aboutsummaryrefslogtreecommitdiff
path: root/example.py
diff options
context:
space:
mode:
authorRaghuram Subramani <raghus2247@gmail.com>2024-06-09 08:50:49 +0530
committerRaghuram Subramani <raghus2247@gmail.com>2024-06-09 08:50:49 +0530
commit194f7d40561485f5ac3a3556721cfbc542be3b07 (patch)
tree49edbcc9f1daf378396a8dd6a31c0078df3976f6 /example.py
parent40240b0b383abc2d3e81e2bcfe5e4b6d6fdfec2a (diff)
Update
Diffstat (limited to '')
-rwxr-xr-xgradient_descent.py (renamed from example.py)29
1 files changed, 0 insertions, 29 deletions
diff --git a/example.py b/gradient_descent.py
index 66df486..3f7f124 100755
--- a/example.py
+++ b/gradient_descent.py
@@ -3,35 +3,6 @@
from src.scalar import Scalar
from src.graph import Graph
-# Manual Backpropagation
-
-# a = Scalar(2, label='a')
-# b = Scalar(-3, label='b')
-# c = Scalar(10, label='c')
-# f = Scalar(-2, label='f')
-#
-# d = a * b; d.label = 'd'
-# e = d + c; e.label = 'e'
-# L = e * f; L.label = 'L'
-#
-# print(f'L before gradient descent: {L.data}')
-#
-# L.backward()
-#
-# g = Graph(L)
-#
-# for x in [a, b, c, f]:
-# x.data += 0.01 * x.grad
-#
-# d = a * b
-# e = d + c
-# L = e * f
-#
-# print(f'L after gradient descent: {L.data}')
-# g.show()
-
-# Neuron
-
x1 = Scalar(2, label='x1')
x2 = Scalar(0, label='x2')