#!/usr/bin/env python from src.nn import MLP from src.loss import mse X = [ [ 0.0, 1.0, 2.0 ], [ 2.0, 1.0, 0.0 ], [ 2.0, 2.0, 2.0 ], [ 3.0, 3.0, 3.0 ] ] y = [ 1.0, -1.0, 1.0, -1.0 ] n = MLP(3, [ 4, 4, 1 ]) pred = [ n(x) for x in X ] print(pred) for i in range(400): pred = [ n(x) for x in X ] loss = mse(y, pred) loss.zero_grad() loss.backward() n.optimise(0.01) print(loss.data) print(pred)