTH];
+
+ vadc->vadc_therm_chan[i].vadc_channel =
+ vadc->adc->adc_channels[i].channel_num;
+ vadc->vadc_therm_chan[i].thermal_chan = i;
+ thermal_node = of_property_read_bool(child,
+ "qcom,vadc-thermal-node");
+ if (thermal_node) {
+ /* Register with the thermal zone */
+ vadc->vadc_therm_chan[i].thermal_node = true;
+ snprintf(name, sizeof(name), "%s",
+ vadc->adc->adc_channels[i].name);
+ vadc->vadc_therm_chan[i].vadc_dev = vadc;
+ vadc->vadc_therm_chan[i].tz_dev =
+ thermal_zone_device_register(name,
+ 0, 0, &vadc->vadc_therm_chan[i],
+ &qpnp_vadc_thermal_ops, NULL, 0, 0);
+ if (IS_ERR(vadc->vadc_therm_chan[i].tz_dev)) {
+ pr_err("thermal device register failed.\n");
+ goto thermal_err_sens;
+ }
+ }
+ i++;
+ thermal_node = false;
+ }
+ return 0;
+thermal_err_sens:
+ pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
+ return rc;
+}
+
+static const struct of_device_id qpnp_vadc_match_table[] = {
+ { .compatible = "qcom,qpnp-vadc",
+ },
+ { .compatible = "qcom,qpnp-vadc-hc",
+ },
+ {}
+};
+
+static int qpnp_vadc_probe(struct platform_device *pdev)
+{
+ struct qpnp_vadc_chip *vadc;
+ struct qpnp_adc_drv *adc_qpnp;
+ struct qpnp_vadc_thermal_data *adc_thermal;
+ struct device_node *node = pdev->dev.of_node;
+ struct device_node *child;
+ const struct of_device_id *id;
+ int rc, count_adc_channel_list = 0, i = 0;
+ u8 fab_id = 0;
+
+ for_each_child_of_node(node, child)
+ count_adc_channel_list++;
+
+ if (!count_adc_channel_list) {
+ pr_err("No channel listing\n");
+ return -EINVAL;
+ }
+
+ id = of_match_node(qpnp_vadc_match_table, node);
+ if (id == NULL) {
+ pr_err("qpnp_vadc_match of_node prop not present\n");
+ return -ENODEV;
+ }
+
+ vadc = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_vadc_chip) +
+ (sizeof(struct sensor_device_attribute) *
+ count_adc_channel_list), GFP_KERNEL);
+ if (!vadc) {
+ dev_err(&pdev->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ vadc->dev = &(pdev->dev);
+ adc_qpnp = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_drv),
+ GFP_KERNEL);
+ if (!adc_qpnp)
+ return -ENOMEM;
+
+ adc_qpnp->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+ if (!adc_qpnp->regmap) {
+ dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
+ return -EINVAL;
+ }
+
+ vadc->state_copy = devm_kzalloc(&pdev->dev,
+ sizeof(struct qpnp_vadc_mode_state), GFP_KERNEL);
+ if (!vadc->state_copy)
+ return -ENOMEM;
+
+ vadc->adc = adc_qpnp;
+ adc_thermal = devm_kzalloc(&pdev->dev,
+ (sizeof(struct qpnp_vadc_thermal_data) *
+ count_adc_channel_list), GFP_KERNEL);
+ if (!adc_thermal) {
+ dev_err(&pdev->dev, "Unable to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ vadc->vadc_therm_chan = adc_thermal;
+ if (!strcmp(id->compatible, "qcom,qpnp-vadc-hc")) {
+ vadc->vadc_hc = true;
+ vadc->adc->adc_hc = true;
+ }
+
+ rc = qpnp_adc_get_devicetree_data(pdev, vadc->adc);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to read device tree\n");
+ return rc;
+ }
+ mutex_init(&vadc->adc->adc_lock);
+
+ rc = qpnp_vadc_init_hwmon(vadc, pdev);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to initialize qpnp hwmon adc\n");
+ return rc;
+ }
+ vadc->vadc_hwmon = hwmon_device_register(&vadc->adc->pdev->dev);
+ rc = qpnp_vadc_init_thermal(vadc, pdev);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to initialize qpnp thermal adc\n");
+ return rc;
+ }
+ vadc->vadc_init_calib = false;
+ vadc->max_channels_available = count_adc_channel_list;
+ rc = qpnp_vadc_read_reg(vadc, QPNP_INT_TEST_VAL, &fab_id, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc comp id failed with %d\n", rc);
+ goto err_setup;
+ }
+ vadc->id = fab_id;
+ pr_debug("fab_id = %d\n", fab_id);
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION2,
+ &vadc->revision_dig_major, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc dig_major rev read failed with %d\n", rc);
+ goto err_setup;
+ }
+
+ rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION3,
+ &vadc->revision_ana_minor, 1);
+ if (rc < 0) {
+ pr_err("qpnp adc ana_minor rev read failed with %d\n", rc);
+ goto err_setup;
+ }
+
+ rc = qpnp_vadc_warm_rst_configure(vadc);
+ if (rc < 0) {
+ pr_err("Setting perp reset on warm reset failed %d\n", rc);
+ goto err_setup;
+ }
+
+ INIT_WORK(&vadc->trigger_completion_work, qpnp_vadc_work);
+
+ vadc->vadc_recalib_check = of_property_read_bool(node,
+ "qcom,vadc-recalib-check");
+
+ vadc->vadc_poll_eoc = of_property_read_bool(node,
+ "qcom,vadc-poll-eoc");
+ if (!vadc->vadc_poll_eoc) {
+ rc = devm_request_irq(&pdev->dev, vadc->adc->adc_irq_eoc,
+ qpnp_vadc_isr, IRQF_TRIGGER_RISING,
+ "qpnp_vadc_interrupt", vadc);
+ if (rc) {
+ dev_err(&pdev->dev,
+ "failed to request adc irq with error %d\n", rc);
+ goto err_setup;
+ } else {
+ enable_irq_wake(vadc->adc->adc_irq_eoc);
+ }
+ } else
+ device_init_wakeup(vadc->dev, 1);
+
+ vadc->state_copy->vadc_meas_int_enable = of_property_read_bool(node,
+ "qcom,vadc-meas-int-mode");
+ if (vadc->state_copy->vadc_meas_int_enable) {
+ vadc->adc->adc_high_thr_irq = platform_get_irq_byname(pdev,
+ "high-thr-en-set");
+ if (vadc->adc->adc_high_thr_irq < 0) {
+ pr_err("Invalid irq\n");
+ rc = -ENXIO;
+ goto err_setup;
+ }
+
+ vadc->adc->adc_low_thr_irq = platform_get_irq_byname(pdev,
+ "low-thr-en-set");
+ if (vadc->adc->adc_low_thr_irq < 0) {
+ pr_err("Invalid irq\n");
+ rc = -ENXIO;
+ goto err_setup;
+ }
+
+ rc = devm_request_irq(&pdev->dev, vadc->adc->adc_high_thr_irq,
+ qpnp_vadc_high_thr_isr,
+ IRQF_TRIGGER_RISING, "qpnp_vadc_high_interrupt", vadc);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to request adc irq\n");
+ goto err_setup;
+ } else {
+ enable_irq_wake(vadc->adc->adc_high_thr_irq);
+ }
+
+ rc = devm_request_irq(&pdev->dev, vadc->adc->adc_low_thr_irq,
+ qpnp_vadc_low_thr_isr,
+ IRQF_TRIGGER_RISING, "qpnp_vadc_low_interrupt", vadc);
+ if (rc) {
+ dev_err(&pdev->dev, "failed to request adc irq\n");
+ goto err_setup;
+ } else {
+ enable_irq_wake(vadc->adc->adc_low_thr_irq);
+ }
+ INIT_WORK(&vadc->trigger_high_thr_work,
+ qpnp_vadc_high_thr_fn);
+ INIT_WORK(&vadc->trigger_low_thr_work, qpnp_vadc_low_thr_fn);
+ }
+
+ vadc->vadc_iadc_sync_lock = false;
+ dev_set_drvdata(&pdev->dev, vadc);
+ list_add(&vadc->list, &qpnp_vadc_device_list);
+
+ return 0;
+
+err_setup:
+ for_each_child_of_node(node, child) {
+ device_remove_file(&pdev->dev, &vadc->sens_attr[i].dev_attr);
+ if (vadc->vadc_therm_chan[i].thermal_node)
+ thermal_zone_device_unregister(
+ vadc->vadc_therm_chan[i].tz_dev);
+ i++;
+ }
+ hwmon_device_unregister(vadc->vadc_hwmon);
+
+ return rc;
+}
+
+static int qpnp_vadc_remove(struct platform_device *pdev)
+{
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(&pdev->dev);
+ struct device_node *node = pdev->dev.of_node;
+ struct device_node *child;
+ int i = 0;
+
+ for_each_child_of_node(node, child) {
+ device_remove_file(&pdev->dev, &vadc->sens_attr[i].dev_attr);
+ if (vadc->vadc_therm_chan[i].thermal_node)
+ thermal_zone_device_unregister(
+ vadc->vadc_therm_chan[i].tz_dev);
+ i++;
+ }
+ hwmon_device_unregister(vadc->vadc_hwmon);
+ list_del(&vadc->list);
+ if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok)
+ qpnp_adc_free_voltage_resource(vadc->adc);
+ dev_set_drvdata(&pdev->dev, NULL);
+
+ return 0;
+}
+
+static int qpnp_vadc_suspend_noirq(struct device *dev)
+{
+ struct qpnp_vadc_chip *vadc = dev_get_drvdata(dev);
+ u8 status = 0;
+
+ qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status, 1);
+ if (((status & QPNP_VADC_STATUS1_OP_MODE_MASK) >>
+ QPNP_VADC_OP_MODE_SHIFT) == QPNP_VADC_MEAS_INT_MODE) {
+ pr_debug("Meas interval in progress\n");
+ } else if (vadc->vadc_poll_eoc) {
+ status &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
+ pr_debug("vadc conversion status=%d\n", status);
+ if (status != QPNP_VADC_STATUS1_EOC) {
+ pr_err(
+ "Aborting suspend, adc conversion requested while suspending\n");
+ return -EBUSY;
+ }
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops qpnp_vadc_pm_ops = {
+ .suspend_noirq = qpnp_vadc_suspend_noirq,
+};
+
+static struct platform_driver qpnp_vadc_driver = {
+ .driver = {
+ .name = "qcom,qpnp-vadc",
+ .of_match_table = qpnp_vadc_match_table,
+ .pm = &qpnp_vadc_pm_ops,
+ },
+ .probe = qpnp_vadc_probe,
+ .remove = qpnp_vadc_remove,
+};
+
+static int __init qpnp_vadc_init(void)
+{
+ return platform_driver_register(&qpnp_vadc_driver);
+}
+module_init(qpnp_vadc_init);
+
+static void __exit qpnp_vadc_exit(void)
+{
+ platform_driver_unregister(&qpnp_vadc_driver);
+}
+module_exit(qpnp_vadc_exit);
+
+MODULE_DESCRIPTION("QPNP PMIC Voltage ADC driver");
+MODULE_LICENSE("GPL v2");