/* * bubbl * Copyright (C) 2025 Raghuram Subramani * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "common.h" #include #include #include #include #include #include #include #include namespace VirtualMM { extern uint32_t kernel_start; extern uint32_t kernel_end; uint32_t *l_current_page_directory = 0; /* Kernel's page directory */ uint32_t l_page_directory[1024] ALIGNED(4096); /* Page table for the first 4 MiB */ uint32_t l_fourMiB_page_table[1024] ALIGNED(4096); /* Page table for the next 4 MiB */ uint32_t l_eightMiB_page_table[1024] ALIGNED(4096); uint32_t * get_page_directory(void) { return l_current_page_directory; } ALWAYS_INLINE void load_page_directory(uint32_t *page_directory) { __asm__ volatile("movl %0, %%cr3" ::"r"(page_directory)); } bool switch_page_directory(uint32_t *page_directory) { if (!page_directory) return false; l_current_page_directory = page_directory; load_page_directory(page_directory); return true; } ALWAYS_INLINE static void enable_paging(void) { __asm__ volatile("movl %%cr0, %%eax;" "orl $0x80000000, %%eax;" "movl %%eax, %%cr0" :: : "eax"); } void initialize(void) { /* Zero out the page tables and directories */ for (uint32_t i = 0; i < 1024; i++) { l_fourMiB_page_table[i] = 0; l_eightMiB_page_table[i] = 0; l_page_directory[i] = 0; } /* Identity map the first 4MiB, excluding the 4th MiB * (maps 4KiB 1024 times) */ for (uint32_t i = 0; i < 1024; i++) l_fourMiB_page_table[i] = PTE_FRAME(i << 12) | PTE_PRESENT(1) | PTE_WRITABLE(1); /* Identity map the next 4MiB */ for (uint32_t i = 0; i < 1024; i++) l_eightMiB_page_table[i] = PTE_FRAME((i + 1024) << 12) | PTE_PRESENT(1) | PTE_WRITABLE(1); /* Set up the page directory entries */ uint32_t *fourMiB_pd_entry = &l_page_directory[0]; *fourMiB_pd_entry = PDE_FRAME((uint32_t) l_fourMiB_page_table) | PDE_PRESENT(1) | PDE_WRITABLE(1); uint32_t *eightMiB_pd_entry = &l_page_directory[1]; *eightMiB_pd_entry = PDE_FRAME((uint32_t) l_eightMiB_page_table) | PDE_PRESENT(1) | PDE_WRITABLE(1); switch_page_directory(l_page_directory); enable_paging(); PageTableAllocator::initialize(); } uint32_t * make_table(uint32_t *pd_entry) { uint32_t *table = PageTableAllocator::allocate(); for (uint32_t i = 0; i < 1024; i++) table[i] = 0x0; *pd_entry = PDE_FRAME((uint32_t) table) | PDE_PRESENT(1) | PDE_WRITABLE(1); return table; } ALWAYS_INLINE static uint32_t * get_or_make_table(uint32_t *pd_entry) { uint32_t *table = 0; if (!PDE_IS_PRESENT(pd_entry)) table = make_table(pd_entry); else table = (uint32_t *) PDE_GET_TABLE(pd_entry); return table; } void map_page(void *physical_address, void *virtual_address) { uint32_t *pd_entry = &l_current_page_directory[GET_PD_INDEX(virtual_address)]; uint32_t *table = get_or_make_table(pd_entry); uint32_t *pt_entry = &table[GET_PT_INDEX(virtual_address)]; if (PTE_IS_PRESENT(pt_entry)) /* Mapping previously mapped memory */ ASSERT_NOT_REACHED(); *pt_entry = PTE_FRAME((uint32_t) physical_address) | PTE_PRESENT(1) | PTE_WRITABLE(1); } void unmap_page(void *virtual_address) { uint32_t *pd_entry = &l_current_page_directory[GET_PD_INDEX(virtual_address)]; uint32_t *table = 0; /* If the pd_entry isn't present, return */ if (!PDE_IS_PRESENT(pd_entry)) return; table = (uint32_t *) PDE_GET_TABLE(pd_entry); uint32_t *pt_entry = &table[GET_PT_INDEX(virtual_address)]; printk("debug", "Freeing: 0x%x", pt_entry); *pt_entry = 0; } void * find_free_pages(uint32_t n_pages) { /* Skip the first two page directory entries; we don't wanna touch the first * 8MiB. */ for (uint32_t pd_index = 2; pd_index < PAGE_DIRECTORY_SIZE; pd_index++) { uint32_t starting_pd_index = pd_index; uint32_t *pd_entry = &l_current_page_directory[pd_index]; uint32_t *table = 0; bool table_is_present = PDE_IS_PRESENT(pd_entry); if (table_is_present) table = (uint32_t *) PDE_GET_TABLE(pd_entry); for (uint32_t starting_pt_index = 0; starting_pt_index < PAGE_TABLE_SIZE; starting_pt_index++) { uint32_t count = 0; if (table_is_present) if (PTE_IS_PRESENT(&table[starting_pt_index])) continue; /* We found our starting pt_entry */ for (uint32_t pt_index = starting_pt_index; pt_index <= PAGE_TABLE_SIZE; pt_index++) { /* If we overflow, switch to the consecutive page directory entry */ if (pt_index == PAGE_TABLE_SIZE) { pd_index++; if (pd_index == PAGE_DIRECTORY_SIZE) return 0; /* Ran out of pd_entries */ pd_entry = &l_current_page_directory[pd_index]; table_is_present = PDE_IS_PRESENT(pd_entry); pt_index = 0; } /* If the table is present, and if the PTE is present, then break */ if (table_is_present) if (PTE_IS_PRESENT(&table[pt_index])) { /* Since we have some used address at some point between j and * count, we can't find n consecutive free addresses in between j * and the used block (j + count + 1) */ starting_pt_index += count; break; } /* TODO: This can be easily optimized if the table is not present. * (count += 4096, since we know that the table is not present) */ count++; if (count == n_pages) return (void *) VIRTUAL_ADDRESS(starting_pd_index, starting_pt_index); } } } ASSERT_NOT_REACHED(); return 0; } }